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Neuropathology and behavioural features of transgenic murine models of Alzheimer’s disease

Our understanding of the underlying biology of Alzhei-

mer’s disease (AD) has been steadily progressing; how-

ever, this is yet to translate into a successful treatment

in humans. The use of transgenic mouse models has

helped to develop our understanding of AD, not only in

terms of disease pathology, but also with the associated

cognitive impairments typical of AD. Plaques and neu-

rofibrillary tangles are often among the last pathologi-

cal changes in AD mouse models, after neuronal loss

and gliosis. There is a general consensus that successful

treatments need to be applied before the onset of these

pathologies and associated cognitive symptoms. This

review discusses the different types of AD mouse models

in terms of the temporal progression of the disease,

how well they replicate the pathological changes seen

in human AD and their cognitive defects. We provide a

critical assessment of the behavioural tests used with

AD mice to assess cognitive changes and decline, and

discuss how successfully they correlate with cognitive

impairments in humans with AD. This information is

an important tool for AD researchers when deciding on

appropriate mouse models, and when selecting

measures to assess behavioural and cognitive change.
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Introduction

Dementia is a term used to describe a syndrome, caused

by various diseases of the brain, characterized by

significant decline in multiple cognitive areas including

memory, language, social cognition, executive and

perceptual functions. The most recent Diagnostic and

Statistical Manual of Mental Disorders, 5th ed. (DSM–V)

introduces the term ‘Major Neurocognitive Disorders’,

with some changes in criteria compared to DSM–IV [1],

including more specific details on the degree of impair-

ment observed in the aforementioned cognitive

domains, and the inability to explain such impairments

by any other means [2]. Population-based studies show

that Alzheimer’s disease (AD), dementia with Lewy bod-

ies and vascular dementia are the most common patho-

logical substrates for dementia [3–6]. AD is the most

common type of dementia and is associated with a

decline in cognitive abilities, such as memory and

visuo-spatial skills. Early-onset familial AD accounts for

<1% of AD diagnoses, and typically occurs before the

age of 65 years [7]. Late-onset AD most often occurs

over the age of 65 years and is much more common.

Murine models of AD recapitulate aspects of the dis-

ease, often through gene mutations associated with

familial AD, and can powerfully elucidate critical

aspects of pathogenesis. Although this type of AD is

less common, the pathological phenotypes are similar

to sporadic AD. Extracellular beta amyloid plaques,

intracellular hyperphosphorylated tau, synaptic and
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neuronal loss and neuroinflammation, are all associ-

ated with the disease [8]. The amyloid cascade hypoth-

esis [9,10] proposed that amyloid (Ab) plaque

deposition is key to the pathogenesis of AD, with tau

pathology, inflammation and subsequent cell damage

as contributing factors. Neuronal and neurotransmitter

changes follow Ab deposition, leading eventually to cell

death. Cognitive decline may be a result of neuronal

dysfunction from toxic soluble Ab [11], or inhibited

synapse remodelling linked to Ab oligomers [12]. Ther-

apeutic trials have targeted the clearance of Ab, with

some success in both murine models [13,14] and in

humans [15,16]. However, immunotherapy targeting

Ab has not yet translated into improved cognitive func-

tioning [17–19]. A greater understanding of the role of

Ab molecular forms, their temporal role in AD develop-

ment and their interaction with other pathogenic

factors is required.

Oxidative stress is a key factor in AD, whereby the

balance between oxidants and antioxidants is disrupted,

leading to an excess of oxidants [20,21]. Several mech-

anisms may contribute towards oxidative stress, includ-

ing dysfunction of mitochondria [22,23], accumulation

of Ab [22,24] and hyperphosphorylated tau [25,26]

and neuroinflammation [27,28]. Biomarkers of oxida-

tive stress in AD have been identified; however, a rela-

tively recent systematic review by Chang et al. [29]

concluded that although serum markers of lipid peroxi-

dation are elevated in AD, there is insufficient evidence

to justify the use of biomarkers as predictors of AD

severity or outcome.

Recent studies have investigated the interacting and

modifying factors of the defining pathological features

of AD; Jonsson et al. [30] reported that a coding muta-

tion (A673T) in the amyloid precursor protein (APP)

gene has a protective effect against AD and cognitive

decline. Genome-wide association studies have reported

AD genetic risk factors, with Chapuis et al. [31]

recently identifying a gene (FERMT2) that has a role in

regulating APP metabolism and Ab production.

Researchers are yet to fully explore the interacting and

modifying factors of AD pathogenesis using AD mouse

models in great detail.

The current review will discuss how well, and in what

aspects, murine models of AD recapitulate the physiolog-

ical, neuropathological and cognitive changes associated

with human AD. A complete critical analysis of all AD

models and their phenotypes is beyond the scope of this

review, so the particular focus will be on commonly used

amyloid-based transgenes (overexpressors of APP and/or

its processing enzymes), wild-type human tau or mutant

microtubule associated protein tau (MAPT) expressors,

and selected combined and triple transgenes.

Murine models of AD

AD pathology primarily consists of amyloid plaques

and neurofibrillary tangles (NFT). Other pathological

features of AD include neuronal and synaptic loss, dys-

trophic neurites, reactive astrocytes, activated microglia

and BBB dysfunction [32].

Mutations in three genes have been identified as

causing autosomal dominant AD [APP, presenilins

(PSEN1 and PSEN2)] through altering Ab production,

and share similar pathological features to sporadic AD

[33]. These gene mutations have therefore been the

focus of many AD mouse models. Transgenic animals

based on amyloid production typically express high

levels of Ab peptide usually through altering the pro-

cessing of APP [34]. Altered APP processing is usually

achieved through introduction of human APP (hAPP),

or a PSEN gene mutation, which affects c-secretase

enzyme activity, and subsequently alters the cleavage

of APP to Ab1-42 [35,36]. Cleavage of APP occurs by

both b-secretase enzyme [also known as b-site amyloid-

cleaving enzyme 1 (BACE1)] at the N-terminus of the

Ab peptide, and the c-secretase enzyme (Ab C-termi-

nus) activity [36], resulting in a 42 amino acid peptide.

This peptide makes up the extracellular fibrillar Ab

which forms the senile, compact plaques with dense

cores. The ratio between Ab40 and Ab42, rather than

just overall Ab expression, is thought to be a significant

factor in determining plaque load and toxicity [34]. a-

secretase activity is involved in cleavage of APP to Ab

fragments between residues 16 and 17 of the Ab pep-

tide, resulting in a truncated Ab17-40 or Ab17-42

fragment. PSEN genes also have several other functions

in addition to cleavage of c-secretase, and there is cur-

rent debate over whether they may be altered by gene

mutations leading to AD [37], rather than, or in addi-

tion to, changes to the Ab40/Ab42 ratio [38].

Single mutations in the PSEN1 or PSEN2 genes

cause APP processing by c-secretase activity to shift

towards the more toxic Ab 1-42 rather than Ab 1-40

[39], although these mice do not develop plaques

unless crossed with APP overexpressor lines [40].
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PSEN1 and PSEN2 gene mutations are functionally

similar, although PSEN1 is more severe [41].

Neurofibrillary tangles are also a significant hall-

mark of AD, and are composed of hyperphosphory-

lated forms of tau protein [35]. There are no known

MAPT gene mutations associated with sporadic AD,

but they do occur in fronto-temporal dementia

(FTLD-tau) and Parkinson’s disease, linked to chromo-

some 17 (FTDP-17; [42]). Tau protein binds micro-

tubules stabilizing them in the axons, but in some

disease states hyperphosphorylated tau dissociates

from the microtubules and forms prefibrillar oligo-

meric and fibrillary aggregates such as NFTs and

paired helical filaments ([43]). Ab oligomers have

been reported to contribute to tau oligomerization

[44]. Improved animal models are essential for fur-

ther understanding the relationship between amyloid

and tau pathology. Transgenic mice that recapitulate

the NFT therefore express either wild-type human tau

or mutant MAPT [35]. A number of double-trans-

genic mice models go one step further and attempt

to model the functional interaction between APP and

mutant MAPT expression, to more closely mimic the

overall pathology seen in AD, with triple transgenes

also including a PSEN1 gene mutation.

AD mouse models that exhibit one or more of the

main features of the disease also exhibit additional neu-

ropathological changes associated with the disease,

such as changes to cells within the neurovascular unit

[45]. For example astrocytes, which are typically

involved in cerebral homoeostasis, become activated in

AD [46] and co-localize with amyloid plaques [47].

Early astrocyte damage and dysfunction have been

linked to AD pathogenesis [48–50]. Microglia are

immune cells that also become activated and co-localize

with amyloid plaques [51,52]. Some AD mouse models

associated with altered Ab production are known to

develop cerebral amyloid angiopathy (CAA) whereby

amyloid deposition builds up on arterial walls. It is a

pathological feature of AD that can also be found in

the elderly without AD, and can be associated with

cerebral haemorrhage [53]. Mouse models that exhibit

CAA (such as TgAPP23 and TgCRND8) are useful for

assessing small vessel disease and cerebral haemor-

rhage in relation to AD, but interpreting causal links

between pathological and behavioural phenotypes can

be difficult, as symptoms may be due to cerebral abnor-

malities [11].

Testing cognition in animals

The hippocampal formation is one of the earliest brain

regions to be affected by AD, with impairments in

working memory and declarative memory among the

first symptoms to be reported by AD patients [54]. Tests

of visuo-spatial processing are useful measures of cogni-

tive impairment in the disease, however, by the point

in which patients undergo neuropsychological assess-

ment, neuropathology may have been present for years

without notable symptomatology [55].

Hippocampal-dependent tasks measure early cogni-

tive changes in mouse models of neurodegenerative dis-

eases and so will be the sole focus of the review, with a

comprehensive overview of these and other tasks being

reported elsewhere [56,57]. Tasks used in mouse mod-

els of AD include the Morris water maze [58,59], the

radial arm maze (RAM) [60], the T-maze/Y-maze [61]

and the spontaneous object recognition (SOR) task [62].

The Morris water maze is a test of hippocampal-

dependent spatial memory whereby rodents typically

have to locate a submerged platform using external

visual cues (Figure 1). Escape latency and/or search

path are used as measures of learning acquisition, in

which good spatial learning is reflected by a decrease

in escape latency and/or the search path used to locate

the platform. Hippocampal-dependent spatial working

memory has been measured using a number of para-

digms, particularly the RAM, which involves baiting

the arms of the maze with food that does not get

replenished. Efficient searching through reduced entries

to previously visited arms suggests that the animal

remembers where it has previously visited. Alternation

tasks using the T-maze or the Y-maze utilize the ani-

mal’s natural exploratory behaviour to measure the

animal’s tendency to enter the less recently visited arm

(s). These spatial alternation tasks require minimal

training in contrast to the RAM.

The SOR task relies on rodent’s innate preference for

novelty, as they demonstrate recognition for a familiar

object through preferential exploration of a novel

object. The SOR task is not typically hippocampal-

dependent, unless the time delay between the sample

and test phases is increased from minutes to hours

[63]. Rodent behavioural tasks are thought to rely on

the same neural mechanisms as in humans, so they

can provide a reliable measure of cognitive function in

animal models of neurodegeneration that closely
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reflects the cognitive decline seen in human neurologi-

cal disease.

How well do models of AD recapitulate

physiological, neuropathological and

behavioural changes associated with the

disease?

Specific mouse models, categorized as those that over-

express Ab, those with mutations affecting secretase

processing of APP and those with NFT pathology

(through introducing human wild-type tau or mutant

MAPT), will now be discussed, considering how well

they reflect human AD in terms of pathology and

cognitive changes.

Altering Ab through APP processing

Human APP mutations mainly occur at one or both of

the two cleavage sites that result in Ab production. For

example, c-secretase cleavage site mutations, such as

V717I and V717F, alter the ratio between Ab40 and

Ab42 production to favour the more toxic Ab42 [34],

but many express the K670N/M671L Swedish double

mutation at the b-secretase cleavage site which results

in increased BACE cleavage and production of Ab40

Morris water maze Radial arm maze (c) (b) (a) 

(d) (e) 

T-maze

Y-maze Spontaneous object recognition

Sample phase Test phase

Start arm

Delay

Sample phase Test phase

A B

C

Submerged 

platform

Figure 1. Test apparatus for a series of rodent cognitive tasks. (a) The Morris water maze. Animals are required to locate a submerged

(hidden) platform. Escape latency and/or search path are used as measures of spatial memory. Memory impairment is demonstrated

through no decrease in escape latency. (b) Radial arm maze. The animal begins in the centre of the maze, with each arm baited with

food. The animal can explore these arms and consume the food reward, but the food is not replenished. Spatial working memory is

assessed through the number of times unbaited arms are re-entered. Memory impairment is demonstrated when unbaited arms are

repeatedly visited. The dashed lines represent the line to be crossed for an arm entry to be counted. (c) T-maze alternation task. During a

sample phase, the animal begins in the start arm and is forced to enter either the right or left arm (in this example, the left), receiving a

food reward. For the test phase, the animal again begins in the start arm, but has the choice between previously entered arm and the

novel arm. The animal receives a food reward for entering the arm not previously visited during the sample phase. Memory impairment

is demonstrated if the animal fails to alternate between the arms from sample to test phase. The dashed line represents the door blocking

entry to the right arm during the sample phase. (d) Y-maze alternation task. The animal begins in the centre of the maze in this

continuous version of the alternation task. For a period of time (e.g. 10 min) the animal can freely explore the three arms of the maze

(labelled here as ‘A’, ‘B’ and ‘C’). Memory impairment is demonstrated if the animal fails to display a tendency to alternate between the

less visited arms. (e) Spontaneous object recognition. Animals can freely explore two copies of an object in an open field in a sample

phase. Following a delay (of minutes or hours), the animal is returned to the open field and exposed to a copy of the sample object and a

novel object in the test phase. Recognition of the familiar object is shown through greater exploration of the novel object over the

familiar object. Memory impairment is demonstrated through equal exploration of both objects at test.
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and Ab42. Others combine both the Swedish mutation

with a c-secretase cleavage site mutation [38].

PDAPP

The first transgenic mouse model to develop robust

amyloid plaque deposition was generated by Games

et al. [64], and contained hAPP with mutations associ-

ated with familial, early-onset AD (FAD V717F Indi-

ana) using C57Bl/6, DDA/2J and Swiss-Webster mouse

strains (Table 1). The PDAPP (platelet-derived growth

factor promoter amyloid precursor protein) mice exhibit

amyloid deposition from 6 to 9 months of age, with

further pathologies characteristic of AD such as dys-

trophic neurites (immunoreactive against phosphory-

lated tau; [65]), the co-localization of activated

astrocytes and microglia with plaques and a decrease

in synaptic density [64]. There is no development of

NFTs or neuronal loss up to at least 18 months of age

[66].

There is an age-related memory impairment in the

SOR task, with all PDAPP mice initially performing as

well as controls in discriminating between novel and

familiar objects at 3 months of age, but by 6 months

onwards, the homozygous PDAPP mice fail to success-

fully discriminate between objects. When tested in the

RAM, only homozygous PDAPP mice show significant

reference memory impairments through entering

incorrect unbaited arms more often than controls, but

PDAPP mice show working memory impairments

through revisiting previously baited arms more often

than controls [35]. Chen et al. [67] reported spatial

memory impairments in the Morris water maze with 3-

month-old PDAPP mice impaired at learning the first

platform location. Dodart et al. [68] reported sensori-

motor impairments in PDAPP mice from 3 months of

age, as they failed to habituate to an open field typi-

cally exhibited through a decrease in locomotor activity

levels over time.

The reported cognitive and behavioural impairments

all precede the onset of disease pathology in PDAPP

mice, which suggests there is early dysfunction to

mechanisms linked to these impairments, and may con-

tribute to the plaque and cellular pathology which is

typical of AD.

Tg2576

Tg2576 mice were developed by Hsiao et al. [69], over-

expressing the Swedish APP mutation (K670N/M671L)

on a C57Bl/6 9 SJL background [35]. These mice

show an increase in Ab levels at 6 months, and plaque

deposition between 9 and 12 months of age across the

cortex and hippocampus [70]. These mice recapitulate

Table 1. Timeline of onset of amyloid pathology and cognitive test impairments in transgenic mouse models of AD

Transgenic mouse model Mutation

Amyloid

deposition

(months) SOR (months)

Water maze

(months)

T-maze

(months)

Y-maze

(months)

PDAPP APP (Indiana V717F) 6–9 6 3

Tg2576 APP (Swedish K670N-M671L) 9–12 12–15 6 10 10

TgAPP23 APP (Swedish K670N-M671L) 6–12 3–4 3

TgCRND8 APP (Swedish K670N-M671L

and Indiana V717F)

3–5 3–5 3

J20 APP (Swedish K670N-M671L

and Indiana V717F)

5–7 4 6–9

APP + PSEN1 APP (Swedish K670N-M671L),

PSEN1 M146L

6–8 15–17 3

TAPP APP (Swedish K670N-M671L),

MAPT P301L

6 7–8

Tg2576n/VLW tau APP (Swedish K670N-M671L),

G272V, MAPT P301L, R406W

9 16

3xTgAD APP (Swedish K670N-M671L),

MAPT P301L, PSEN1 M146V

5 Intact at

11 months

6–9

AD, Alzheimer’s disease; SOR, spontaneous object recognition; APP, amyloid precursor protein; PDAPP, platelet-derived growth factor

promoter amyloid precursor protein; PSEN1, presenilin; MAPT, microtubule associated protein tau; TAPP, tau amyloid precursor protein.
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many of the neuropathological features of AD, includ-

ing astrogliosis [71], microgliosis [72] and dystrophic

neurites [71]. Similar to the PDAPP mice, there is no

observed neuronal loss; however, there is also no signif-

icant decrease in synaptic density [73,74]. Ab increases

may be linked to synaptic dysfunction, if not necessar-

ily synapse loss [73,75].

Tg2576 mice show repetitive exploration behaviours

from 10 months of age in the spontaneous Y-maze

alteration task [69], and from 10 months onwards in

the T-maze alternation task [75]. Tg2576 mice exhibit

soluble Ab before 6 months of age, but do not develop

progressive spatial acquisition and memory perfor-

mance impairments until 6 months onwards [76]. In

the SOR task, Tg2576 mice fail to discriminate between

novel and familiar objects after a 24 h delay compared

to controls at 12–15 months of age [77]. Tg2576 mice

exhibited greater exploration in an open field [75] and

an increased interest in exploring the central areas

[78]. Tg2576 mice have also been reported to show

increased aggression towards cage mates [79].

Cognitive impairments in the Tg2576 mice occur

much later than the PDAPP mice, which may be

related to the significant decrease in synaptic density

observed in the PDAPP mice. Similar to the PDAPP

mice, the cognitive and behavioural impairments in the

Tg2576 mice either precede or coincide with the Ab

pathology, again suggesting there is early dysfunction

occurring prior to plaque deposition and glial response.

TgAPP23

TgAPP23 AD mice were generated using the Swedish

double mutation (K670N/M671L) altering the b-secre-

tase cleavage site, and the London (V717I) mutation

altering the c-secretase cleavage site, on a C57Bl/

6 9 DBA/2 background [80]. These mice overexpress

hAPP across the hippocampus and cortex and are

notable for their cerebrovascular phenotype [81]. Amy-

loid deposition is present from 6 months of age and

substantial by 12 months, particularly in cerebral ves-

sels which progressively decreases cerebral blood flow

and alters vessel morphology [82,83]. TgAPP23 mice

also display reactive gliosis and astrocytosis, dystrophic

neurites, and synaptic loss [81], as well as a degree of

neuronal loss in older TgAPP23 mice [84].

TgAPP23 mice show spatial impairments in water

maze latencies and path lengths from 3 months of age

prior to substantial plaque deposition [85]. In the SOR

task, TgAPP23 mice fail to discriminate between novel

and familiar objects after a 24 h delay at 3–4 months

of age [86]. Both SOR and water maze task impair-

ments occur from around 3 months of age, therefore,

preceding amyloid deposition. This is similar to the

PDAPP and Tg2576 mice, though with slightly differ-

ent ages of onset.

TgAPP23 mice exhibit a cerebrovascular phenotype

making them a useful model for AD with CAA, but it is

unclear how much of the neuropathology and cogni-

tive profiles can be attributed to the hAPP mutation or

the cerebrovascular changes [11].

TgAPP23 mice exhibit a decrease in exploratory

behaviour in the open field, at 6–8 weeks, 3 and

6 months of age, while also showing significant impair-

ments relative to control animals on the rotarod at 3

and 6 months [85]. TgAPP23 mice have also been

reported to show increased aggression from 6 months

of age, after the onset of both amyloid plaques and

other discussed behavioural impairments [87].

TgCRND8

TgCRND8 mice were developed on a C57Bl/6 9 C3H

background and contained both the APP Swedish dou-

ble mutation (K670N-M671L) and the V717F Indiana

mutation [35]. These mice present with Ab deposition

at 3 months of age, with dense core plaques present by

5 months in the cortex and hippocampus [88,89],

spreading to the cerebellum and brainstem by 8–

9 months of age [11], which is associated with

increased inflammatory response [90]. In addition,

astrocytic gliosis and microglial activation in regions

around plaques have been reported [89].

Chishti et al. [89] reported that these mice have sig-

nificant acquisition impairments in hidden platform

testing at 11 weeks, with longer swim paths and search

latencies compared to controls. In addition, TgCRND8

mice show spatial reference memory impairments at 6–

8 months of age, but were able to overcome this impair-

ment when the hidden platform was visibly cued [91].

At 3–5 months of age, TgCRND8 mice fail to dis-

criminate between novel and familiar objects on the

SOR task with a 1 h delay [92], and in the Y-maze

task, TgCRND8 mice perform comparably to controls

up to around 11 months of age, demonstrating intact

short-term spatial memory capacity [93]. Overall, and
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similar to the previously discussed AD models, any sig-

nificant cognitive impairments reported in the

TgCRND8 mice coincide with amyloid deposition,

occurring at an early age of around 3 months. How-

ever, the Ab pathology does occur at a younger age

compared to the previous models, so the timeline from

when the cognitive impairments are observed, to when

amyloid deposition occurs, is much shorter, almost

occurring simultaneously.

J20

The J20 transgenic mouse features a high level of Ab1-

42 overexpression resulting from the introduction of

both the Swedish (K670N and M671L) and Indiana

(V7171F) hAPP mutations in a C57Bl/6 9 DBA2J back-

ground. Diffuse amyloid deposits appear from 5 to

7 months of age in the hippocampus and the neocortex,

with larger neuritic plaques appearing after 9 months of

age (Figure 2). J20 mice also exhibit a decrease in synap-

tophysin immunoreactivity indicating changes in synap-

tic function [11]. J20 mice are also a useful epilepsy

model, due to abnormal neural hyperexcitability [94],

and cerebrovascular function and neurovascular cou-

pling in relation to neurodegeneration [95,96].

On the SOR task, J20 mice successfully discriminate

between novel and familiar objects after a 1 h delay up

to 15–16 months of age [97], but are unable to recog-

nize familiar objects after a 4 h delay at 6–8 months of

age [98]. When the delay is extended to 24 h, J20

mice are impaired from as early as 4 months old [99].

Overall, these findings suggest that J20 AD mice are

able to successfully recognize a previously encountered

object following a delay of up to 1 h, but not after a

delay of over 4 h.

Palop et al. [100] reported that J20 mice aged 6–

9 months of age are impaired in water maze hidden

platform location as well as spatial location retention

in probe trials. An alternative measure of spatial mem-

ory that relies on the animal’s natural exploratory

behaviour is the object-location (OL) task (a spatial

variant of the SOR paradigm). AD mice with APP

mutations show impairments on the OL from around

5 months of age [101]. Unlike the previously discussed

AD models, the age of onset for spatial memory impair-

ments in the water maze is not as early. Spatial mem-

ory impairments in the OL task are observed at a

slightly younger age, so it can be concluded that, over-

all, impairments observed on both recognition and spa-

tial memory appear to coincide closely with the

deposition on amyloid in the hippocampus and cortex,

from around 4 months onwards.

Secretases

Specific mutations in the PSEN genes (PSEN1 and

PSEN2; [102,103] result in changes in c-secretase

activity leading to preferential processing of Ab1–42

GFAP and Aβ dual label Iba1 and Aβ dual label (A) (B)

Figure 2. Glial pathology associated with Ab plaques in the hippocampus of a 12-month-old hAPP-J20 mouse. Ab plaques (6E10, red)

are associated with (A) reactive astrocytes (GFAP, brown) and (B) microglia (Iba-1, brown). Scale bar represents 50 lm. Images are

contrast enhanced.
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fragments. Most PSEN gene mouse models are derived

from PSEN1 mutations.

APP + PSEN1

Holcomb et al. [40] crossed the PSEN1 transgene

(M146L) with hAPP Tg2576 mice, and at 4–5 months

of age APP + PSEN1 mice had detectable insoluble Ab.

At 6–8 months of age, APP + PSEN1 mice show ele-

vated levels of Ab compared to single transgenic

Tg2576 littermates [40]. Spatial memory impairments

appear as early as 12–14 weeks of age, with APP +

PSEN1 mice showing a significant reduction in the

number of alternations on the Y-maze spatial task

[104]. Arendash et al. [105] further supported these

findings, reporting that APP + PSEN1 mice showed a

significant reduction in the number of alternations in

the Y-maze task at 5–7 months of age, but also showed

impairments in acquisition of spatial locations in the

water maze at 15–17 months of age.

15–17-month-old APP + PSEN1 mice exhibited senso-

rimotor deficits through a significant impairment on a

balance beam test, and increased activity in the open field

[105]. A more recent study by Wang et al. [106] mea-

sured sensorimotor gating in the APP + PSEN1 mice at

3, 7 and 22 months of age, using the prepulse inhibition

(PPI) of the startle response (attenuated startle response

from a preceding stimulus). PPI was found to be lower in

7- and 22-month-old APP + PSEN1 mice compared to

age-matched controls, with the 7-month-old APP +

PSEN1 mice also exhibiting memory impairments in the

water maze task and increased Ab plaque deposition com-

pared to 3-month-old APP + PSEN1mice.

Correlating the onset of Ab pathology and impair-

ments in spatial memory in the water maze suggest

that these phenotypes are linked, with onset occurring

around 6–7 months of age. However, spatial memory

performance in the Y-maze reveals impairments from

as early as 3 months of age, highlighting how task-

specific demands can vary in sensitivity.

BACE1 KO 3 APP

Luo et al. [107] developed the BACE1 knock out on a

hAPP Tg2576 background. BACE1�/�Tg2576+ pheno-

typically should be ‘normal’, in that they show no signifi-

cant disease-associated pathology. These mice do not

develop plaques or produce soluble Ab peptides [108]. In

the Y-maze alternation task, BACE1�/� Tg2576+ mice

at 4–6 months of age performed as well as wild-type

controls and significantly better than Tg2576 mice who

exhibit brain amyloid Ab (but not plaque deposition) at

this age. These results suggest that BACE1 deficiency in

a hAPP transgenic mouse model results in improved per-

formance on the Y-maze alternation task, which may be

linked to reduced Ab levels.

Tau and triple transgenes

Most transgenic mouse models used to investigate tau

and the formation of NFTs involve either introducing a

gene for human wild-type tau, or mutant MAPT [35].

It is important to note that single transgenic mice with

FTD-associated tau (e.g. the JNPL3 line expressing the

P301L FTD-associated tau mutation) are better under-

stood as models of FTD, rather than AD [38]. A num-

ber of studies have also modelled tau propagation

through transgenic lines that overexpress P301L

restricted to regions such as the entorhinal cortex

where neurons are first affected by NFTs [109], or

through injecting tau preformed fibrils into specific

brain regions of PS19 transgenic mice overexpressing

human P301S mutant tau, for example [110].

TAPP

Lewis et al. [111] crossed the hAPP Tg2576 mouse line

with the JNPL3 mouse line expressing the most common

FTD-associated human tau mutation (P301L), forming

the TAPP (tau amyloid precursor protein) bigenic line.

The TAPP mice develop Ab plaque deposition compara-

ble to Tg2576 mice and as early as 6 months of age

[111], but the NFT pathology is more severe than JNPL3

mice, suggesting that the APP pathology may contribute

towards exacerbating tangle formation [111]. Cognitive

performance is not widely reported in this model, but

they do have various motor disturbances [111]. Yuzwa

et al. [112] recently reported TAPP mice were impaired

on the water maze task at 7–8 months of age, which is

at a slightly later age of onset to Ab deposition and in

contrast to previously discussed AD models.

Tg2576/VLW tau

Amyloid overexpressing Tg2576 mice were crossed with

VLW mice with mutant 4R MAPT [113] containing a
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triple mutation (G272V, P301L, R406W) on a C57Bl/

6 9 CBA background. These mice exhibit widespread

Ab accumulation initially at 9 months of age, with wide-

spread deposition, and neuronal loss in the entorhinal

cortex and CA1 region of the hippocampus from

16 months of age [113]. Spatial memory tested in the

Morris water maze reveals longer escape latencies com-

pared to wild-type controls initially at 9 months of age,

but predominantly from 16 months of age [113]. The

spatial memory impairments in the water maze are first

observed at a comparable age of onset relative to Ab

deposition, but this is still at a later age of onset com-

pared to previously discussed AD models.

3xTgAD

The 3xTgAD mouse line was developed by Oddo et al.

[114], who generated a triple transgenic model by coin-

jecting two transgenes containing APP (Swedish) and

MAPT P301L FTDP-17 mutations into embryonic cells

from PS1M146V knock-in mice. 3xTgAD mice exhibit

increased levels of Ab1-40 and Ab1-42, and NFTs. Amy-

loid plaques are present as early as 3 months of age, with

NFTs appearing much later at 12 months of age in the

hippocampus and cortex [114]. These mice also have

altered synaptic function which progresses with age

[114], and spatial memory impairments on the water

maze from 6 months of age [115]. Davis et al. [116]

reported intact recognition memory at 11 months of age,

despite the presence of intracellular Ab from 5 months. In

addition, 3xTgAD mice showed impairments on the T-

maze task (being unable to successfully distinguish

between novel and familiar arms), and the radial arm

water maze from between 6 and 9 months of age [117].

Overall, Ab deposition occurs early in 3xTgAD mice prior

to any significant cognitive impairments, which are

reported from around 6 months of age. This is in contrast

to the previously discussed AD models. NFTs also develop

later, at around 12 months of age. Though 3xTgAD mice

present with the two main features of AD, these findings

suggest poor correlation between behavioural impair-

ments and disease pathology, perhaps because Ab and

tau develop independently of one another.

Translation into therapeutic developments

There are currently only a select number of drugs

available to treat AD, focusing on alleviating

symptoms, with no new drugs being approved since

2003. No drug has yet been identified to significantly

alter the course of the disease, and translate success-

fully into clinical applications. This may be due to sig-

nificant differences between rodent models and humans

in terms of how they metabolise the drugs, how the

drugs act upon certain mechanisms, and fundamental

differences in neural circuitry between species [118].

Immunotherapy has been investigated preclinically

in AD mouse models as a potential therapeutic strategy

through preventing Ab aggregation. For example,

administration of the monoclonal antibody bap-

ineuzumab in PDAPP resulted in a reduction in both

soluble and insoluble levels of Ab [119]. Immunothera-

pies targeting amyloid plaques have progressed to clini-

cal trials, showing some promising reductions in rate of

cognitive decline [120], and levels of Ab and tau fol-

lowing neuropathological investigations [18], but no

trials have shown results that are both significantly

efficacious and nonharmful. For example, a recent

meta-analysis highlighted the lack of clinical efficacy of

bapineuzumab [121] which failed Phase III trials,

alongside similar monoclonal antibody solanezumab

[122].

BACE1 is another therapeutic target, with adminis-

tration of TAK-070 (a nonpeptidic BACE1 inhibitor) to

Tg2576 mice resulting in a reduction in both soluble

and insoluble Ab, and a reduction in cognitive impair-

ments [123]. However, promising BACE1 inhibitor

verubecestat has recently failed in clinical trial,

although a trial with patients at an earlier stage of the

disease continues [124]. Hung and Fu [125] have

recently published a comprehensive review of AD drugs

in clinical trials up to June 2017, including the thera-

peutic targets, trial status and clinical outcomes.

Stem cells have been investigated as a potential ther-

apeutic strategy for AD. Administration of haplotype-

matched murine neuronal stem cells to aged 3xTgAD

mice reduced cognitive impairments, but had no signifi-

cant effect on Ab or tau pathology [126].

There have also been recent advances in the use of

optogenetics, a technique which modulates neuronal

activity, as a therapeutic approach for neurodegenera-

tive diseases, including AD [127]. However, this

research is currently in the very early stages of

research.

In summary, a number of therapeutic strategies have

been developed in AD mouse models and have shown
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promising results in terms of reducing Ab or tau, for

example, showing that these models are good for reca-

pitulating disease pathology. However, none of these

strategies have yet successfully translated to clinical

outcomes in AD patients, so there is a need for more

advanced animal models that better model disease com-

plexity.

Discussion

No one model provides an ideal and complete charac-

terization of AD as observed in humans, however, dif-

ferent models are useful for answering questions about

specific aspects of the disease.

Within each type of AD model there are variations

in terms of the onset of pathological features and cog-

nitive decline, of which some can be accounted for by

background strains as well as differing baseline abilities

in terms of learning, memory and locomotion [39].

Even with AD models of the same genetic background,

many cognitive tests are sensitive to small variations in

task protocol, which can yield contrasting results

[128]. Rodents are nocturnal and do not primarily rely

on vision, but olfaction, which raises issues around

their abilities to perform in tasks such as the Morris

water maze [129]. Mice, in particular, are known to

perform poorly in the water maze compared to rats,

due to tendencies to swim nearer to the wall (a classic

hallmark of anxiety; [130] and to be more buoyant

[131]. The age of the animals is also a determining fac-

tor in water maze performance [132], which may be

related to an age-related decline in motor abilities.

No AD mouse model exhibits the full range of patho-

logical phenotypes, making it difficult to correlate cog-

nitive decline and pathological changes. Only a small

number of AD models exhibit neuronal loss [39], with

it being rarely reported in APP models, such as PDAPP

and Tg2576 [67, 72], but more often reported in APP

models combined with PSEN1 gene mutations [133].

Ab impairs synaptic function, which is likely to be a

major contributor to the cognitive impairments

reported [36]. Studies have described a loss in synapto-

physin-immunoreactivity around compact plaques in

both PDAPP and Tg2576 mice, indicating changes to

synapse function relating to Ab [72]. Soluble Ab may

contribute towards cognitive impairments, which

would account for why they are observed prior to com-

pact plaque deposits [77]. Pathological and behavioural

features need consideration when selecting an AD

model to test a specific hypothesis, and will depend on

the precise mechanisms being investigated.

It is not clear how accurately the time course of

amyloid plaque deposition and cognitive decline reflects

human AD. Behavioural impairments are often

reported prior to plaque deposition across AD mouse

models, but it is likely that Ab pathology is present

prior to the onset of cognitive impairments in humans

[134]. It may, however, be likely that subtle changes

in cognition occur prior to patients reporting the first

notable changes with their physician.

Transgenic mice expressing both amyloid and tau

pathology (e.g. TAPP and 3xTgAD) may seem like the

ideal models to study human AD as they more closely

reflect the disease. Although these mice present with

the two main features of AD, these pathologies are

reported as developing independently [38], and so do

not fully mimic the disease progression seen in

humans.

A number of emerging hypotheses linking other

health conditions to dementia and AD present an

opportunity for AD models to be utilized as models for

other diseases. For example, recent studies suggest that

Ab may play a role in promoting cerebrovascular

atherosclerosis [135], which would make an APP

mouse model suitable for studying this relationship and

a number of other cerebrovascular and neurodegenera-

tive diseases, particularly as such conditions rarely pre-

sent independently in humans.

Two genetic variations which are important risk fac-

tors for sporadic AD are the allelic variations of

apolipoprotein (APOE), and the R47H allele of the trig-

gering receptor expressed on myeloid cells 2 (TREM2;

[136]). APOE colocalizes with Ab and microglia. Mice

that are haploinsufficient for human APOE show a sig-

nificant decrease in plaque deposition in APP/PSEN1

(L166P) and J20 mice [137,138], and APOE-knockout

mice have been reported to clear Ab faster than control

mice [139]. Disrupting the interaction between APOE

and Ab may be a viable potential therapeutic approach

to reduce Ab deposition.

There are conflicting reports regarding the effect of

TREM2 on overall Ab plaque deposition which has

been characterized in the APP/PSEN1 and 5xFAD

mouse models [140,141]. Ulrich et al. [142] reported

that TREM2 haploinsufficient APP/PSEN1 mice of 3

and 7 months of age showed no significant Ab
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deposition in the cortex. Further research supports

these findings with Jay et al. [143] reporting that 4-

month-old TREM2�/� APP/PSEN1 mice showed no sig-

nificant cortical Ab deposition, and a decrease in hip-

pocampal Ab deposition compared to TREM2+/+ APP/

PSEN1 mice (26). In comparison, Wang et al. [144]

reported that 8-month-old TREM2�/� 5xFAD mice

exhibited an increase in hippocampal Ab deposition,

with no significant effect on cortical Ab. Further work

is needed to elucidate the roles of APOE and TREM2

gene variations in AD, and refining animal models will

be key to progressing how the function of these genes

relate to certain pathological features of AD.

Touchscreen technology [145] could present as a

way of standardizing and improving rodent cognitive

and behavioural tests. A range of computer-automated

cognitive tasks have been developed for rodents which

are designed to mimic the neuropsychological tasks

used with humans, improving their translational capa-

bility. Such tasks are carried out in the same apparatus

with the same type of stimuli, improving the ability to

compare performance across tasks. Romberg et al.

[146] reported that TgCRND8 mice showed no impair-

ment on a visual discrimination test, but were impaired

on a test of object recognition, even with a short delay

of 1 min. It is possible that the touchscreen version of

the object recognition task is more difficult than the

standard version, potentially due to rodents naturally

being more dependent on olfaction than visual acuity,

but the technology remains promising.

There have been varying results regarding the effect

of sexual differences on AD mouse model phenotypes,

but it is necessary to understand how such differences

may contribute to making one sex more vulnerable or

protected from disease. Research suggests that female

AD mice have an increased vulnerability to AD pheno-

types, but Dubal et al. [147] propose this may be more

closely related to a greater beneficial effect of male hor-

mones, and a more deleterious effect of female hor-

mones in the brain of AD mouse models.

Developments in genome editing technology known

as CRISPR/Cas9 allows for mice to be genetically engi-

neered much more efficiently [148], as multiple gene

variations can be introduced simultaneously. This tech-

nology is particularly significant for developing mouse

models of late-onset AD, which is likely to involve

multiple gene variations. Improved predictive models

should lead to better translation between preclinical

and clinical studies, particularly for the more common

late-onset AD.

Conclusion

Mouse models of AD continue to be a central compo-

nent in furthering our understanding of the disease

and identifying new therapeutic targets for existing and

novel compounds. It is important, however, to treat AD

models as a reductionist tool for understanding the

pathogenesis of AD, and research should be guided by

human studies to look for the causal relationships

human work cannot often provide.
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