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UV-LED absorption spectroscopy and numerical

simulations
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Abstract. The efficient generation of reactive oxygen species (ROS) in cold

atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g.

for the treatment of temperature sensitive biological samples in the field of plasma

medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium

feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous

glow-mode plasma at low gas temperatures, was investigated. Absolute densities

of ozone, one of the most prominent ROS, were measured across the 11 mm wide

discharge channel by means of broadband absorption spectroscopy using the Hartley

band centered at λ = 255 nm. A two-beam setup with a reference beam in Mach-

Zehnder configuration is employed for improved signal-to-noise ratio allowing high-

sensitivity measurements in the investigated single-pass weak-absorbance regime. The

results are correlated to gas temperature measurements, deduced from the rotational

temperature of the N2 (C 3Π+
u
→ B 3Π+

g
, υ = 0 → 2) optical emission from introduced

air impurities. The observed opposing trends of both quantities as a function of rf

power input and oxygen admixture are analysed and explained in terms of a zero-

dimensional plasma-chemical kinetics simulation. It is found that the gas temperature

as well as the densities of O and O2(b
1Σ+

g
) influence the absolute O3 densities when

the rf power is varied.

‡ Current address: KROHNE Innovation GmbH, Ludwig-Krone-Str.5, 47058 Duisburg, Germany
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1. Introduction

Cold atmospheric pressure plasmas are efficient sources for the generation and controlled

delivery of short- and long-lived reactive species at ambient pressure and close to room-

temperature [1,2]. This provides unique opportunities for biomedical applications [3–7],

including wound healing [8,9], sterilisation [10,11], plasma-induced DNA damaging [12,

13] and cancer cell treatment [14–18].

The quantification of reactive oxygen and nitrogen species (RONS) such as atomic

oxygen (O), ozone (O3), singlet delta oxygen (O2(a
1∆g)), hydroxyl (OH), hydrogen

peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) is of key importance to

understand the fundamental processes underlying their production and the biological

effects of atmospheric pressure plasmas [19–21]. Furthermore, the control of these species

is important for the development of future plasma-based technologies [22–26].

Atmospheric pressure plasmas typically have a small electrode separation distance

in the order of micrometers to millimeters [27]. In order to investigate the

correspondingly relative small plasma volume, sensitive and non-intrusive measuring

techniques are required. Various spectroscopic methods have been employed to

measure densities of short-lived RONS [28–32]. For example, atomic oxygen densities

have been measured using two-photon absorption laser-induced fluorescence (TALIF)

spectroscopy [33, 34], VUV synchrotron absorption spectroscopy [35], and energy

resolved actinometry (ERA) [36]. Singlet delta oxygen densities have been measured

using infrared optical emission spectroscopy [37, 38]. OH densities have been obtained

by laser-induced fluorescence (LIF) [39–41] and UV absorption spectroscopy [42, 43].

Densities of reactive species containing nitrogen have been measured, e.g. ground-state

N atoms by TALIF [44], N2(A
3Σ+

u ) [45], and NO [46,47] by LIF.

Ozone is a long-lived reactive species whose production and destruction depends

on a variety of plasma-chemical reactions involving ground-state and excited oxygen

atoms and molecules in the active plasma region. Therefore, accurate ozone density

measurements are particularly important for validating theoretical predictions that

can exhibit much larger uncertainties [48]. Ozone densities have been measured and

simulated under different plasma conditions, for example in an argon background gas [49]

or in the (remote) plasma effluent region [50,51].

Direct measurements of ozone densities inside the small active plasma volume

provide important details about the plasma-chemical kinetics, but present a significant

challenge. Ozone has a large photon absorption cross section around 255 nm (Hartley

band) in the ultra-violet (UV) absorption range [52]. UV absorption is hence a

versatile measurement technique to investigate absolute O3 densities, which in addition

is independent of quenching data [32]. However, the O3 density varies along the

plasma channel and the use of short single-pass absorption lengths provides relatively

low absorption signals. Furthermore, with small electrode separations, electrode

temperature variations can introduce significant fluctuation in low-absorption signals.

Therefore, in this article, we employ UV-LED absorption spectroscopy using a two-
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beam setup with a reference beam in Mach-Zehnder configuration for improved signal-

to-noise ratio allowing high-sensitivity measurements in the investigated single-pass

small-absorbance regime with the capability of spatially resolved measurements. This

technique is used to measure absolute O3 densities in the plasma core of a homogeneous

He-O2 capacitively coupled radio-frequency (13.56 MHz) driven plasma as a function of

RF power and O2 admixture.

The production and destruction of ozone in He-O2 plasmas is closely related to the

gas temperature. Therefore, accurate measurements of the gas temperature are crucial

in the interpretation of the plasma-chemical kinetics involving ozone. We determine

gas temperatures using measurements of the rotational temperature of the N2 optical

emission spectrum [28]. The details of this diagnostic technique as well as alternative

techniques are described in the literature in detail [53, 54]. A zero-dimensional plasma-

chemical kinetics simulation, GlobalKin [55,56], based on the reaction mechanism given

in [48], has been used to analyse the main pathways of O3 production and destruction

in order to explain the trends observed experimentally.

2. Experimental setup

2.1. The atmospheric pressure plasma source

The investigated radio-frequency (RF) atmospheric-pressure plasma source design is

based on the COST reference microplasma jet [57] and is described in reference [35].

A schematic is shown in figure 1. It produces a cold, homogeneous-glow-like α-mode

plasma with an electron temperature of around 2 eV and electron densities around 1017

m−3 [58]. The source comprises a plane-parallel rectangular stainless-steel electrode

configuration with a gap distance of 1 mm. Ultra-violet (UV) transparent MgF2 windows

enclose the discharge region along the sides, and define a plasma channel with an optical

absorption path length of 11 mm along the width of the electrodes, perpendicular to

the feed gas flow along the length (30 mm) of the electrodes. The feed gas flow is 10

slm helium (purity ≥ 99.996%) with an oxygen admixture (purity ≥ 99.6% ) of up to 1

vol%. The flow through the plasma cross section is assumed to be laminar. Taking into

account this gas flow rate and the cross section of the plasma channel, a gas flow velocity

between 16.5 and 19.6 m/s can be calculated within a temperature range of 295 and

350 K, which is the relevant temperature range for this work. This estimate of the gas

velocity represents an upper limit, since small gaps between the electrode and the glass

windows of roughly 0.5 mm provide an additional cross section for gas flow. Accounting

for these small gaps as an additional cross section provides a lower limit on the gas flow

velocity of a factor of 2 lower than the upper limit and doubles the residence time of

the gas in the plasma channel. These additional gaps are included in the design of the

source to prevent a direct contact between glass and metal. One electrode is capacitively

driven by a 13.56 MHz RF generator through an L-type impedance matching network

(Coaxial Power Systems, RFG 150-13 and MMN 150-13), while the other electrode is
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grounded.

Figure 1: Schematic of the RF plasma source in side view (left) and cross section top

view (right) [35].

The investigated plasma source matches closely the key dimensions and properties of

an existing well-characterised micro-plasma jet source [33,59], apart from the up-scaled

plasma channel width, here 11 mm instead of 1 mm, thus offering a longer absorption

path and lower ozone detection limit; the corresponding surface-to-volume ratios; and

the guidance of the exhaust gas through tubes over about 50 cm length into an air

extraction, instead of directly into ambient air. In terms of plasma power, the actual

electrical power input into the core plasma was measured by a plasma power probe

(SOLAYL, Vigilant power monitor, VPM-13.56-1K-1F-1M, Max 1000 W) connected

between the matching unit and the plasma source. In comparison with measuring the

power output of the rf generator this method excludes unknown power losses within

the RF matching network [60] giving a more accurate measure of the plasma power. A

comparison between both plasma sources is still possible, since our measurements cover

the complete power range from the minimum limit for plasma sustainment to the upper

limit just before transition into an unwanted constricted mode, by using those two limits

as relative reference points.

2.2. UV-broadband absorption setup and procedures

The ozone density in the core plasma (averaged over the electrode width and the elec-

trode gap distance) was measured by broadband absorption of the corresponding Hartley

continuum system (1B2 → X 1A1) at around λ = 255 nm on the basis of cross-section

data [61]. The concept of the experimental setup is to measure the incident and trans-

mitted spectral intensity I0(λ) and IT (λ), respectively, of a beam from a light emitting

diode (LED) crossing the absorbing plasma medium through an imaging spectrograph,

equipped with a charge coupled device (CCD) camera. This is mathematically reflected

by equation 1:

T (λ) =
IT (λ)

I0(λ)
=

IPL(λ)− IP (λ)

IL(λ)− IBG(λ)
= exp(−A(λ)) = exp(−σ(λ) · L · n) (1)
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Four different measurements are needed: IPL(λ) the intensity of the light source with

plasma on, IL(λ) the intensity of the light source with plasma off, IP (λ) the plasma

emission, and IBG(λ) the background signal without light source and plasma. A

direct result is the spectral transmission, T(λ), and the absorbance, A(λ), according

to Beer-Lambert’s law, yielding the averaged absorber density, n, over the line-of-sight

absorption length, L, (here 11 mm) for a known absorption cross section σ(λ).

According to reference [61], the absorption cross section of the Hartley continuum

system of ozone exhibits a peak value of 1.17 × 10−17 cm2 within a broad almost

symmetrical spectral line shape that is centred at around λ = 255 nm with a full-width

at half-maximum (FWHM) of about ∆λ = 40 nm. In addition, this cross section has

been found to be practically independent of the gas temperature; references [52,62] state

a change of about one percent for raising Tg from 202 to 295 K.

The spectrum of the used LED light source is about four times narrower (∆λ = 11

nm), as shown in figure 2. The transmitted intensity spectrum (IT and I0) is recorded

with a spectrograph/camera system (described below) that is adjusted to provide a

modest spectral resolution of 0.3 nm, which is still sufficient to resolve the product of

light source and intrinsic transmission line shapes. Since the line shape of the light source

does not fully cover the absorption cross section, spectrally resolved data (measurement

and cross section) is required for determining the ozone density according to equations 1

and 2.

The two-beam UV-LED absorption setup is in Mach-Zehnder configuration as

shown in figure 3. The used UV-LED light source (UVTOP, 255-TO18-FW) provides

a spectrum with a centre wavelength of λ = 255 nm and FWHM of ∆λ = 11 nm,

see figure 2. It is attached to a mounting head that is actively temperature-controlled

through a piezo element, and driven by a stabilised current/power supply unit (Thorlabs,

LTC100). The typical LED current is 20 mA, the typical optical output power is 150

µW, and the stability of the current supply is specified to be better than 10−4.

245 250 255 260 265
0

5.0x103

1.0x104

1.5x104

2.0x104

2.5x104

In
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)
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Figure 2: Measured spectrum of the UV-LED.
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As shown in figure 4 (a), the UV-LED is at first imaged 1:1 by an f = 100 mm, φ

= 25 mm fused silica lens (L1) into the vertically orientated plasma channel, and from

there 1:1 with an identical lens (L2) onto the vertically orientated entrance slit of the

spectrograph. This represents the probe beam. Additional mirrors (M2), beam-splitters

(BS1, BS2), and a third lens (L3) are used to symmetrically couple out a reference beam

of similar intensity that by-passes the plasma source.

Figure 3: Schematic of the two-beam UV-LED absorption setup. The probe beam and

reference beam are represented by green-solid line and red-dash line, respectively.

Figure 4: Illustration of detailed beam paths: (a) top view and (b) side view.

This reference beam is imaged onto the spectrograph’s entrance slit and the CCD

camera chip, but on a different vertical position due to vertical beam displacement

through alignment of BS1 and M2 (see figure 4 (b)). Both beams are fully separated

by a horizontal blocking cover in front of the entrance slit. The reference beam goes

onto the lower half of the CCD chip, rows 0-256, and the probe beam is imaged on the

upper part, rows 257-512. The spectrograph’s grating disperses the incoming light in
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(a) IPL (b) IP

(c) IL (d) IBG

Figure 5: CCD images of the probe beam (pixel row 370-470 (ROI 1)) and reference

beam (pixel row 40-140 (ROI 2)) intensities obtained with (a) LED and plasma, (b)

plasma only, (c) LED only, and (d) background only. The colours indicate the counts

per pixel on a linear colour scale from min(blue)-to-max(yellow) value, respectively.

the horizontal direction onto 2048 pixel columns which relate to a wavelength range of

about 23 nm, see figure 5.

The used spectrograph is a 0.5 m-Czerny-Turner imaging spectrograph (Andor,

SR-500i) equipped with AL + MgF2 coated optics including a 2400 lines/mm grating

that is blazed for λ = 300 nm. The grating efficiency is specified to be 65 ± 5% over the

relevant spectral range. Attached to the spectrograph is a non-intensified CCD camera

(Andor, Newton DU940P-BU2, 2048 × 512 pixels of each the size of 13.5 µm x 13.5

µm) providing high and spectrally constant quantum efficiency of about 60 ± 10% in

the relevant observed spectral range, low-noise fast-readout electronics (1 MHz at 16

bit), as well as low dark current due to internal cooling (here -80 ❽).

For the ozone broadband absorption measurement the CCD chip samples the

vertically separated probe and reference beams within the entrance slit height of 14

mm over a spectral interval from about 243 to 266 nm, see figure 5. The width of

the entrance slit was adjusted to 950 µm resulting in a spectral resolution of 0.30 nm.

The beam waist of the LED hitting the plasma device is chosen to have a diameter of

about 2 mm, for providing a spatially averaged ozone density measurement across the

electrode gap of 1 mm. The spatial resolution along the 30 mm long plasma channel

is given by the width of the spectrograph’s entrance slit, roughly 1 mm. The required

probe beam intensity values (IPL, IP , IL, and IBG) were obtained from the recorded pixel

counts within the relevant areas (Regions Of Interest, ROI 1) of the CCD chip after

subtracting the corresponding value for the thermal- and readout-noise of the camera

that is obtained from the subsequent spectrograph shutter- closed interval, respectively.
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The ROI was chosen to cover the full spatial beam profile in the vertical direction and the

spectral FWHM (11 nm) of the LED in horizontal direction. The corresponding intensity

values for the reference beam (IPL−ref , IP−ref , IL−ref , and IBG−ref ) provide additional

insight into stability and drifts of the experimental setup. To ensure correct density

evaluation according to equation 1, the measured spectra were numerically centred to

account for the 2 nm spectral shift of the reference beam with respect to the probe beam

on the CCD chip.

Monitoring the probe and reference beam intensities over time allows the stability

of the experimental setup to be assessed and the warm-up time and drift of individual

components to be identified. In figure 6, after switching-off steady-state plasma

operation, IL drifts relatively strongly over time due to changes of conditions in the

probe beam pass. The reason was identified as the cooling of the powered electrode

temperature from 313 K to 294 K (room temperature) over a typical time scale of 30

minutes, as measured with an infrared thermometer (Precision GOLD, N85FR). In order

to suppress this temperature related drift and to reduce the total measurement time, a

plasma on/off triggering scheme was chosen, which allows each of the four quantities to

be measured within a cycle of 10 seconds (i.e. short compared to the drift time). This

was optimized with reasonable readout time, number of averaging and minimum noise

level of the detector. The details are described in the following paragraphs. All density

measurements were taken after the warm-up time of the LED and power supply unit of

about 30 minutes, as illustrated in figure 7 in terms of the ’simple’ probe beam intensity

IL (without plasma).
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Figure 6: Probe and reference beam intensities IL and IL−ref , IL/IL−ref ratio and

corresponding electrode temperature monitored before and after switching-off steady-

state plasma operation.

In order to measure the optical transmission through the plasma in terms of the
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Figure 7: Probe beam intensities IL monitored from switching-on the LED

supply/control unit and optical detection system (no plasma).

required four quantities (IPL, IP , IL, and IBG) with correction for the thermal and

readout noise of the CCD camera, we make use of four switches: An opto-mechanical

shutter for the LED, a TTL input for RF generator on/off operation, an opto-mechanical

shutter behind the entrance slit of the spectrograph that blocks all incoming light onto

the CCD camera chip, and the camera acquisition trigger input. The temporal triggering

scheme is utilised with a 4-channel arbitrary function generator (TTi, TGA 12104, 100

MHz sine) and illustrated in figure 8. Note, the shutter behind the slit is ON for a

CCD camera chip exposure time of 1.2 s and OFF for the corresponding chip readout

time of 1.29 s. The former was chosen to be much longer than the response time of

the opto-mechanical switches (typically 10 ms) and the plasma build-up time (a few

milliseconds).

Figure 8: Triggering scheme for measuring the four quantities (IPL, IP , IL, and IBG).

In the steady electrode temperature period, the ratio of both beams, as shown in

figure 6, has been taken into account for the determination of the transmission T (λ) by
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the reference beam correction using equation 2:

T (λ) =
IT (λ)

I0(λ)
=

(
IPL−IP

IPL−ref−IP−ref

)

(
IL−IBG

IL−ref−IBG−ref

) (2)

This additional normalisation with respect to the reference beam intensity

significantly reduces the effect of fluctuations in the probe beam intensity on the

determination of O3 densities compared to the direct calculation based on one beam

only as shown in figure 9. For this example case, at 6.3 W RF plasma power and 10 slm

He with 0.1% O2, the O3 density from the one beam direct calculation yields 7.7 ± 3.1

× 1013 cm−3 compared to 7.6 ± 0.9 × 1013 cm−3 from the ratio calculation. Due to the

significantly reduced uncertainty, the reference beam correction was used throughout

this article for O3 density measurements.
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14
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Figure 9: Comparison between 50 data points of O3 density by direct calculation and

reference beam correction measured at 6.3 W RF plasma power, 10 slm He with 0.1%

O2.

A single measurement for each of the four quantities (IPL, IP , IL, and IBG), their

reference values and the respective ozone density value according to equation 2 is

obtained from one full triggering cycle of 10 s (see figure 8). 50 consecutive measurements

for each quantity were recorded and statistically averaged to derive the ozone density

data presented.

With the plasma source attached to a three-axis manipulation stage, spatially

resolved O3 densities were measured along the 30-mm long plasma channel as shown in

figure 10. The O3 density is found to increase from the gas inlet at -30 mm towards the

centre at -15 mm. Then, an equilibrium establishes from the centre towards the end of

the plasma channel at 0 mm which corresponds to the atomic oxygen equilibrium range

found in [58]. All further measurements were taken with the probe beam positioned in

the middle of the equilibrium range at -7.5 mm.
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Figure 10: Measured O3 density along the 30-mm long plasma channel, (He-flux 10 slm,

O2 admixture 0.5 %, RF plasma power 14.5 W).

2.3. Gas temperature measurements

The same optical detection system (spectrograph and camera in the experimental setup

described above) is also used to record optical emission spectra of molecular nitrogen

impurities from the center of the plasma channel. Those spectra are then analysed to

deduce the gas temperature. Among the observed spectral features of the N2 (C 3Π+
u

→ B 3Π+
g ) second positive system, see figure 11, we chose the well separated vibrational

transition υ′ = 0 → υ′′ =2 with a band head position near λ = 380 nm. A simulated

rotational band spectrum on the basis of a thermal population distribution among the

rotational sub-levels of the upper N2(C) state is numerically fitted to the measured

spectra, as shown in figure 12.

This spectroscopic method is well established, see e.g. [53] and references within,

since the high collisionality under atmospheric pressure ensures a full rotational-

translation equilibrium. The applied numerical spectra simulation and fitting procedure

has successfully been cross-checked against other commonly used software, e.g.

LIFBASE, and applied before [28, 63]. In order to conduct the gas temperature

measurements, a very small air gas leak in the feed gas tube of the plasma source

had to be introduced as an impurity. Its influence was checked to not change the ozone

density within the corresponding measurement accuracy. The detection system was

operated with a FWHM of 0.29 nm at λ = 380 nm, and with a total camera exposure

time of 30 s. The results of the rotational/gas temperature measurements under our

experimental conditions exhibit an absolute uncertainty of about ±10 K as a typical

deviation between the evaluation of different rotational bands of the second positive

system of molecular nitrogen (not shown), but a smaller relative/statistical uncertainty

of ±5 K for repeating the measurement or parameter variation.
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Figure 11: CCD image of the optical emission from the N2 second positive band system.

The white rectangular illustrates the chosen region for investigating the υ = 0 → 2

vibrational transition.
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Figure 12: Optical emission spectrum of the N2 (C 3Π+
u → B 3Π+

g ) (υ = 0 → 2)

rotational band. The black solid curve represents the measured spectra while the red

dot-dash curve represents the result of the spectral fitting simulation; for details see

text.

3. Global model

In order to better understand the production and destruction of reactive species in cold

atmospheric pressure plasmas zero-dimensional global models are often employed [64].

Here, the zero-dimensional plasma-chemical kinetics model GlobalKin [55,56] is used to

identify and analyse the production and destruction mechanisms of reactive species

within the investigated atmospheric pressure plasma. GlobalKin consists of three

modules; a reaction chemistry and transport module, a two-term Boltzmann equation

solver for the electron energy distribution function (EEDF), and an ordinary differential

equation (ODE) solver.

GlobalKin calculates absolute species densities accounting for different production
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and loss mechanisms in the plasma bulk and at the walls bounding the plasma. To

describe the plasma-chemical kinetics in the gas phase, the reaction mechanism proposed

by Turner [48] for a He/O2 atmospheric pressure plasma is implemented. This is

composed of 25 species and 373 chemical reactions. We adopt the heavy particle reaction

rates from this mechanism. Different to assuming a Maxwellian EEDF, as in [48],

the internal two-term Boltzmann equation solver of GlobalKin is used to calculate the

EEDF, and the corresponding electron impact rate and transport coefficients, using

electron impact cross sections where they are available. References for the cross sections

used in the EEDF calculations can be found in Appendix A. This approach has the

advantage that the EEDF is self-consistently calculated, and frequently updated during

the simulation. Assuming a pseudo-1-dimensional plug flow, the temporally dependent

quantities are converted into spatially dependent quantities along the plasma channel

by taking into account the gas flow rate and the cross sectional area and length of the

plasma source. The total gas flow velocities are chosen to match the lower and upper

limits discussed in the experimental section, while the O2 admixture is varied as in the

experiment.

The loss of particles to the surfaces is treated by diffusion, where the reaction

probability is expressed by surface loss coefficients γ and return fractions f . A surface

reaction probability denotes the probability that a species reaching the wall reacts with

the wall, while the return fraction specifies the fraction of the reacting species which

returns to the gas phase as another species.

We assume the surface reaction coefficients to be 1 for positive ions, which denotes

neutralisation at the wall. In these cases, ions return as their neutral counter-part with

a return fraction f = 1. For ions where the neutral counter-part is not stable (such as

O+

4 ), the particles are assumed to return as basic fragments (i.e. two O2 molecules in

the case of O+

4 ). Electrons are assumed to be lost at the wall, with γ = 1 and f = 0.

Negative ions typically do not reach the walls due to their inability to cross plasma

sheath potential. Therefore, they are given surface reaction probabilities of 0.

Surface reaction probabilities for neutral species are known to be important

parameters under low-pressure conditions [65, 66] and typically depend on a number

of factors. Limited information exists on the values of these coefficients in atmospheric

pressure plasmas where the coverage of surfaces by adsorbed atoms or molecules is

likely to be high, meaning that the surface reaction dynamics may differ significantly

from those at low-pressure. To account for this uncertainty, simulations were carried

out with surface reaction probabilities of 1 and 0 for oxygen containing neutral species.

For oxygen atoms surface recombination is assumed with each oxygen atom returning to

the gas phase as half an oxygen molecule. It was found that even with a surface reaction

probability of 1, the dominant loss processes of these species occur in the gas phase. This

is a result of their relatively high masses and low diffusion coefficients at atmospheric

pressure, meaning that they do not easily reach the walls of the considered plasma

source under atmospheric pressure conditions. However, at low O2 admixtures, surface

recombination was found to contribute up to 20% to the total loss of atomic oxygen
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when its surface loss coefficient was set to 1. This is likely a significant overestimate

of the real value, however, it does indicate that surface processes can play some role

in determining the density of atomic oxygen under the discussed conditions. However,

given the uncertainty in the values of surface reaction coefficients for oxygen containing

neutral species we set them to zero for the results presented in later. Highly reactive He

metastables (He(23S) and the molecular state He2(
3Σ+

u )) have a much lower mass and

therefore higher mobility than oxygen containing species. As such, they are assumed

to react at the walls with γ = 1 and return as one or two ground state He atoms,

respectively. However, even with γ = 1 the simulation results show that wall losses do

not significantly contribute to the total loss of He metastables.

The gas temperature is calculated in GlobalKin through the balance of different heat

exchange mechanisms including electron-neutral collisions, exothermic and endothermic

chemical reactions, using the heat of formation of the various species, and heat exchange

with the surrounding surfaces [55,56]. Unless otherwise stated, the wall temperatures for

different plasma powers are set to the temperature of the powered electrode as measured

with an infrared thermometer. These are given in tab. 1. The electrode temperature

was found to remain approximately constant as a function of O2 admixture.

Table 1: Temperature of the powered electrode at different plasma powers, measured

with an infrared thermometer.

Power (W) 6 9 11 15 18 21 24 27

Tw (K) 298 300 301 304 306 306 307 309

In order to investigate the main production and destruction pathways for O3, we

use the pathway analysis tool PumpKin [67]. PumpKin calculates effective lifetimes

of species, where the shortest lived species (”branching point species”) have a zero net

production. The timescale on which species are considered branching point species is

set by the user. In the present work, we investigate the most fundamental formation

and consumption pathways for O3. Therefore, the timescale of interest is set to 0, so

that branching point species are not considered.

4. Results and Discussion

The absorption setup developed in this work for ozone density measurements provides

an overall fluctuation level for the unabsorbed baseline signal of about 4×10−4. This

limit is mainly determined by changes in the absolute intensity of the UV-LED light

source due to the instability of the corresponding current/power supply unit, rather

than signal-to-noise limitations of the CCD camera used. An impact of possible spectral

fluctuations can be excluded, since we evaluate the UV-LED intensity integrated over

its spectral FWHM of about 11 nm, and it fits well within the broader and smooth

ozone absorption cross section profile. On the basis of the absorption path length of 11

mm and the absorption cross section data with a maximum value of 1.173 × 10−17 cm2
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at λ = 255.5 nm, the corresponding ozone detection limit amounts to 9.0 ± 0.9 × 1013

cm−3. This equals to 3.66 ± 0.37 ppm at atmospheric pressure, which is in the order of

bio-technologically relevant concentrations. The growth of E. coli bacteria, for example,

was found to retard at ozone concentrations above 4 ppm [68].

This investigation focuses on the discharge operating in homogeneous α-glow-mode

over the entire electrode surface at a constant He-flux of 10 slm. The actual rf-plasma

power is varied from 6.3 W, required for sustainment, to 25.1 W, just below the limit

at which the plasma transits into a constricted mode. The O2 admixture is varied from

0.1% to 0.9%, which is motivated by reports of an atomic oxygen density maximum at

around 0.5% O2 [35,36] and the consequent relevance for technological applications. All

density results stated in the following are based on mean average and standard deviation

statistical data taken over 50 consecutive samples. Each ozone density measurement is

accompanied by a spectroscopic measurement of the gas temperature.

Fig. 13 shows the measured ozone density as a function of the rf-plasma power for

different O2 admixtures. All these dependencies exhibit a similar shape with decreasing

ozone densities towards higher powers. With the same rf-plasma power, the dependence

of the ozone density on the O2 admixture is found to be slightly over-linear, as shown

in figure 15. The total ozone density increase of about one order of magnitude over

the complete range of O2 admixture is comparable with the total increase of the O2

content of a factor of 9. Fig. 14 shows the correspondingly measured gas temperature

as a function of the rf-plasma power for different O2 admixtures. For all O2 admixtures

the temperature shows the expected, approximately linear, increase with increasing rf-

plasma power [57].
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Figure 13: Measured O3 density as a function of the rf-plasma power for different O2

admixtures, He-flux 10 slm.

Fig. 15 shows a direct comparison between measured and simulated O3 densities

and gas temperatures as a function of O2 admixture at a fixed plasma power of 14.5 W.

These results are obtained for the upper limit of the gas flow velocity (lower limit of gas

residence time) discussed in the experimental setup section of this work. Changes in O3

and Tg under these conditions are insignificant when taking into account the additional
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Figure 14: Measured gas temperature as a function of the rf-plasma power for different

O2 admixtures, He-flux 10 slm.
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Figure 15: Measured (black closed circles) and simulated O3 (black open circles)

density, as well as measured (blue filled squares) and simulated (blue open squares)

gas temperature as a function of the O2 admixture, He-flux 10 slm, rf-plasma power

14.5 W. Simulation results are for higher limit of flow velocity as discussed in text.

gaps between electrodes and glass windows (lower limit of the flow velocity, higher limit

of residence time), and are therefore not shown here. O3 densities are increasing with

increasing O2 admixture, and a good qualitative agreement between the experimental

and simulation results is observed. As previously obtained by Turner [69], we find that

the main net production pathway for O3 is the 3-body recombination reaction of O and

O2 and the main destruction pathway is via collisions with O2(b
1Σ+

u )

O +O2 +He → O3 +He (3)

O2(b
1Σ+

u ) +O3 → 2O2 +O (4)

Both contribute more than 90% to the production and destruction of O3, respectively,

within the range of the O2 variation. Reaction 3 is a net-production reaction. In addition
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to the direct channel, reaction 3 also proceeds via the production and quenching of

vibrationally excited O3

O +O2 +He → O3(v) +He →
︸︷︷︸

O,He

O3 +He (5)

The quantitative differences between simulation and experiment in fig. 15, (factor

of 10 at lowest O2 admixture to factor 6 at highest O2 admixture), can be explained by

several factors. First of all, a comprehensive sensitivity and uncertainty analysis carried

out in other works [48,69] has revealed that strong coupling between the reaction kinetics

of O2(b
1Σ+

u ) and O3 can lead to large uncertainties in the density of O3 in simulations

of He/O2 plasmas. In [48], the upper and lower limits of O3 density predicted by

the simulation were up to a factor of 13 different in an intermediate regime of O2

admixture (0.3 - 0.6% O2) due to the strong coupling between the densities of the two

species. Furthermore, since the density of O3 is determined by the densities of two

transient species (O and O2(b
1Σ+

u )), uncertainty in the rate coefficients of production or

destruction of either species can significantly influence the uncertainty in the density of

O3.

The reaction rate coefficient for both the production (reactions 3 and 5) and

consumption (4) channels are temperature dependent. However, as shown in fig. 15, the

gas temperature stays approximately constant under a variation of the O2 admixture.

Experimental and simulation results for Tg are in very good agreement. It is therefore

concluded that the increase in O3 density with O2 admixture is mainly a result of the

increasing densities of O (maximum at 0.5%) and O2. This leads to the total production

rate increasing more rapidly than the total consumption rate through interactions with

O2(b
1Σ+

u ).
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Figure 16: Measured (black closed circles) and simulated O3 (black open circles)

density, as well as measured (blue filled squares) and simulated (blue open squares)

gas temperature as a function of the rf-plasma power, He-flux 10 slm, O2 admixture

0.5%. Simulation results are for higher limit of flow velocity as discussed in text.

Fig. 16 shows the absolute O3 density and gas temperature as a function of the
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plasma power, for a constant O2 admixture of 0.5%. Both experimental and simulated

O3 densities decrease with increasing plasma power, while the gas temperature increases.

A good quantitative agreement is achieved between simulated and experimental gas

temperatures. The deviation between measured and simulated gas temperatures

occurring at high powers is likely a result of the plasma transitioning into a mixed

α/γ mode. In this mode the plasma becomes less homogeneous, an effect which is

not captured in the volume-averaged zero-dimensional simulation. The qualitative

agreement between experiment and simulation for the O3 densities is good. The

quantitative discrepancy is likely a result of the large uncertainty associated with the

simulated O3 density under these conditions, as discussed previously.

Due to the strong change in gas temperature, the change is O3 densities with power

is now affected by both the contribution of gas temperature as well as power. While

the gas temperature affects the reaction rate coefficients for both the production and

consumption of O3, the power has an impact on the electron density and therefore the

production and consumption of O and O2(b
1Σ+

u ). In order to investigate the contribution

of the two influences (gas temperature and power), we manually fix the gas temperature

in the simulation to 295 K (room temperature). Simulated O3 densities are shown

in fig. 17 as a function of power for a self-consistently calculated (blue symbols) and

fixed gas temperature (red symbols) for the minimum (unfilled symbols) and maximum

(filled symbols) estimated gas flow velocities. The shaded regions therefore represent the

variation in the simulated O3 density as a result of different gas flow velocities/residence

times as a function of power. This can be viewed as a gauge of the uncertainty in

the simulated O3 arising from the estimated gas flow characteristics. O3 densities for

different flow velocities deviate more strongly at low powers, since, at low power, the

O3 density takes longer to reach steady-state value within the plasma channel. O3

densities simulated with a fixed Tg = 295 K are higher than densities obtained with

the self-consistently calculated gas temperatures in GlobalKin, clearly showing an effect

of the assumed gas temperature. Additionally, O3 densities are still decreasing with

increasing power, despite the fixed gas temperature. Clearly, both temperature and

power influence the O3 kinetics. These effects are observed at both the low and high

limits of the gas flow velocity.

Fig. 18 shows the normalised O and O2(b
1Σ+

u ) densities as well as the rate

coefficients for production and consumption of O3. The simulation results for the upper

limit of the gas flow velocity are used here the illustrate the trends with increasing

power, which are similar for the lower gas flow velocity case. Fig. 18 (a) is for a fixed

Tg = 295 K, therefore the temperature dependent rate coefficients do not change as

a function of power. Absolute densities of O and O2(b
1Σ+

u ), however, both show a

significant increase with power, particularly O2(b
1Σ+

u ), which increases by more than

a factor of 5 over the investigated power range. The fact that O2(b
1Σ+

u ) is increasing

more strongly with power than O at a constant gas temperature explains the decrease

of O3 in fig. 17 (red symbols).

Fig. 18 (b) shows normalised densities and rate coefficients for the self-consistently
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Figure 17: Absolute experimental (black squares) and simulated (red and blue triangles)

O3 densities as a function of plasma power, for a fixed Tg = 295 K, and gas temperature

self-consistently calculated in the simulation. Filled symbols and solid lines represent

simulation results obtained for the upper limit of the gas flow velocity, as discussed in

the experimental section, whereas open symbols and dashed lines represent simulation

results for the lower limit of the gas flow velocity. The results for the true gas flow

velocity are expected to lie within the shaded areas.
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Figure 18: Normalised O and O2(b
1Σ+

u ) densities (left axis) and rate coefficients for the

production and consumption of O2 (right axis) as a function of power. (a) Tg = 295 K

and (b) self-consistently simulated Tg. In (a) the data points for k (O + O2 + He)

coincide with those for k (O2(b
1Σ+

u ) + O3). All data shown is taken from the simulations

using the upper limit of the gas flow velocity.

calculated gas temperatures obtained from the GlobalKin simulations. While the O

and O2(b
1Σ+

u ) densities show approximately the same trends as previously discussed

for the fixed-temperature case, the normalised rate coefficients now also show a clear

dependence on power, because the calculated gas temperatures increase with power,

as shown in fig. 16. In particular, the rate coefficient for production of O3 decreases
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strongly, while the rate coefficient for consumption increases weakly. Both trends lead

to a further decrease of O3 densities with power. Therefore, O3 densities obtained with

the self-consistently calculated gas temperatures are smaller than O3 densities obtained

with a fixed (low) gas temperature, as shown in fig. 17. It is therefore concluded that

the decrease of O3 with increasing power is a combined effect of an increase in power

and gas temperature.

5. Conclusions

A sensitive two-beam UV-LED absorption spectroscopy technique was developed. This

allowed for careful system stability tests to determine and rule out effects of non-plasma

parameters. The two-beam analysis technique provided a significant improvement of

the signal-to-noise ratio by cancelling out fluctuations of the probe beam. This reduced

the measurement error by a factor of 2 - 3 compared to a standard one-beam technique.

This technique enabled sensitive spatially resolved O3 density measurements inside

an active plasma channel showing a building-up region transiting into an equilibrium

region. Detailed measurements in the equilibrium region were carried out for a non-

thermal capacitive 13.56-MHz RF driven atmospheric pressure plasma source with a

minimum O3 absolute number density of about 9.0 ± 0.9 × 1013 cm−3 at 10 slm He

with 0.1% O2 admixture. The results were correlated to gas temperature measurements,

deduced as rotational temperature of the N2 (C 3Π+
u → B 3Π+

g , υ = 0 → 2) optical

emission from introduced small air impurities.

A zero-dimensional plasma-chemical kinetics simulation was applied to interpret the

trends in the measured O3 densities. The simulation reveals the mechanisms leading to a

decrease in O3 density with increasing power. It was found that the density of O2(b
1Σ+

g ),

responsible for the consumption of O3, increases more rapidly with increasing power

than the density of O responsible for the formation of O3. As a result, the density of

O3 decreases with power, even when the gas temperature is kept constant. In addition,

the increasing gas temperature with increasing rf-plasma power leads to a decrease in

the rate coefficient for O3 formation, leading to a further decrease in the O3 density,

compared to the case where the gas temperature is held constant in the simulation.
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Appendix A. References for electron impact cross sections used for the

He-O2 chemistry

Reaction numbera ∆E (eV)b Reaction Ref.

Helium-electron chemistry

5 0.00 e + He → He + e [70]

6 24.58 e + He → He+ + e [70]

7 19.80 e + He → He∗ + e [70]

8 4.77 e + He∗ → He+ + 2e [71]c

Oxygen-electron chemistry

12 13.62 e + O → O+ + 2e [72]

13 1.97 e + O → O(1D) + e [72]

14 4.19 e + O → O(1S) + e [72]

15 11.65 e + O(1D) → O+ + 2e [71]c

16 -1.97 e + O(1D) → O + e as 13d

17 9.43 e + O(1S) → O+ + 2e [73]c

18 -4.19 e + O(1S) → O + e as 14d

19 2.70 e + O− → O + e + e [74]

20 17.00 e + O2 → O+ + O + 2 e [75]

21 12.06 e + O2 → O+
2
+ e [76]

22 8.40 e + O2 → O(1D) + O + e [76]

23 10.00 e + O2 → O(1D) + O + e [76]

24 0.00 e + O2 → O2 + e [76]

25 0.02 e + O2 → O2 + e [76]

26 0.19 e + O2 → O2(v) + e [76]

27 0.19 e + O2 → O2(v) + e [76]

28 0.57 e + O2 → O2(v) + e [76]

29 0.38 e + O2 → O2(v) + e [76]

30 0.38 e + O2 → O2(v) + e [76]

31 0.75 e + O2 → O2(v) + e [76]

32 0.98 e + O2 → O2(a
1∆) + e [76]

33 1.63 e + O2 → O2(b
1Σ) + e [76]

34 4.50 e + O2 → O2(b
1Σ) + e [76]
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Reaction numbera ∆E (eV)b Reaction Ref.

35 6.00 e + O2 → O2(b
1Σ) + e [76]

36 0.00 e + O2 → O + O− [76]

37 16.02 e + O2(a
1∆) → O+ + O + 2 e as 20e

38 11.08 e + O2(a
1∆) → O+

2
+ e as 21e

39 7.42 e + O2(a
1∆) → O(1D) + O + e as 22e

40 9.02 e + O2(a
1∆) → O(1D) + O + e as 23e

41 -0.98 e + O2(a
1∆) → O2 + e as 32d

42 0.00 e + O2(a
1∆) → O2(a

1∆) + e [77]

43 0.02 e + O2(a
1∆) → O2(a

1∆) + e as 25e

44 0.19 e + O2(a
1∆) → O2(a

1∆, v) + e as 26e

45 0.19 e + O2(a
1∆) → O2(a

1∆, v) + e as 27e

46 0.38 e + O2(a
1∆) → O2(a

1∆, v) + e as 29e

47 0.38 e + O2(a
1∆) → O2(a

1∆, v) + e as 30e

48 0.57 e + O2(a
1∆) → O2(a

1∆, v) + e as 28e

49 0.75 e + O2(a
1∆) → O2(a

1∆, v) + e as 31e

50 0.65 e + O2(a
1∆) → O2(b

1Σ) + e [77]

51 3.52 e + O2(a
1∆) → O2(b

1Σ) + e as 34e

52 5.03 e + O2(a
1∆) → O2(b

1Σ) + e as 35e

53 3.50 e + O2(a
1∆) → O + O− [78]

55 15.37 e + O2(b
1Σ) → O+ + O + 2 e as 20e

56 10.43 e + O2(b
1Σ) → O+

2
+ 2e as 21e

57 6.77 e + O2(b
1Σ) → O(1D) + O + e as 22e

58 8.37 e + O2(b
1Σ) → O(1D) + O + e as 23e

59 -1.63 e + O2(b
1Σ) → O2 + e as 33d

60 -0.65 e + O2(b
1Σ) → O2(a

1∆) + e as 50d

62 0.00 e + O2(b
1Σ) → O2(b

1Σ) + e [77]

63 0.19 e + O2(b
1Σ) → O2(b

1Σ, v) + e as 26e

64 0.19 e + O2(b
1Σ) → O2(b

1Σ, v) + e as 27e

65 0.38 e + O2(b
1Σ) → O2(b

1Σ, v) + e as 29e

66 0.38 e + O2(b
1Σ) → O2(b

1Σ, v) + e as 30e

67 0.57 e + O2(b
1Σ) → O2(b

1Σ, v) + e as 28e

68 0.75 e + O2(b
1Σ) → O2(b

1Σ, v) + e as 31e

69 2.87 e + O2(b
1Σ) → O2(b

1Σ) + e as 34e

70 4.37 e + O2(b
1Σ) → O2(b

1Σ) + e as 35e

71 0.00 e + O2(b
1Σ) → O + O− as 36e

75 0.00 e + O3 → O−

2
+ O [79]

76 0.00 e + O3 → O2 + O− [79]

a Numbers correspond to reaction numbers in reference [48].
b Gain or loss in electron energy associated with reaction.
c Cross sections are calculated using expressions in cited reference.
d Superelastic cross section obtained by detailed balance from the corresponding excitation

process.
e Cross section estimated by shifting and scaling the corresponding cross section for the

ground state process by the excitation threshold of the excited state.
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