
rspb.royalsocietypublishing.org
Research
Cite this article: Hemmings N, Birkhead T.

2017 Differential sperm storage by female

zebra finches Taeniopygia guttata. Proc. R. Soc.

B 284: 20171032.

http://dx.doi.org/10.1098/rspb.2017.1032
Received: 11 May 2017

Accepted: 11 July 2017
Subject Category:
Behaviour

Subject Areas:
behaviour, evolution

Keywords:
cryptic female choice, post-copulatory sexual

selection, sperm competition, sperm storage

tubules
Author for correspondence:
Nicola Hemmings

e-mail: n.hemmings@sheffield.ac.uk
Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.3832540.

& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Differential sperm storage by female
zebra finches Taeniopygia guttata

Nicola Hemmings and Tim Birkhead

Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank,
Sheffield S102TN, UK

NH, 0000-0003-2418-3625

When females mate promiscuously, female sperm storage provides scope to

bias the fertilization success towards particular males via the non-random

acceptance and utilization of sperm. The difficulties observing post-

copulatory processes within the female reproductive tract mean that the mech-

anisms underlying cryptic female choice remain poorly understood. Here, we

use zebra finches Taeniopygia guttata, selected for divergent sperm lengths,

combined with a novel technique for isolating and extracting sperm from

avian sperm storage tubules (SSTs), to test the hypothesis that sperm from

separate ejaculates are stored differentially by female birds. We show that

sperm from different inseminations enter different SSTs in the female repro-

ductive tract, resulting in almost complete segregation of the sperm of

competing males. We propose that non-random acceptance of sperm into

SSTs, reflected in this case by sperm phenotype, provides a mechanism by

which long sperm enjoy enhanced fertilization success in zebra finches.
1. Introduction
Darwin’s classic view of sexual selection saw males competing for access to

females, and females choosing males based on traits expressed prior to copu-

lation [1]. However, our understanding of reproductive behaviour in internal

fertilizers has been revolutionized by the realization that females often copulate

with more than one male, providing the scope for sexual selection to continue

after copulation [2]. In particular, the inevitable delay between insemination

and fertilization, often prolonged by a period of female sperm storage in

specialized regions of the oviduct, creates the conditions under which sperm

from different males can interact and compete [2]. The oviduct may also—via

cryptic female choice—provide the means by which females can actively bias

fertilization towards certain males through differential sperm acceptance, sto-

rage and utilization [3–5]. We currently have limited understanding of the

precise mechanisms of cryptic female choice [6], and the extent to which

females can exert post-copulatory control over paternity, but it seems very

likely that fertilization success is determined by complex interactions between

ejaculates and the female tract [7].

In birds, sperm storage is a basic requirement because successive ova are

fertilized at intervals of 24 or more hours. Sperm are stored in sperm storage

tubules (SSTs) located at the utero-vaginal junction (UVJ) of the oviduct [8],

for several days or weeks, depending on species [9]. Avian SSTs are tubular

invaginations in the oviduct epithelial tissue. They vary in size within and

between individuals and species [10,11], and may or may not be branched

[12]. Although undoubtedly specialized for sperm storage, the role of the

SSTs in post-copulatory sexual selection remains unknown.

It was once thought that sperm competition success in birds was deter-

mined entirely by insemination order, with a last male advantage [13], as

occurs in many insects [14]. Later, several mechanisms were proposed to

explain this last male advantage in birds [15]: (i) sperm of the last male dis-

places those of the first, (ii) sperm of different males are stratified, with the
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last male’s sperm overlying those of the first male and there-

fore leaving the tubule first and (iii) sperm are passively lost

from tubules over time, meaning that at any given time there

will be fewer sperm from an earlier insemination than a more

recent one. Tests of these ideas revealed that passive sperm

loss was the main mechanism resulting in a last male effect

[16,17]. However, the magnitude of the ‘last male effect’

was exaggerated by the nature of the experimental approach,

which involved just two sequential inseminations. In reality,

bird copulation patterns are not this simple, and subsequent

studies revealed that, in addition to passive sperm loss (that

is, the effect of sperm numbers), the outcome of sperm com-

petition is also affected by the ‘quality’ of sperm, including,

but not limited to, sperm length, viability and swimming

velocity [18–21].

The passive sperm loss model of last male sperm pre-

cedence assumes that sperm enter and exit the SSTs at

random [15]. However, the mechanisms of storage, mainten-

ance and release of sperm are poorly understood in birds

[22,23], and recent evidence suggests that patterns of sperm

storage may be non-random and potentially under some

degree of female control [24,25].

To fully understand the mechanisms of post-copulatory

sexual selection in birds, including the role of the female,

we ultimately need to track individual ejaculates within

the female reproductive tract. However, labelling ejacula-

tes and/or sperm for identification purposes is a major

challenge, particularly in vertebrates. The development of

transgenic strains of Drosphila that express green fluorescent

protein (GFP) and red fluorescent protein in their sperm

has revolutionized the study of sperm–female interactions

in invertebrates [26,27]. However, the development of

stable generations of recombinant vertebrates is more diffi-

cult, and the effect of genetic modification on sperm

function is unknown. Although germline transgenic GFP

birds have been produced [28–31], so far there is no evi-

dence that these birds reliably express GFP in their sperm

cells (N. Hemmings 2011, personal observation), or that

GFP individuals have equivalent fitness compared with

their non-GFP counterparts.

Labelling sperm in vitro prior to insemination provides an

alternative to genetic modification. King et al. [32] used a

combination of stained and unstained sperm (from a

pooled semen sample from several males) and showed that

sperm from two tandem inseminations, 24 h apart, tended

to segregate into different SSTs in both the domestic fowl

(Gallus gallus domesticus) and the turkey (Meleagris gallopavo).

However, these findings are potentially confounded, because

staining may alter the ability of sperm to enter storage. There

is little information on the influence of fluorescent stains on

sperm viability and motility (see [32], table 1, for a mini-

review). King et al. [32] found that the nucleic acid dye

Hoechst 33342 (Molecular Probes, Eugene, OR) successfully

stained domestic fowl and turkey sperm without significantly

affecting motility (but see [33,34]) but, surprisingly, Hoechst-

stained sperm were more likely to be found in SSTs than

unstained sperm. As the authors suggest, this unexpected

result may have been an artefact: unstained sperm may be

difficult to differentiate from stained sperm in the same

tubule due to fluorescence glare; the dye may leach and

stain unstained sperm and/or the staining process may

affect sperm entry or exit from the SSTs. In vitro sperm label-

ling also requires artificial insemination, which itself may
alter normal post-copulatory reproductive processes and

by-pass mechanisms of cryptic female choice.

If King et al.’s [32] results are robust to the confounding

issues outlined above, and sperm from different insemina-

tions/males are stored differentially within the SSTs, this

would force us to re-evaluate the mechanisms of sperm com-

petition in birds. While the basic effects of passive sperm loss,

sperm numbers and sperm quality may be correct, differen-

tial sperm storage and utilization would suggest hitherto

unrecognized levels of complexity in determining patterns

of paternity.

The aim of this study was to test the hypothesis that

sperm from different ejaculates are stored differentially

within the SSTs of female birds, using lines of zebra finches

Taeniopygia guttata selected for divergent sperm lengths. The

zebra finch exhibits considerable natural inter-male variation

in sperm length (mean values for different males vary from

approximately 40 to 80 mm [35], but sperm length is extre-

mely consistent both within and between the ejaculates of

individual males [36] and highly heritable [37]. Hellriegel &

Bernasconi [38] previously used sperm length to investigate

differential sperm storage across the three spermathecae in

the reproductive tract of female yellow dung flies Scatophaga
stercoraria (see also [39]), but this has not been previously con-

sidered possible in birds due to the fact that avian SSTs are

very small, numerous and embedded in female tract epithelial

tissue. Here we overcome this issue by using a novel tech-

nique to isolate and extract sperm from avian SSTs. This,

combined with an experimental mate-switching protocol

that allowed natural inseminations by males with different

sperm lengths, avoided the potentially confounding effects

of artificial insemination and cell labelling on differential

sperm storage by females.
2. Material and methods
The zebra finches in this study were part of a domesticated

population maintained at the University of Sheffield from 1985

to 2016 [35]. Males were from lines that were artificially selected

to produce long (greater than 70 mm) or short (less than 60 mm)

sperm [24]. The lines have similar sperm numbers and copu-

lation rates, but long sperm have been shown to swim faster

and are more likely to fertilize eggs [24]. All males had prior

sexual experience, but not with the female they were paired

with in this study. Pairs of males whose sperm length differed

by more than 12 mm (mean difference þ s.e.m. ¼ 19.19+
0.52 mm) were chosen to pair with a total of 24 unrelated females

(not from the selective breeding lines). The trios of birds and

mating orders were selected at the beginning of the study,

and during the experiment individuals were identified by

unique identification numbers only (which contained no

information about their breeding line). This allowed all measure-

ments to be conducted blind with respect to the mating order of

long and short males. Females were housed singly in a cage

(dimensions 0.6 � 0.5 � 0.4 m) with a nest-box, with an

adjoining cage separated by wire mesh to house males during

the experiment.

Following the experimental mate-switching protocol of

Bennison et al. [24], one male was paired to the female for

3 days (and allowed to copulate freely), then replaced with the

second male for a further 3 days. The second male was then

placed in the adjoining cage with a wire mesh division to prevent

further physical contact. The pairing order of long- and short-

sperm males was alternated across females. Copulation rate
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was not recorded in this study, but previous work has shown the

long- and short-sperm males attempt copulations at a similar

rate, and females do not appear to preferentially accept copula-

tions from either long- or short-sperm males [24].

The first egg laid by each female was removed from the nest

on the morning of laying and examined for the presence of

sperm as described in Birkhead et al. [40]. The perivitelline

layer was examined for sperm under 400� magnification using

darkfield microscopy (Leica DMBL). Sperm were imaged using

an Infinity 3 camera (Luminera Corporation) and Infinity

Analyse software, and sperm length was measured to the nearest

0.01 mm to determine whether each sperm was from the long- or

short-sperm producing male.

If sperm from both males were present on the perivitelline

layer of the first egg laid, the female was humanely killed by cer-

vical dislocation on the same day (under Schedule 1 (Animals

(Scientific Procedures) Act 1986)), and immediately dissected to

remove the oviduct. Of the 24 females used in this experiment,

13 produced eggs on whose pervitelline layers the sperm from

both males was present. Mating order was not evenly split

across these females: five were paired with the short-sperm pro-

ducing male first and eight were paired with the long-sperm

producing male first. Of the remaining 11 females, two did not

produce any eggs, two produced unfertilized eggs with no

sperm present on the perivitelline layer and seven produced

eggs that had been reached by sperm from one male only.

Since in the latter cases we could not be sure that both males

had inseminated these females, they were not dissected to

avoid unnecessary sacrifice of birds. The second ovum, which

in all cases had been recently ovulated and was located in the

magnum or isthmus of the oviduct, was removed so that the

PVL could be examined (as above) and the proportion of PVL

sperm from each male compared with that stored in the SSTs.

To isolate the SSTs, the oviduct was first cut longitudinally

and opened out flat, and four non-adjacent, equally spaced pri-

mary mucosal folds were removed. Folds were kept on ice in

phosphate-buffered saline until dissection. Each mucosal fold

was spread out on a glass slide with 10 ml PBS and examined

under an SMZ25 stereomicroscope with 2� objective lens and

15.75� zoom to locate the UVJ and SSTs. Using fine, stainless

steel insect pins, the mucosal tissue was gently separated into

small segments surrounding any individual SSTs that contained

sperm, taking care not to distort or damage the structure of the

SST itself. Once a segment was isolated, it was transferred

using the tip of a pin to a 5 ml drop of clean PBS, and the SST

was then pulled open to release the sperm inside (electronic sup-

plementary material, figure S1). The longitudinal region of the

UVJ (i.e. vagina end, middle or uterus end) from which each

SST was isolated was recorded. If the UVJ was particularly

small, it was divided into vagina and uterus end only. A cover-

slip was immediately placed on the top of the sample and the

slide was then examined at 400� magnification using darkfield

microscopy (Leica DMBL). All sperm from each sample were

imaged using an Infinity 3 camera (Luminera Corporation) and

Infinity Analyse software, and sperm length was measured to

the nearest 0.01 mm to determine whether each sperm was

from the long- or short-sperm producing male. An overall

count of long and short sperm was obtained for each SST. In a

very small number of cases (33 (0.6%) of 5398 sperm examined),

the sperm cell was damaged in the process of dissection and,

therefore, it was not possible to ascertain whether it was long

or short. These sperm were excluded from our analyses.

As many sperm-containing SSTs as possible from each muco-

sal fold were analysed within a 30-min period. The total time

between the initial dissection of the mucosal folds and isolation

of the final SST was limited to 2 h, because beyond this time

the tissue began to degrade. In total, 644 SSTs from the 13 females

were examined; these were not evenly spread across all females
due to differences in sperm numbers stored, with 8–104 SSTs

examined per female. Data for each female are summarized in

the electronic supplementary material, table S1.

Almost all SSTs were occupied by either short or long sperm

only, and the proportion of SSTs containing either short or long

sperm was highly correlated with the total proportion of short or

long sperm stored across all SSTs (see Results). We, therefore, cre-

ated a binary response variable by classifying each SST as either

‘long sperm’ or ‘short sperm’ (excluding a single SST in which

both short and long sperm were found; see Results). The likeli-

hood of an SST being occupied by short or long sperm was

then analysed as a function of mating order (i.e. whether the

long-sperm or short-sperm producing male was paired with

the female first), the region of the UVJ in which the SST was

located, and the interaction between these two variables, using

a generalized linear mixed model, with mating trio included as

a random effect (all individuals were included in one mating

trio only) and a binomial error distribution. The analysis was car-

ried out using the glmer function (library lme4) in R v. 3.3.1 [41].

3. Results
Only one of 664 SSTs examined, across 13 females, contained

sperm from both males. Therefore, in 99.8% of SSTs, and 12 of

13 females, sperm from different males were completely seg-

regated in storage. The single tubule where sperm from both

males were found was branched (across female zebra finches,

4–27% of tubules are branched [11], and this was typical in

the present study), and sperm from the long-sperm produ-

cing male were located in a separate branch of the tubule

to sperm from the short-sperm producing male, therefore

maintaining a degree of inter-male segregation.

The absolute proportion of each male’s sperm stored by

the female (based on a total sperm count across all tubules

examined) was highly positively correlated with the proportion

of SSTs containing each male’s sperm (Pearson’s product-

moment correlation ¼ 0.963, t¼ 11.867, d.f. ¼11, p , 0.001).

This indicates that both long and short sperm were aggregated

to a similar degree across SSTs, and confirms that the number of

SSTs occupied by each sperm morph is a good proxy for the

overall number of each sperm morph stored. In addition,

the proportion of each male’s sperm found on the PVL

of the female’s second ovum (taken from the oviduct

during dissection) was significantly positively correlated with

the proportion in storage (Pearson’s product-moment

correlation ¼ 0.857, t ¼ 5.526, d.f.¼ 11, p , 0.001).

Overall, SSTs containing sperm from the long-sperm pro-

ducing male were more common across the entire UVJ, with

68.43+7.39% (mean+ s.e.m.) of SSTs containing long

sperm across the 13 females examined (X2¼ 127.32, d.f.¼ 12,

p , 0.001). However, the long-sperm advantage was particu-

larly notable when long-sperm producing males were the

first to copulate (estimated effect¼ 2.177+0.726, z ¼ 3.000,

p ¼ 0.003; data from 643 SSTs across 13 females; figure 1).

There was also evidence that SSTs containing long or

short sperm were spatially segregated across the regions of

the UVJ, but this effect depended on mating order (i.e.

whether the long-sperm producing male copulated first or

last). Sperm from long-sperm producing males were signifi-

cantly more likely to occupy SSTs in the uterus region of

the UVJ (but not the vagina or middle regions) when the

long-sperm male was last to copulate, compared to when

he was first (estimated effect of the interaction between

mating order and UVJ region ¼ 1.366, z ¼ 2.612, p ¼ 0.009;



va
gin

a

midd
le

ute
ru

s

va
gin

a

midd
le

ute
ru

s

0

0.2

0.4

0.6

0.8

long-sperm male first long-sperm male last

1.0

UVJ region

pr
op

or
tio

n 
SS

T
s 

oc
cu

pi
ed

by
 lo

ng
 s

pe
rm

Figure 1. The proportion of SSTs occupied by long sperm across different
regions of the UVJ, when female zebra finches copulate sequentially with
both a short-sperm and long-sperm producing male (data separated by
mating order). Data are from 643 SSTs, all of which were occupied by
long sperm or short sperm only (no mixing), across 13 females.
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analysis based on data from 643 SSTs across 13 females;

figure 1).
4. Discussion
We have shown that, following sequential inseminations,

sperm from different males, with different sperm lengths,

do not mix in in the SSTs of female zebra finches, but instead

enter different tubules. Virtually no tubules examined (0.2%)

contained sperm from both males, supporting our hypothesis

that sperm from different ejaculates are stored differentially

across the SSTs of female birds. Indeed, this is probably a con-

servative estimate of the degree of segregation, because we

did not examine any females whose eggs had been reached

by sperm from only one male (these females were probably

inseminated by both males, but exhibited more extreme

differential sperm storage than the females included in our

analyses). Importantly, our results demonstrate that sperm

entry into SSTs is non-random, refuting a key assumption

of the passive sperm loss model of sperm competition in

birds. Our data also show that the proportions of sperm

from each male in storage are representative of those reaching

the site of fertilization (i.e. trapped on the ovum PVL), pro-

viding convincing support for the assumption that most

sperm selection occurs in the vagina, before entering the

SSTs, and that the tiny (approx. 1%) proportion of insemi-

nated sperm reaching the ovum comprise a random sample

of those from the SSTs [22].

Identifying sperm from different males by length allowed

us to examine the evidence for differential female sperm sto-

rage following natural copulations, without the potentially

confounding effects of sperm labelling and artificial insemi-

nation that has limited other studies (e.g. [32]). The fact that

long sperm were more likely to be stored by female zebra

finches is consistent with our earlier findings that long

sperm have greater success in reaching and fertilizing ova

in this species, which we assume to be due to their superior

swimming ability [24]. However, our present study reveals

that the strength of this long-sperm advantage depends on

male mating order: if long-sperm males were first to insemi-

nate the female, their sperm were more likely to occupy SSTs,
but this advantage was reduced when they were last to copu-

late (figure 1). An exception to this pattern was seen for SSTs

located in the uterus region of the UVJ. In this region, furthest

from the site of insemination, long sperm were more likely to

be stored regardless of male mating order.

While our experimental protocol avoided the potential

confounding effects of artificial insemination and sperm lab-

elling, there are some limitations to what we can infer from

our results. We do not know the extent to which sperm seg-

regation is caused by sperm length per se, as opposed to the

fact that sperm belong to two different males. In addition,

we cannot conclusively say that sperm from different

males—as opposed to different ejaculates—are segregated.

If a female copulates with a single male only, it is possible

that sperm from his successive inseminations might also be

stored in different SSTs, depending on the mechanism(s)

underlying sperm segregation. One possibility is that SSTs

become unreceptive or ‘closed’ some time after an initial set

of sperm enters, and if this is the case, then entry of sub-

sequent sperm will be prevented regardless of which male

they are from. Alternatively, sperm and/or seminal fluid

from one male may have a repellent effect on sperm from

another male (e.g. via chemical cues); in this case, sperm

from successive inseminations by the same male would not

be expected to segregate. To explicitly test whether segre-

gation is due to sperm being from different males, one

would have to simultaneously inseminate sperm from two

different males with similar sperm lengths, thereby removing

the confounding effects of sperm length and insemination

interval. However, current methodologies would not allow

us to distinguish sperm from these two males. Deducing

the precise mechanisms underlying sperm segregation is

therefore an important avenue for future study.

If sperm segregation is driven by a temporal change in

SST receptivity, we might expect the ‘block’ to occur rela-

tively slowly, because the mechanisms underlying sperm

acceptance and release from SSTs are at least partially

under hormonal control [23,25]. In preliminary trials, where

our mate-switching interval was reduced from 3 days to

either (i) 1 h or (ii) 1 day (electronic supplementary material,

S2), sperm from different males were predominantly segre-

gated (as in the 3 day interval trials reported here), but the

occurrence of sperm mixing within tubules was slightly

more frequent (electronic supplementary material, table S2).

However, owing to a high rate of second male rejection in

these preliminary trials, only three females produced eggs

with sperm from both males (one female after the 1-h

mating interval, and two after the 24-h mating interval), so

we did not have sufficient data to further explore the possi-

bility that mating interval influences the likelihood of

differential sperm storage.

If sperm are unable to enter already-occupied SSTs (after

a certain time interval), this may provide an explanation

for the apparent precedence of first-male sperm that we

observed in most regions of the UVJ. Once the sperm of the

first male to copulate are residing inside a tubule, it may

not be possible for sperm from subsequent males to enter.

However, the underlying first-male advantage that we (and

[24]) found could also simply result from a female preference

for the first male she is paired with. The fact that copula-

tions from second males were often rejected (see above and

electronic supplementary material, S2) is consistent with

this idea.
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In both this study and that of Bennison et al. [24], the first-

male advantage outlined above was less dramatic for

short-sperm producing males (figure 1). This may be due to

the relatively poor swimming ability of short sperm: in

order to reach the SSTs, sperm must traverse the hostile

environment of the vagina, and short sperm swim more

slowly than long sperm in this species [24]. It is therefore

plausible that fewer short sperm are able to reach the SSTs

regardless of the competitive scenario. If this were the case,

we would also expect the disparity in success of short

sperm and long sperm to become more marked as we

move along the UVJ, which is exactly what we found.

When the long-sperm producing male was last to mate,

SSTs in the uterus region of the UVJ (i.e. furthest from the

site of insemination) were more likely to contain long

sperm than short sperm, compared to those in the vagina

or middle regions (figure 1). If SST receptivity does change

in response to sperm occupancy, as hypothesized above, it

is possible that when short-sperm males copulate first, their

sperm reach and enter SSTs located at the most proximate

regions of the UVJ (vagina and middle), rendering these inac-

cessible to sperm from long-sperm males that copulate

afterwards. However, as suggested above, the slower swim-

ming short sperm may be less able to access the uterus end

of the UVJ, leaving more SSTs in that region free for the

second male’s longer and faster sperm to populate.
In summary, we have demonstrated that sperm from

different males are differentially stored in the SSTs of

female zebra finches. We know that the outcome of sperm

competition in birds is determined by a combination of pas-

sive sperm loss, sperm numbers and sperm phenotype (in

this case, sperm length, which is closely correlated with

swimming velocity). Non-random acceptance of sperm into

SSTs, mediated by sperm phenotype, may provide the mech-

anism by which long sperm enjoy enhanced fertilization

success in zebra finches.
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Honkola O, Collins WF, Pitnick S. 2013 Rapid
diversification of sperm precedence traits and
processes among three sibling Drosophila species.
Evolution 67, 2348 – 2362. (doi:10.1111/evo.12117)

28. McGrew MJ, Sherman A, Ellard FM, Lillico SG,
Gilhooley HJ, Kingsman AJ, Mitrophanous KA, Sang
H. 2004 Efficient production of germline transgenic
chickens using lentiviral vectors. EMBO Rep. 5,
728 – 733. (doi:10.1038/sj.embor.7400171)

29. Chapman SC et al. 2005 Ubiquitous GFP expression
in transgenic chickens using a lentiviral vector.
Development 132, 935 – 940. (doi:10.1242/dev.
01652)

30. Scott BB, Lois C. 2005 Generation of tissue-specific
transgenic birds with lentiviral vectors. Proc. Natl
Acad. Sci. USA 102, 16 443 – 16 447. (doi:10.1073/
pnas.0508437102)

31. Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F.
2009 Transgenic songbirds offer an opportunity to
develop a genetic model for vocal learning. Proc.
Natl Acad. Sci. USA 106, 17 963 – 17 967. (doi:10.
1073/pnas.0909139106)

32. King LM, Brillard JP, Garrett WM, Bakst MR,
Donoghue AM. 2002 Segregation of spermatozoa
within sperm storage tubules of fowl and turkey
hens. Reproduction 123, 79 – 86. (doi:10.1530/rep.0.
1230079)

33. Bakst MR. 1994 Fate of fluorescent stained sperm
following insemination: new light on oviducal sperm
transport and storage in the turkey. Biol. Reprod.
50, 987 – 992. (doi:10.1095/biolreprod50.5.987)

34. McDaniel CD, Branwell RK, Howarth BJ. 1997
Development of a novel fluorescence technique for
quantifying the total number of spermatozoa stored
in the uterovaginal junction of hens. J. Reprod.
Fertil. 109, 173 – 179. (doi:10.1530/jrf.0.1090173)

35. Birkhead TR, Pellatt EJ, Brekke P, Yeates R, Castillo-
Juarez H. 2005 Genetic effects on sperm design in
the zebra finch. Nature 434, 383 – 387. (doi:10.
1038/nature03374)

36. Birkhead TR, Fletcher F. 1995 Male phenotype and
ejaculate quality in the zebra finch Taeniopygia
guttata. Proc. R. Soc. Lond. B 262, 329 – 334.
(doi:10.1098/rspb.1995.0213)

37. Mossman J, Slate J, Humphries S, Birkhead TR. 2009
Sperm morphology and velocity are genetically co-
determined in the zebra finch. Evolution 63, 2730 –
2737. (doi:10.1111/j.1558-5646.2009.00753.x)

38. Hellriegel B, Bernisconi G. 2000 Female-mediated
differential sperm storage in a fly with complex
spermathecae, Scatophaga stercoraria. Anim. Behav.
59, 311 – 317. (doi:10.1006/anbe.1999.1308)

39. Otronen M, Reguera P, Ward PI. 1997 Sperm storage
in the yellow dung fly Scathophaga stercoraria:
identifying the sperm of competing males in
separate female spermathecae. Ethology 103, 844 –
854. (doi:10.1111/j.1439-0310.1997.tb00125.x)

40. Birkhead TR, Hall J, Schut E, Hemmings N. 2008
Unhatched eggs: methods for discriminating between
infertility and early embryo mortality. Ibis 150,
508 – 517. (doi:10.1111/j.1474-919X.2008.00813.x)

41. R Core Team. 2016. R: a language and environment
for statistical computing. Version 3.3.1. Vienna,
Austria: R Foundation for Statistical Computing.
(https://www.R-project.org/)

42. Hemmings N, Birkhead T. 2017 Data from:
Differential sperm storage by female zebra finches
Taeniopygia guttata. Dryad Digital Repository.
(http://dx.doi.org/10.5061/dryad.46bq0)

http://dx.doi.org/10.1016/j.theriogenology.2014.12.022
http://dx.doi.org/10.1016/j.theriogenology.2014.12.022
http://dx.doi.org/10.1126/science.1187096
http://dx.doi.org/10.1126/science.1187096
http://dx.doi.org/10.1111/evo.12117
http://dx.doi.org/10.1038/sj.embor.7400171
http://dx.doi.org/10.1242/dev.01652
http://dx.doi.org/10.1242/dev.01652
http://dx.doi.org/10.1073/pnas.0508437102
http://dx.doi.org/10.1073/pnas.0508437102
http://dx.doi.org/10.1073/pnas.0909139106
http://dx.doi.org/10.1073/pnas.0909139106
http://dx.doi.org/10.1530/rep.0.1230079
http://dx.doi.org/10.1530/rep.0.1230079
http://dx.doi.org/10.1095/biolreprod50.5.987
http://dx.doi.org/10.1530/jrf.0.1090173
http://dx.doi.org/10.1038/nature03374
http://dx.doi.org/10.1038/nature03374
http://dx.doi.org/10.1098/rspb.1995.0213
http://dx.doi.org/10.1111/j.1558-5646.2009.00753.x
http://dx.doi.org/10.1006/anbe.1999.1308
http://dx.doi.org/10.1111/j.1439-0310.1997.tb00125.x
http://dx.doi.org/10.1111/j.1474-919X.2008.00813.x
https://www.R-project.org/
https://www.R-project.org/
http://dx.doi.org/10.5061/dryad.46bq0
http://dx.doi.org/10.5061/dryad.46bq0

	Differential sperm storage by female zebra finches Taeniopygia guttata
	Introduction
	Material and methods
	Results
	Discussion
	Ethics
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding
	Acknowledgements
	References


