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Several recent studies have reported that there exists a self-similar form of invariant
solutions down to the Kolmogorov microscale in the bulk region of turbulent Couette
flow. While their role in a fully-developed turbulent flow is yet to be identified, here we
report that there exists a related mechanism of turbulence production at the Kolmogorov
microscale in the bulk region of turbulent Couette flow by performing a set of minimal-
span direct numerical simulations up to friction Reynolds number Reτ ≃ 800. This
mechanism is found to essentially originate from the non-zero mean shear in the bulk
region of the Couette flow, and involves the eddy turn-over dynamics remarkably similar
to the so-called self-sustaining process (SSP) and/or vortex-wave interaction (VWI). A
numerical experiment that removes all the other motions except in the core region is
also performed, which demonstrates that the eddies at a given wall-normal location in
the bulk region are sustained in the absence of other motions at different wall-normal
locations. It is proposed that the self-sustaining eddies at the Kolmogorov microscale
correspond to those in uniform shear turbulence at transitional Reynolds numbers, and
a quantitative comparison between the eddies in uniform shear and near-wall turbulence
is subsequently made. Finally, it is shown that the turbulence production by the self-
sustaining eddies at the Kolmogorov microscale is much smaller than that of full-scale
simulations, and that the difference between the two increases with Reynolds number.

1. Introduction

The discovery of unstable invariant solutions of the Navier–Stokes equations, such
as stationary/traveling waves and periodic orbits, has led to significant advancement
in the understanding of transition and turbulence at low Reynolds numbers. Many of
these solutions have been found in wall-bounded shear flows, such as plane Couette,
pressure-driven channel and pipe flows, and boundary layer (e.g. Nagata 1990; Waleffe
2001; Kawahara & Kida 2001; Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Hall &
Sherwin 2010; Park & Graham 2016, and many others). These invariant solutions form a
state-space skeleton (Gibson et al. 2008; Willis et al. 2013, 2016), and their understanding
from a dynamical systems viewpoint has played the key role in illuminating the nature of
bypass transition and low-Reynolds-number turbulence. It has also recently been shown
that computation of these invariant solutions with a suitable modelling of surrounding
small-scale turbulence may also be relevant to the description of large-scale coherent
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structures emerging at much higher Reynolds number (Rawat, Cossu, Hwang & Rincon
2015; Hwang, Willis & Cossu 2016).
Recently, several researchers have discovered a self-similar form of some invariant

solutions in the core region of plane Couette flow with respect to the given spanwise
length scale (Blackburn, Hall & Sherwin 2013; Deguchi 2015; Eckhardt & Zammert
2016). In particular, Deguchi (2015) showed that the smallest possible invariant solutions
emerge at Kolmogorov microscale using an asymptotic theory. These findings are very
intriguing, as the self-similar nature of the invariant solutions down to Kolmogorov scale
is seemingly reminiscent of the eddy structures expected in the Richardson-Kolmogorov
energy cascade (Kolmogorov 1941, 1991). However, it should be pointed out that the
energy cascade is also a well-established concept in turbulent flows even without any mean
shear (isotropic turbulence) (see e.g. Vassilicos 2015), whereas the invariant solutions, at
least of the type mentioned here, would not exist in the absence of mean shear.
Indeed, the question of whether or not there exists a link between the self-similar

invariant solutions and the eddies in the energy cascade is very puzzling. On the one hand,
the invariant solutions have often been understood to underpin a sustaining mechanism of
energy-carrying eddies (i.e. coherent structures) via the so-called self-sustaining process
(SSP) (Hamilton et al. 1995; Waleffe 1997) and/or vortex-wave interaction (VWI) (Hall
& Smith 1991; Hall & Sherwin 2010). This process is essentially a two-way interaction
between wavy streaks and streamwise vortices, and, in particular, the amplification
process of streaks by streamwise vortices (i.e. ‘lift-up’ effect) involves production of
turbulent kinetic energy – the production term in the standard turbulence budget
equation has the same mathematical origin with the off-diagonal term in the Orr-
Sommerfeld and Squire equations that represents the lift-up effect (Hwang 2016). On
the other hand, when considering the cascade, the Kolmogorov microscale is essentially
derived by considering the scale, at which the rate of ‘energy transfer’ from large scale
(equivalent to the rate of turbulence dissipation) is expected to be balanced with viscous
dissipation (Kolmogorov 1941, 1991). Therefore, the eddies at Kolmogorov scale in the
energy cascade should be mainly driven by the energy transferred from large scales.
However, for invariant solutions the energy production and dissipation are in perfect
balance on the scale of the structure. Also, in general, not all eddies at Kolmogorov
microscale are the outcome of the energy cascade in a high-Reynolds-number turbulent
flow. An important example of this is the near-wall turbulence in and below the buffer
layer. The integral length scale in this region is the viscous inner length scale δν = ν/uτ

(ν is the kinematic viscosity and uτ is the friction velocity), and this is identical to the
corresponding Kolmogorov length scale.
Motivated by this puzzling issue, the goal of the present study is to report our

observation that there exists a turbulence production mechanism at the Kolmogorov
microscale in the bulk region of turbulent Couette flow, where the invariant solutions at
Kolmogrov microscale have been found (e.g. Deguchi 2015). This mechanism is found to
essentially originate from the uniform local mean shear in the flow, and, interestingly, we
shall see that the related eddy turn-over dynamics is remarkably similar to the SSP/VWI.
A numerical experiment, that removes all the structures except those in the core of the
channel, is also performed, and we demonstrate that the energy-producing structures
in the bulk region sustain themselves, suggesting that the invariant solutions at the
Kolmogorov microscale are likely to underpin the dynamics of these structures. Finally, it
should be mentioned that, given the definition of the Kolmogorov microscale, dissipation
of the energy produced by these self-sustaining structures must take place at the same
scale, thereby consistent with the nature of the invariant solutions that exhibits perfect
balance between production and dissipation on the scale of structure.
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2. Background

2.1. Mean-momentum balance

We consider a turbulent flow bounded by two infinitely long and wide parallel walls.
Here, x, y and z are denoted by the streamwise, wall-normal and spanwise direction, and
the corresponding velocities are by u, v and w, respectively. The two walls are located at
y = −h and y = h, and they slide in opposite directions with speeds u|y=−h = −Uw and
u|y=h = Uw. A fundamental feature of the turbulent Couette flow is the mean-momentum
balance, obtained by taking average of the streamwise momentum equation in time and
two homogeneous directions:

ν
dU

dy
− u′v′ =

τ0
ρ
, (2.1)

where U is the mean velocity, u′v′ the Reynolds shear stress (the overbar denotes the
average in time and two homogeneous directions), τ0 the applied shear stress, and ρ the
density of the fluid. Here, we note that the validity of (2.1) is not limited only to the
Couette flow – any parallel flow driven by a shear stress uniform in y should satisfy this
equation. Therefore, (2.1) must be viewed as the generic mean-momentum equation for
flows driven by a locally uniform shear stress.

Equation (2.1) provides some important physical insight into the velocity and length
scales relevant to the present investigation. Since (2.1) is valid at every wall-normal
location, the local shear flow can be viewed as the outcome of the applied local shear
stress τ0. This implies that the local velocity scale would be given from the local shear
stress, such that: uτ =

√
τ0/ρ. We note that if the wall-normal location is chosen to be

at the wall (i.e. y = ±h), uτ becomes identical to the friction velocity in the near-wall
region. However, in the present case, uτ also becomes the local velocity scale at every
wall-normal location, as it originates from the constant shear stress τ0 in the wall-normal
direction. It is also important to note that (2.1) itself does not contain any description
of the ‘integral’ length scale associated with the largest admissible eddies, and the scale
of the largest eddies is here determined by the size of the computational domain. If the
computational domain were sufficiently large horizontally, the relevant length scale of the
largest admissible eddies would be given by the height of the channel. However, if the
computational domain were artificially narrowed in the spanwise direction down to O(δν),
as in a typical minimal channel simulation (Jiménez & Moin 1991; Hwang 2013), the size
of the largest admissible eddies would be restricted to O(δν). In this case, the rate of
turbulence dissipation would be given by E ∼ u3

τ/δν , and the corresponding Kolmogorov
length scale becomes identical to the viscous inner length scale: i.e. η = δν . Normalising
(2.1) with uτ and η then leads to

dU∗

dy∗
− u′v′

∗

= 1, (2.2)

where the superscript ∗ indicates the resulting dimensionless variables. Here, we note
that the use of the superscript ∗, instead of the commonly used + for normalisation by
the viscous inner units, is to highlight that the assoicated velocity and length scales are
relevant to the entire wall-normal location, including the outer and centreline region,
where the use of the viscous inner scales would not usually make sense.
In (2.2), it is evident that the values of dU∗/dy∗ and u′v′

∗

from a DNS with a
sufficiently large horizonal computational domain would be strongly dependent upon
the wall-normal location, as a range of different length scales would come into play at
each of the wall-normal location – this can be easily checked by inspecting the available
DNS database (see e.g. Pirozzoli et al. 2014). However, if the size of the eddies were
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Simulation Re Reτ ∆∗

x ∆∗

z L∗

x L∗

z Nx ×Ny ×Nz T ∗

avg

LC1 10133 320 11.2 5.6 3355 112 300× 261× 20 48198
LC2 21333 488 10.7 5.4 3223 107 300× 401× 20 78066
LC3 33333 626 10.6 5.3 3195 107 300× 497× 20 77473
LC4 50000 814 11.4 5.7 3421 114 300× 641× 20 58363

SC1 10133 341 11.9 6.0 430 143 36× 261× 24 229623
SC2 21333 526 11.4 5.7 410 137 36× 401× 24 129517
SC3 33333 679 11.3 5.7 407 136 36× 497× 24 406020
SC4 50000 859 11.5 5.7 412 137 36× 641× 24 103292

Table 1. Simulation parameters in the present study (after dealiasing), and T ∗

avg is the time
interval for average. Here, in the name of simulations, the LC indicates ‘long channel’ and SC
‘short channel’ in the streamwise direction.

artificially restricted to the given Kolmogorov length scale, the velocity and length scales
of the eddies at play would be uniquely given by uτ and η. Therefore, dU∗/dy∗ and u′v′

∗

are expected to be constant along the wall-normal direction, except the near-wall region
where the no-slip boundary condition would break the homogeneity of (2.2). One such

solution, but trivial, is given by dU∗/dy∗ = 1 and u′v′
∗

= 0. However, the presence of
non-zero mean shear in the flow system considered here also suggests that there may
exist other non-trivial solutions of (2.2) that involves non-zero Reynolds shear stress and
the resulting turbulence production. The objective of the present study is essentially to
address this point.

2.2. Minimal Couette flow up to Reτ ≃ 800

To seek the production mechanism at Kolmogorov microscale, a set of minimal-span
direct numerical simulations (L∗

z ≃ 100 − 140) are performed. This approach, originally
designed to investigate the self-sustaining nature of near-wall turbulence (e.g. Jiménez
& Moin 1991; Hamilton et al. 1995; Hwang 2013), has recently been extended to study
low-dimensional dynamics of the structures in the logarithmic and outer regions (Flores
& Jiménez 2010; Hwang 2015; Hwang & Bengana 2016; de Giovanetti et al. 2016) as
well as to assess the effect of wall-roughness with economical computational cost (Chung
et al. 2015; MacDonald et al. 2017). The numerical solver used in this study is diablo,
the detailed numerical method of which is well documented in Bewley (2014). In this
solver, the streamwise and spanwise directions are discretised using Fourier series with 2/3
dealiasing rule, whereas the wall-normal direction is discretised using second-order central
difference. The time integration is performed semi-implicitly based on the fractional-step
method (Kim & Moin 1985). All the terms with wall-normal derivatives are implicitly
advanced using second-order Crank-Nicolson method, while the rest of the terms are
explicitly integrated using a third-order low-storage Runge-Kutta method. This solver
has been verified through our previous studies (e.g. Hwang 2013).
Table 1 summarises the simulation parameters in the present study. The simulations

are performed up to Re = 50000 (Re ≡ Uwh/ν), and the corresponding friction
Reynolds number is found to be Reτ ≃ 800 (Reτ ≡ uτh/ν). We note that this value
of friction Reynolds number is much smaller than that expected from a simulation
with a sufficiently large computational domain, as will be discuss in detail in §4.2.
Both long and short streamwise computational domains are considered: the former with
L∗

x ≃ 3000 is used to identify the full statistical features, while the latter with L∗

x ≃ 400
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Figure 1. An instantaneous flow field of LC4 simulation. Here, the blue iso-surfaces indicate
u′∗ = −2, while the red ones are v′∗ = 1.5.

is used to inspect the low-dimensional dynamics of the motions in the minimal spanwise
domain. As was extensively discussed in Hwang (2013), numerical simulations with such
a minimal spanwise domain contain a non-physical two-dimensional motion resolved by
zero spanwise wavenumber (i.e. spanwise-independent cross-flow motion). This motion
is essentially driven by the quasi two-dimensional nature of the present computational
domain, and has been found to be dependent upon the size of the streamwise domain.
This motion is therefore eliminated by adopting the filtering approach in Hwang (2013).
Finally, it should be mentioned that the spanwise domain and the filtering of the two-
dimensional motions here do not affect the mean-momentum balance in (2.2), as the
equation for zero streamwise and spanwise wavenumbers in our numerical solver (i.e. the
spatial mean equation) is not directly modified by them (see also figure 2c). Therefore,
the time average of this equation with the spanwise-minimal domain and the removal of
the spanwise independent cross-flow motion still yields the one identical to (2.2).

3. Results and discussion

3.1. Turbulence statistics

We first consider simulations with a long streamwise computational domain (i.e. LC
simulations in table 1). Figure 1 is a visualisation of an instantaneous streamwise and
wall-normal velocity field from the simulation performed at the highest Reynolds number
(i.e. LC4). The flow field is occupied by small-scale eddies, the spanwise size of which
just fits in the given spanwise computational domain. The motions associated with the
streamwise velocity fluctuation (blue iso-surface in figure 1) tend to be elongated in the
streamwise direction, but they are not very long. This feature becomes more evident if
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Figure 2. Turbulence statistics for mean-momentum balance and production: (a) U∗(y∗); (b)

−u′v′
∗

; (c) dU∗/dy∗ − u′v′
∗

; (d) −u′v′
∗

dU∗/dy∗. Here, · · · · · ·, LC1; , LC2; - - - -, LC3;
, LC4.

their streamwise extent is compared with that of the eddies in the near-wall region: the
near-wall streamwise velocity fluctuation appears to be much longer than that in the bulk
region of the flow. On the other hand, the streamwise extent of the wall-normal velocity
fluctuations in the bulk region is slightly shorter than that for the streamwise velocity,
and it does not seem to be greatly changed in the near-wall region (red iso-surface in
figure 1).
Figure 2 shows turbulence statistics involved in construction of the mean-momentum

balance and turbulence production. Here, the wall-normal coordinate in figure 2 is
given by y∗ = y/η, so that y∗ = 0 corresponds to the centreline of the channel. This
unconventional choice for the wall-normal coordinate is specifically to distinguish the
Kolmogorov length scale η from the viscous inner length scale δν . In the present study, we
also show the statistics only for the upper half of the channel, as they are symmetric about
y∗ = 0. The mean velocity profile and the Reynolds shear stress for all the considered
Reynolds numbers show impressively clear scaling with uτ and η at all the wall-normal
locations, except in the near-wall region where y∗ is largest (figures 2a,b). In the bulk
region, both the mean shear rate and the Reynolds shear stress are almost constant,
being dU∗/dy∗ ≃ 0.07 and −u′v′

∗

≃ 0.93. They also exactly satisfy the mean-momentum
balance in (2.2) throughout the entire wall-normal location (figure 2c), demonstrating
that the spanwise minimal domain and the filtering of the two-dimensional motions do
not affect the mean-momentum balance (2.2). Finally, the constant values of the mean
shear rate and the Reynolds shear stress at the Kolmogorov scale also imply a non-zero
constant value of turbulence production given by −u′v′

∗

dU∗/dy∗ ≃ 0.065 (figure 2d).
This evidently indicates that the turbulence production mechanism can indeed be active
at the Kolmogorov microscale in the bulk region of the flow.
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Figure 3. Turbulent velocity fluctuations: (a) u∗

rms(y
∗); (b) v∗rms(y

∗); (c) w∗

rms(y
∗). Here,

· · · · · ·, LC1; , LC2; - - - -, LC3; , LC4.

The velocity fluctuations are shown in figure 3. As expected, all the turbulent velocity
fluctuations exhibit very good scaling with uτ and η over the entire wall-normal location,
except the near-wall region. In the bulk region, the velocity fluctuations are found to
be u∗

rms ≃ 1.7, v∗rms ≃ 0.93 and w∗

rms ≃ 1.3. The different values of the velocity
fluctuations suggest that the eddies populating the bulk are anisotropic, as one might
expect given the presence of mean shear. In the near-wall region, the anisotropic nature
of the velocity fluctuations becomes very strong: in particular, the magnitude of the
near-wall streamwise velocity fluctuation is much larger than that in the bulk region; the
other components vary only a little in the near-wall region before the drop in the viscous
sub-layer. The near-wall velocity fluctuations are also found to scale very well in the wall-
normal coordinate normalised by the viscous inner length scale (i.e. y+ = (y + h)/δv),
consistent with the case of pressure-driven minimal turbulent channel (Hwang 2013).
However, this issue does not exactly fall within the scope of the present study, and the
related discussion is given in Appendix A.
One-dimensional spectra also exhibit essentially uniform statistics in the bulk region.

Figure 4 shows the spanwise and streamwise wavenumber spectra of streamwise, wall-
normal, spanwise velocities and Reynolds shear stress from the lowest and the highest
Reynolds numbers (LC1 and LC4). All the spectra in figure 4 exhibit remarkably
good scaling with uτ and η, while being constant at all the wall-normal locations
except the near-wall region. The peaks in the spanwise wavenumber spectra of all the
variables (figures 4a,c,e,g) appear at the largest spanwise wavelength, indicating that
the spanwise size of the motions at all the wall-normal locations in the flow field is
restricted by the narrow spanwise computational domain (note that the motions uniform
in the spanwise direction are eliminated in the simulations, as discussed in §2.2). The
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Figure 4. One-dimensional pre-multiplied (a, c, e, g) spanwise and (b, d, f, h) streamwise
wavenumber spectra of (a, b) streamwise velocity, (c, d) wall-normal velocity, (e, f) spanwise
velocity and (g, h) Reynolds stress. Here: shaded, LC1; solid, LC4. In (a, b), the contour levels
are 0.125, 0.25 and 0.375 times of each of the maximum, while in (c− h), they are 0.25, 0.5 and
0.75 times of each of the maximum.
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Figure 5. The wall-normal correlation functions with the reference point at yref = 0: (a)
Ruu(r

∗; 0); (b) Rvv(r
∗; 0); (c) Rww(r

∗; 0). Here, · · · · · ·, LC1; , LC2; - - - -, LC3; ,
LC4.

streamwise wavenumber spectra are also shown to indicate the streamwise length scale
of the structures in the bulk region. The streamwise extent of the streamwise velocity
structure is characterised by λ∗

x ≃ 300 (figure 4b), whereas that of the wall-normal and
spanwise velocity structures is λ∗

x ≃ 200 (figures 4d,f). The streamwise length scale of
the Reynolds shear stress is rather similar to that of the streamwise velocity spectra,
revealing the peak at λ∗

x ≃ 300 (figure 4h). The spectra in the near-wall region are much
more anisotropic than those in the bulk region, and their peaks generally appear at
larger streamwise wavelengths. The overall features of the spectra in the near-wall region
are almost identical to those observed in the spanwise minimal unit of pressure-driven
channel flow (Hwang 2013), as discussed in Appendix A (see also figure 14).
Figure 1 clearly shows that the wall-normal size of the eddies in the bulk region is not

very large, which follows from the fact that all the turbulence statistics are constant in
the wall-normal direction (figures 2-4). Therefore, to characterise the wall-normal size of
the eddies, two-point correlation function in the wall-normal direction is introduced. For
example, the correlation function for the streamwise velocity is given by

Ruu(r; yref) =
u′(yref + r)u′(yref)

u′(yref)u′(yref)
, (3.1)

where yref is the reference point. Similarly, the correlation functions for the wall-
normal and spanwise velocities are computed, and they are denoted by Rvv(r; yref) and
Rww(r; yref), respectively.
The computed correlation functions with yref = 0 (i.e. the centre of the channel) is

shown in figure 5 at all the Reynolds numbers considered. All the computed correlation
functions for each velocity component are almost identical when they are scaled with the
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Figure 6. Temporal evolution of flow field in the core region (0 6 y∗ 6 50) from SC2 simulation:
(a) time trace of E∗

u (solid) and E∗

v (dashed); (b) magnification of (a) for t∗ ∈ [1476, 1658]; (c−f)
the corresponding flow visualisation. In (c−f), the red and blue iso surfaces indicate u′∗ = −1.2
and v′∗ = 0.8, respectively.

Kolmogorov length scale η. Their tails are found to reach zero roughly at r∗ ≃ ±50 ∼
±100, indicating that the wall-normal size of the eddies would be l∗ ≃ 50 ∼ 100. This
also implies that the constant turbulence statistics in the bulk region of the flow along
the wall-normal direction (figures 2-4) are due to the homogeneous distribution of the
statistically and dynamically identical eddies at the Kolmogorov scale at all wall-normal
locations except the near wall. In this respect, it should be mentioned that any solutions
of the Navier–Stokes equation with uniform shear flow would be invariant under the wall-
normal translation, as long as the solutions are not affected by the boundary condition
that would break the invariance (e.g. no-slip condition). It is evident that the eddies in
the bulk region of the present numerical simulations belong to this case, and the only
expected difference between the eddies at different wall-normal locations should therefore
be their mean streamwise advection velocity.

3.2. Self-sustained structures at the Kolmogorov scale

Now, to study low-dimensional dynamics of the motions in the bulk region, we consider
a much shorter streamwise computational box size (SC cases in table 1). Particular
emphasis of this section is given to find any links between the dynamics of the eddies
in the bulk region and the SSP/VWI. Instantaneous flow fields around y∗ = 0 are first
inspected while tracking turbulent kinetic energy of each velocity component obtained
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Figure 7. Temporal autocorrelation: (a) Cuu(τ
∗); (b) Cvv(τ

∗); and (c) Cww(τ
∗). Here, · · · · · ·,

SC1; , SC2; - - - -, SC3; , SC4. Note that all the correlation functions are almost
identical when normalised by Kolmogorov scales.

by averaging over a small domain around the centreline: i.e.

E∗

u =
1

V ∗

∫

Ω∗

u∗2 dV, E∗

v =
1

V ∗

∫

Ω∗

v∗2 dV, E∗

w =
1

V ∗

∫

Ω∗

w∗2 dV, (3.2)

where Ω∗ = [0, L∗

x]× [0, l∗y]× [0, L∗

z] with l∗y = 50 and V ∗ is the volume of Ω∗. Here, we
note that the size of Ω∗ is chosen to be just enough for a single eddy at the Kolmogorov
length scale (see also the wall-normal autocorrelation in figure 5).

Figure 6 shows the temporal evolution of E∗

u and E∗

v and the corresponding flow
visualisation in the region Ω∗. Since E∗

v and E∗

w have been found to show strong
correlation (see figure 11d), E∗

w is not shown here for brevity. Both E∗

u and E∗

v show
temporal oscillations with a time scale of T ∗ ≃ 200 ∼ 300 (figure 6a), and occur with
some phase difference. Although the flow fields are fairly chaotic in general and the
structures are also found to often move up and down across the wall-normal boundary
of Ω∗, a careful observation leads us to conclude that the overall behaviour of the
flow fields is quite similar to the SSP/VWI observed in Hamilton et al. (1995). The
strong wall-normal velocity structures (figure 6c) are transformed into a highly amplified
and elongated streamwise velocity structure, reminiscent of a ‘streak’ (figure 6d). The
amplified streamwise velocity structure meanders along the streamwise direction (figure
6e), and eventually breaks down with regeneration of the wall-normal velocity structures
(figure 6f). This process occurs in a cyclic manner, detailed later with respect to figure
11.

The eddy turn-over dynamics observed in figure 6 is also found to scale very well with
the Kolmogorov microscale. This is shown by computing correlation functions with the
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Simulation Re Reτ ∆∗

x ∆∗

z L∗

x L∗

z Nx ×Ny ×Nz δ∗ T ∗

avg

FSC2 21333 176 9.6 5.0 423 141 44× 401× 28 70 131315

Table 2. Simulation parameters for the numerical experiment that removes all the structures
except the core region (after dealiasing). Here, T ∗

avg is the time interval for average and the
definition of δ∗ is given in (3.4).

variables defined in (3.2):

Cij(τ) =
〈E∗

i (t+ τ)E∗

j (t)〉√
〈E∗

i
2(t)〉

√
〈E∗

j
2(t)〉

, (3.3)

where i, j = u, v, w and 〈·〉 indicates average in time. Figure 7 shows the autocorrelations
computed for all the Reynolds numbers. They are indeed almost indistinguishable when
scaled by u∗

τ and η. The autocorrelation functions of all the variables reach zero at
t∗ ≃ ±100 ∼ ±150, suggesting that the time scale of the eddy turn-over dynamics in
figure 6 would be T ∗ ≃ 200 ∼ 300. Interestingly, this time scale is almost identical to
that of the self-sustaining process in near-wall turbulence (e.g. Jiménez et al. 2005) (see
also §4.1 for further discussion).
The visual inspection of a series of flow fields suggests that the eddies at Kolmogorov

scale in the bulk region of the flow appear to bear the SSP/VWI mechanism. It is
important to mention that given fluid motions, the dynamics of which is governed by
the SSP/VWI mechanism, should be able to sustain themselves in the absence of other
motions (e.g. Jiménez & Pinelli 1999; Hwang & Cossu 2010; Hwang 2015). Therefore, to
provide more solid evidence on the existence of the SSP/VWI mechanism, we design
a numerical experiment which removes all the motions except the ones in the core
region. The removal has been performed by applying a damping technique similar to
the one described in Jiménez & Simens (2001). At each Runge-Kutta substep for the
time integration, the right-hand side of the discretised momentum equation, denoted by
RHS, is multiplied by a damping function µ(y): i.e.

R̂HS(y; kx, kz) → µ(y)R̂HS(y; kx, kz), (3.4a)

where ·̂ denotes the Fourier-transformed state, and kx and kz are the streamwise and
spanwise wavenumbers, respectively. The damping function µ(y) is chosen as

µ(y) =

{
µ0 for |y∗| > δ∗,

1 for |y∗| < δ∗,
(3.4b)

where the damping factor µ0 provides removal of the motions at |y∗| > δ∗ if µ0 < 1.
Several different values of µ0 have been tested, and, in the present study, we have chosen
µ0 = 0.9 which provides a marginal damping just enough to remove the target structures.
Finally, it should be mentioned that the damping technique (3.4) is not applied to the
mean component for kx = 0 and kz = 0 to maintain the mean-momentum balance (2.2)
(see also figure 9c).
The removal of the structures except the core region is performed by gradually

decreasing δ∗ to a value at which turbulence in the core region is only just sustained.
Table 2 summarises simulation parameters of this numerical experiment. Here, the aspect
ratio of the computational domain is kept to be Lx/Lz = 3. Figure 8 are visualisations
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Figure 8. Instantaneous flow fields of FSC2 simulation with different damping height: (a)
δ∗ = 333; (b) δ∗ = 126; (c) δ∗ = 70. Here, the blue iso-surfaces indicate u′∗ = −2, while the red
ones are v′∗ = 1.5.

Figure 9. Turbulence statistics for mean-momentum balance and production: (a) U∗(y∗); (b)

−u′v′
∗

; (c) dU∗/dy∗ − u′v′
∗

; (d) −u′v′
∗

dU∗/dy∗. Here, - - - -, SC2; , FSC2.

of the remaining turbulent structures for three different δ∗ values. The smallest possible
δ∗ that maintains turbulence in the core region is found to be δ∗ ≃ 70. We note that this
value is consistent with the wall-normal autocorrelation in figure 5 where the correlation
functions reach zero at y∗ ≃ 50− 100, indicating that the core-region structures, the size
of which is O(100η), sustain themselves.
Turbulence statistics for mean-momentum balance and production from the simulation

only with the self-sustaining core structures (FSC2) are compared with those of a minimal
channel simulation in figure 9. Despite the harsh nature of the applied damping (3.4),
the mean shear rate, Reynolds shear stress and turbulence production in the core region
(y∗ < 30 ∼ 40) of the FSC2 simulation still show reasonably good agreement with
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Figure 10. Temporal evolution of flow field in the core region (0 6 y∗ 6 70) from
FSC2 simulation: (a) time trace of E∗

u (solid) and E∗

v (dashed); (b) magnification of (a) for
t∗ ∈ [1335, 1597]; (c − f) the corresponding flow visualisation. In (c − f), the red and blue iso
surfaces indicate u′∗ = −2.5 and v′∗ = 0.8, respectively.

those of the full minimal channel simulation. This suggests that the dynamics of the
structures in the core region is not significantly disrupted by damping of the structures
at |y∗| > 70. Application of the damping (3.4) is also found to make the mean shear rate
dU∗/dy∗ rapidly change for 50 . y∗ . 70 (figure 9a) where the Reynolds shear stress
rapidly decays (figure 9b) to satisfy the mean-momentum balance (2.2) (figure 9c). In this
location, turbulence production also exhibits a large peak (figure 9d), and, interestingly,
its peak value appears to be remarkably similar to what is observed in the near-wall
region where the Reynolds shear stress also decays rapidly due to the no-slip boundary
condition (see the dashed line in figure 9d around y∗ ≃ 500). A detailed discussion on
this observation will be given in §4.1.
Temporal evolution of the flow structures in FSC2 simulation is shown in figure 10.

The time trace of E∗

u and E∗

v in FSC2 simulation also exhibits temporal oscillations,
and their time scale appears to be roughly at T ∗ ≃ 200 ∼ 300, not very different from
that observed in figure 6 (figure 10a). The temporal oscillations of E∗

u and E∗

v also show
a phase difference (figure 10b). Visualisation of the instantaneous flow fields along the
different phase in a single oscillation period reveals that the motions in FSC2 simulation
also seem to undergo the SSP/VWI, similarly to the observation made in figure 6. The
strong wall-normal velocity structures (figure 10c) highly amplify a streaky structure
(figure 10d). The amplified streak subsequently meanders along the streamwise direction
(figure 10e), resulting in its breakdown with regeneration of the wall-normal velocity
structure (figure 10f).
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Figure 11. Comparison of auto- and cross-correlation functions from (a, c, e) FSC2 and
(b, d, f) SC2 simulations: (a, b) Cuu, Cvv, Cww; (c, d) Cuv, Cuw, Cvw; (e, f) C0u, C0v, C1v.

To make more quantitative comparison between the dynamics of FSC2 and SC2
simulations, auto- and cross-correlations of the time-dependent variables such as those
defined in (3.2) are examined as in e.g. Hwang & Bengana (2016). Here, we also introduce
two additional variables:

E∗

0 =
1

l∗y

∫ l∗
y

0

(
|û∗(y; kx, kz)|

2 + |v̂∗(y; kx, kz)|
2 + |ŵ∗(y; kx, kz)|

2
)
dy, (3.5a)

for kx = 0 and kz = 2π/Lz, and

E∗

1 =
1

l∗y

∫ l∗
y

0

(
|û∗(y; kx, kz)|

2 + |v̂∗(y; kx, kz)|
2 + |ŵ∗(y; kx, kz)|

2
)
dy, (3.5b)

for kx = 2π/Lx and kz = 2π/Lz, where E∗

0 represents energy of the elongated motion
extending over the entire streamwise domain, while E∗

1 measures the strength of wavy me-
andering motion (i.e. streak instability). The cross-correlation functions are subsequently
computed following the definition in (3.3).
Figure 11 compares a number of different auto- and cross-correlations computed from

FSC2 with those from SC2 simulation. The auto-correlations from both FSC2 (figure 11a)
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and SC2 simulation (figure 11b) show their tails reaching zero at τ∗ ≃ ±100 ∼ ±150,
indicating that the turn-over time scale of the structures in both of the cases would
be T ∗ ≃ 200 ∼ 300, consistent with the observations in figures 6 and 10. The cross-
correlations between E∗

u, E
∗

v and E∗

w of both cases (figures 11c,d) reveal that the wall-
normal and spanwise velocities are well correlated to each other, indicating the presence
of the streamwise roll-like structures (Cvw in figures 11c,d). On the other hand, E∗

v and
E∗

w exhibit phase difference from E∗

u: the peaks of Cuv and Cuw in both of the cases
appear at τ∗ ≃ −60 ∼ −40. The cross-correlations of E∗

u with E∗

0 in both of the cases
(C0u in figures 11e,f) show a large value around τ∗ ≃ 0. This implies that E∗

u represents
the elongated motion of the streamwise velocity, indicating the streaky motion in figures
6 and 10. For this reason, the cross-correlation between E∗

0 and E∗

v in both cases (C0v

in figures 11e,f) exhibits a peak at τ∗ ≃ −80 ∼ −50, similarly to Cuv. Finally, the
cross-correlation between E∗

1 and E∗

v in both cases (C1v in figures 11e,f) reveals its peak
location around τ∗ ≃ −40 ∼ −20. This indicates that a streamwise meandering motion
consistently appears before the streamwise roll-like structures are generated.
Overall, the auto- and cross-correlations from FSC2 and SC2 simulations show qualita-

tively good agreement with each other, suggesting that the dynamics of the self-sustaining
structures in the FSC2 case is not very different from that in the SC2 case. Furthermore,
the correlations also suggest that there exists a statistically cyclic process in the core
region of both simulations, which occurs in the following order:

E∗

u & E∗

0 −→ E∗

1 −→ E∗

v & E∗

w −→ E∗

u & E∗

0 , (3.6)

with the turn-over time scale, T ∗ ≃ 200 ∼ 300. The fluid motion associated with E∗

u

and E∗

0 indicate an elongated streamwise velocity structure, very likely to be a ‘streak’,
and E∗

1 indicate its streak meandering motion presumably caused by a streak instability.
The streak instability process occurs before generation of streamwise roll-like structures
represented by E∗

v and E∗

w. The statistical evidence in figure 11 therefore firmly indicates
the existence of the SSP/VWI in the core region of the SC2 simulation. Here, it should be
stressed that the existence of the SSP/VWI in the SC2 simulation is not limited only to
the core region. The observed dynamics in the core region should be invariant under the
wall-normal translation, thus it has to be relevant to other wall-normal locations, except
the near-wall region where the translational invariance would be broken due to the no-
slip boundary condition. However, also in the near-wall region, it is well understood
that the SSP/VWI is the main driving mechanism of turbulence (Jiménez & Moin 1991;
Jiménez & Pinelli 1999). In summary, we conclude that the SSP/VWI is the dominant
mechanism of turbulence production at all wall-normal locations in the present minimal-
span simulations.

4. Discussion

An important outcome of the present minimal-span numerical simulations for turbulent
Couette flow is that they enable us to generate a uniform shear flow in the bulk turbulent
region, unaffected by the wall region. In particular, the minimal-span simulations enable
us to isolate and discuss processes at the Kolmogorov scale in the bulk. We have
shown that there indeed exists a turbulence production mechanism at the Kolmogorov
microscale in the bulk region of turbulent Couette flow. The related eddies essentially
originate from the mean shear existing at every wall-normal location, and do not rely
on the presence of the wall. In this respect, the present study is consistent with Mizuno
& Jiménez (2013), where a scaling procedure is used to eliminate wall effects. Statistical
evidence also firmly indicates that the turbulence production mechanism is supported
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by the SSP/VWI. This suggests that the self-similar invariant solutions found by the
recent studies (Blackburn et al. 2013; Deguchi 2015; Eckhardt & Zammert 2016) may be
relevant to turbulence production observed in the present study.
It is yet to be clarified whether the eddies observed in the present study may be

associated with the turbulent cascade. We note that the eddies involved in the energy
cascade, and dissipation of a typical turbulent flow at high Reynolds numbers, are
expected to be ‘driven’ by the energy transferred from ‘large scale’ due to the balance
between turbulence production and dissipation (Kolmogorov 1941, 1991). However, the
eddies in the present minimal-span simulation emerge in the absence of any large scales
by taking energy directly from the mean shear. Further, the Kolmogorov-scale eddies in
the present study are not isotropic, unlike the hypothesis of Kolmogorov (1941, 1991),
although the hypothesis itself may not be fully justified yet. Finally, it is important
to point out that the self-sustaining eddies in the present study are still much larger
than those associated with turbulence dissipation, even though their size scales with
the Kolmogorov microscale. Indeed, the typical size of the dissipative eddies at the
Kolmogorov scale is only O(η) (Jiménez & Wray 1998), much smaller than the eddies in
the present study at O(100η).
Taking these observations together, the self-sustaining eddies at the Kolmogorov

microscale observed in the present study are unlikely to be relevant for full-scale turbulent
flows at high Reynolds number. Instead, these eddies are more relevant for flow at
transitional Reynolds numbers in the presence of uniform shear: the small size of the
eddies at O(100η), originating from artificial restriction of the spanwise length scale
by the periodic boundary condition, reduces the characteristic Reynolds number to be
Rec(≡ uτ (100η)/ν) = 100, resulting in a transitional flow where there is little separation
between the length scales of turbulence production and dissipation. We note that the same
appears to be true for turbulence in the near-wall region (i.e. buffer layer): the length
scale of turbulence production is artificially restricted by the distance from the wall due
to the no-slip boundary condition, and the smallest possible length scale of turbulence
would therefore be given by the balance between the associated production and viscous
dissipation. This explains why the viscous inner length scale is the same as the near-wall
Kolmogorov length scale. The present study implies that such a phenomenon may occur
whenever the size of the eddies is artificially restricted e.g. by a boundary condition.

4.1. Uniform shear vs near-wall turbulence

Uniform shear turbulence has often been compared with near-wall turbulence (Lee
et al. 1990; Sekimoto et al. 2016). Here we are able to make a direct comparison
between them, while maintaining all the other conditions, such as applied shear stress
and horizontal boundary conditions, to be exactly the same. In the present study, we
have shown that the eddies in the bulk region are generated by the same mechanism as
in near-wall turbulence, i.e. the SSP/VWI (figures 6) (Hamilton et al. 1995; Jiménez &
Pinelli 1999; Schoppa & Hussain 2002). The eddy turn-over time scale of the bulk region
is also found to be T ∗ ≃ 200 − 300 at least with L∗

x ≃ 400 (figure 7), and this value
corresponds very well to the typical near-wall time scale T+ ≃ 200− 300 (Jiménez et al.

2005). However, the near-wall turbulence appears to be more anisotropic than uniform
shear turbulence (figures 3 and 4): in particular, the streamwise turbulence intensity of
near-wall turbulence is much stronger than that for the uniform shear case (figure 3),
and the related streaky structures also appear to be twice as elongated in the streamwise
direction (figures 4 and 14). This implies that the dynamics of coherent structures in near-
wall turbulence is very similar to that in uniform shear turbulence, but their statistical
features are significantly different.
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Figure 12. Variation of skin-friction coefficient with Re: , empirical fit by Robertson
(1959), Cf = 0.424(lnRe)−2; •, DNS by Pirozzoli et al. (2014); �, LC cases; ⋄, SC cases.

One such important statistical difference is the large value of production in the
near-wall turbulence, the peak value of which is about four to five times greater than
that of uniform shear turbulence (figure 2d). In fact, this is a very common feature
of the near-wall region in any simulation of wall-bounded shear flows, and, for many
years, it has led to a misunderstanding that the near-wall region is the most vigorous
location where turbulence production is dominated (see also Marusic et al. 2010, for a
further discussion). However, the numerical experiments in the present study suggest
that the emergence of such a peak in the near-wall turbulence production may be a
local ‘transitional’ effect simply caused by no-slip boundary condition. In the near-wall
region of the present minimal-span simulation, the no-slip condition leads −u′v′

∗

to decay
rapidly on approaching to the wall (figure 2b). Since the mean-momentum balance (2.2)
needs to be always satisfied, this results in a rapid increase of dU∗/dy∗ in the near-wall

region. Here, we note that the value of −u′v′
∗

dU∗/dy∗ subject to (2.2) mathematically

reaches its maximum when dU∗/dy∗ = −u′v′
∗

= 0.5. Since −u′v′
∗

≃ 0.93 in the bulk

region, the only place where −u′v′
∗

= 0.5 is physically possible would be the near-wall
region, where the maximum of −u′v′

∗

dU∗/dy∗ indeed emerges at y+ ≃ 10 in the present
minimal-span simulations (see also figure 14a). It is important to mention that the same
phenomenon also occurs in the FSC2 simulation where all the structures are artificially
damped out except those in the core region. In the FSC2 simulation, the location of
−u′v′

∗

= 0.5 is given by |y∗| ≃ 60 due to the applied artificial damping (figure 9b), and

−u′v′
∗

dU∗/dy∗ reaches the maximum at this location. This implies that the emergence of

the large peak of −u′v′
∗

dU∗/dy∗ in both of the SC2 and FSC2 simulations is essentially
due to the decaying Reynolds shear stress subject to (2.2), indicating that the large
value of production in the near-wall turbulence may be a local effect caused by the
no-slip boundary condition.

It should also be stressed that this feature is not necessarily limited to the present
minimal-span simulations of turbulent Couette flow – it appears to be generic, at least
for any parallel internal wall-bounded shear flows. For example, the mean-momentum
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balance in a pressure-driven channel flow (e.g. Tennekes & Lumley 1967) is given by

dU+

dy+
− u′v′

+
= 1−

y+

Reτ
, (4.1)

and the same expression would be easily found for turbulent pipe flow, as the viscous
inner length scale is much smaller than that associated with the boundary curvature at
high Reynolds numbers. In the limit of Reτ → ∞, (4.1) in the near-wall region (say
y+ 6 100) becomes the same as (2.2) because the viscous inner scales are identical
to the related Kolmogorov scales in the near-wall region. It is important to remember

that both dU+/dy+ and −u′v′
+
in the near-wall region of wall-bounded turbulent shear

flow scale very well in the viscous inner units, unlike other statistics such as streamwise
and spanwise turbulence intensities, and that they remain constant even if the Reynolds
number is sufficiently high (see e.g. the DNS data by Lee & Moser 2015). Therefore, the
maximum value of turbulence production in near-wall turbulence is also expected to be
around y+ ≃ 10, consistent with the early observations (Tennekes & Lumley 1967), and
it should scale very well in the inner units.

4.2. How large is the turbulence production at Kolmogorov microscale?

An important outcome of the present study is that turbulence production exists at
the Kolmogorov microscale. This mechanism is essentially driven by the local mean
shear. However, the reason that this mechanism is unveiled here is essentially because
larger eddies are artificially removed. From this viewpoint, it is not very clear whether
this turbulence production mechanism would also be active in the presence of larger
eddies: indeed, the spectra in full DNSs by Pirozzoli et al. (2014) do not show any strong
turbulent kinetic energy in the region where the production by Kolmogorov microscale
is expected (see figure 8 in Pirozzoli et al. 2014). This implies that the production
mechanism discovered in the present study may not be very active in the presence of
the eddies at all the possible scales.
It is also useful to compute how much energy is dissipated in the present minimal-span

simulation, in comparison to that in full simulations. This can be easily obtained by
computing skin-friction drag (e.g. Kawahara & Kida 2001). Figure 12 shows variation
of skin-friction coefficient of full simulations (Pirozzoli et al. 2014) and the present
minimal-span simulations on increasing the Reynolds number. As in Hwang (2013) and
de Giovanetti et al. (2016) for pressure-driven turbulent channel flows, the removal of the
motions, the spanwise size of which is greater than λ∗

z > 100− 140, leads to a significant
amount of skin-friction reduction. Also, the difference of the skin friction generated by the
minimal-span simulations from that by full simulations increases, as the Reynolds number
increases. This observation also suggests that the production by Kolmogorov microscale
in the present numerical experiment is much smaller than that by full simulation. In this
respect, it is finally worth mentioning that the Reynolds shear-stress cospectra in a full-
scale turbulent flow at high Reynolds numbers were shown to decay with −7/3 power
law, before it reaches the dissipation range of the spectra (Lumley 1967; Saddoughi
& Veeravallit 1994). This indicates that the turbulence production by the eddies at the
Kolmogorov microscale would also be insignificant and very small in a full-scale turbulent
flow.

4.3. Above the near-wall region in the minimal unit simulation

Finally, the present study provides a better understanding for the previous minimal-
span simulations for pressure-driven channel flow (e.g. Jiménez & Moin 1991; Jiménez
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Figure 13. Near-wall turbulence statistics: (a) U+(y+), (b) u+
rms(y

+), v+rms(y
+), w+

rms(y
+),

(c) −u′v′
+
(y+) (d) −u′v′

+
(y+)dU+/dy+.

& Pinelli 1999; Hwang 2013). All of these studies have repeatedly reported the presence
of a non-negligible amount of turbulent fluctuations above the near-wall region in the
minimal-span simulations, even though the spanwise computational domain is not large
enough to resolve the large energy-carrying eddies in the logarithmic and outer regions.
An explanation for the emergence of such turbulent fluctuations above the near-wall
region in the minimal-span simulations was initially proposed by Jiménez & Pinelli
(1999), and it starts from turbulence production in the logarithmic region: P ∼ u3

τ/y.
Since the production is roughly balanced with dissipation in the logarithmic region, the
decaying vorticity fluctuation in the wall-normal direction would be given, such that:
ω ∼ y−1/2 from P ∼ νω2. However, in the minimal-span simulation, the integral length
scale above the near-wall region is artificially restricted to be Lz. Therefore, the balance

between production and dissipation yields ω ∼ L
−1/2
z , providing a sound reason for

the non-negligible turbulent fluctuation above the near-wall region in the minimal-span
simulation.
The present study highlights that this explanation should be based upon the assump-

tion that the production in the minimal-span simulation does not originate from the
near-wall region but from the local mean shear. In the case of Couette flow, the uniform
mean shear in the bulk region makes the spanwise domain size Lz the precise integral
length scale in the bulk region, thereby resulting in turbulence statistics constant in the
wall-normal direction. On the other hand, in the case of pressure-driven channel flow,
the size of the spanwise domain does not fully represent the integral length scale in the
bulk region, as the mean shear is essentially the outcome of the applied pressure gradient
– the mean shear in this case decays on approaching from the near-wall to the core
region. Therefore, the production mechanism and the resulting turbulent fluctuations
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are expected to be gradually weakened, as the wall-normal location moves from the near-
wall to the outer region, and this is consistent with the turbulence statistics reported
by Hwang (2013). However, it is also important to mention that there should exist the
eddies, similar to those observed in the bulk region of the present study, at least just above
the near-wall region at sufficiently high Reynolds number, because the mean-momentum
balance (4.1) of the pressure-driven channel flow would be identical to (2.2) in the limit
of Reτ → ∞ in this region. Indeed, the eddy structures and their length scales above
the near-wall region in a minimal-span pressure-driven channel flow (Hwang 2013) are
remarkably similar to those in the bulk region of the present study. Lastly, it should be
stressed that this may indicate the existence of invariant solutions associated with these
fluctuations in a pressure-driven channel flow, as in the present Couette flow. However, to
the best of our knowledge, the discovery of such invariant solutions is yet to be reported.
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Appendix A. Near-wall turbulence statistics of the spanwise minimal

Couette flow

The near-wall turbulence statistics of all the LC simulations are reported here. Figure
13 reports first- and second-order turbulence statistics scaled by δν , with which the wall-
normal coordinate is given by y+ = (y + h)/δν . Consistently with Hwang (2013), all the
turbulent statistics show very good agreement at all the Reynolds numbers considered,
and they are almost indistinguishable in the near-wall region. One-dimensional spectra
of all the velocity components and the Reynolds shear stress are also inspected, as shown
in figure 14. Comparison of the spectra from the lowest and the highest Reynolds number
clearly suggests that the near-wall turbulence statistics completely scale in the viscous
inner units. The spectra also very well charcaterise the typical behaviour of near-wall
turbulence (see also Hwang 2013, for further details) – in particular, the streamwise
wavenumber spectra of the streamwise velocity shows a peak at λ+

x ≃ 600 and y+ ≃ 15
(figure 14b), indicating the near-wall streaks, while those of the wall-normal and spanwise
velocities exhibits a peak at λ+

x ≃ 200 ∼ 300 and y+ ≃ 500, representing the quasi-
streamwise vortices (Jeong et al. 1997).
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Jiménez, J. & Wray, A. A. 1998 On the characteristics of vortex filaments in isotropic
turbulence. J. Fluid Mech. 373, 255–285.

Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence:
regeneration cycle and burst. J. Fluid Mech. 449, 291–300.

Kim, J. & Moin, P 1985 Application of a fractional-step method to incompressible Navier-
Stokes equations. J. Comp. Phys. 59, 308–323.

Kolmogorov, A. N. 1941 The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 209–303.

Kolmogorov, A. N. 1991 The local structure of turbulence in incompressible viscous fluid for
very large Reynolds numbers. Proc. R. Soc. London Ser. A 434, 9–13.

Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech.
216, 561–583.

Lee, M. K. & Moser, R. D. 2015 Direct numerical simulation of the turbulent boundary layer
over a cube-roughened wall. J. Fluid Mech. 774, p395.

Lumley, J. L. 1967 Similarity and the turbulent energy spectrum. Phys. Fluids 10, 855–858.

MacDonald, M., Chung, D., Hutchins, N., Chan, L., Ooi, A. & Garcia-Mayoral, R.
2017 The minimal-span channel for rough-wall turbulent flows. J. Fluid Mech. 816, 5–42.

Marusic, I., McKeon, B. J., Monkewitz, P. A., Nagib, H. M., Smits, A. J. &
Sreenivasan, K. R. 2010 Wall-bounded turbulent flows at high Reynolds numbers:
Recent advances and key issues. Phys. Fluids 22, 065103.
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