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Abstract

In this paper we demonstrate a new post-processing technique that allows
straightforward identification of deformation mechanisms in molecular dy-
namics simulations. We utilise reciprocal space methods by calculating a
per-atom structure factor (PASF) to visualise changes in volume, orienta-
tion and structure, thus allowing unambiguous discrimination between key
deformation/relaxation mechanisms such as uniaxial strain, twinning and
structural phase transformations. The full 3-D PASF is reduced to a 2-D
representation by taking only those points which lie on the surface of an el-
lipsoid passing through the nearest reciprocal lattice points. Projecting this
2-D representation onto the set of spherical harmonics allows for a numerical
characterisation of the system state that easily captures various plastic de-
formation mechanisms that have been historically difficult to identify. The
technique is used to successfully classify high temperature twinning rotations
in shock compressed tantalum and to identify the α to ω phase transition in
group-IV hcp metals.

Keywords: Structure Identification, Shock waves, Molecular Dynamics,
Twinning, Plasticity

1. Introduction

Atomistic simulation through molecular dynamics (MD) has become an
invaluable tool for modelling the response of material undergoing high rate
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deformation, such as that experienced during material irradiation with a high
intensity optical laser[1, 2, 3, 4]. Such conditions are of fundamental scientific
interest and remain an active area of research due to their application in
planetary science[5], materials synthesis[6] and within thermonuclear fusion
research and the long-term goal of facilities such as the National Ignition
Facility, USA[7, 8]. The short timescales and high strain-rates present in
these experiments make them particularly amenable to MD simulation, which
has become an indispensable tool for investigating the richness of lattice
level behaviours activated at these high temperature and pressure conditions,
such as defect generation, twinning, dislocation motion and structural phase
transitions[9, 10, 11, 12].

Experiments in this field, routinely performed on state-of-the-art 4th
generation light sources where the X-ray source is used as a probe, drive
micron sized volumes of material to mega-bar conditions over picosecond
timescales[13, 14, 15] and we are fast approaching a point where MD and
free electron lasers (FELs) operate at commensurate scales. A recent ex-
periment recorded in situ X-ray diffraction from Cu shocked to pressures of
100 GPa and demonstrated a remarkable agreement between MD and ex-
periment, providing greater mechanistic understanding of the deformation
mechanics present[13]. However, the analysis of large-scale MD simulations
is non-trivial and real space methods currently have difficulty identifying
some specific transitions of fundamental interest (α to ω phase transition,
high temperature twinning, etc).

Classical MD simulations typically keep track of just particle positions
and velocities which then evolve according to a Hamiltonian and a prescribed
interatomic potential. Hence, characteristic features of plastic deformation
such as slip planes, Burgers vectors, lattice rotations, phase transformations
or even unit cells must be computed a posteriori. Numerous real-space order
parameters exist such as coordination number, common neighbor analysis[16]
(CNA), centrosymmetry parameter[17] or bond angle analysis[18] which ex-
cel at determining structural changes such as solid-solid phase transitions
and gives excellent spatial resolution, allowing parameters to be calculated
on a per-atom basis. However, they work only for common structures and
the inherently real space nature of these techniques mean their accuracy re-
mains extremely sensitive to local disorder from high temperatures or large
defect generation, both of which are present in laser shocked matter. A sum-
mary of existing analysis techniques can be found in the review article by A.
Stukowski[19].
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Here we introduce a framework based on the per-atom structure fac-
tor (PASF) concept developed by Higginbotham et al.[20]. This reciprocal
space technique is easily able to identify lattice level changes such as uniaxial
compression, crystallographic orientation or phase transformations in highly
disordered or high temperature samples. This extension, achieved through
projecting an ellipsoidal slice of reciprocal space onto the set of spherical
harmonics, produces a numerical characterization of the system that can be
used to color or categorize the atoms to aid visualization, removing the need
to know structures, strains or orientations a-priori.

The use of spherical harmonics in atomic structure identification is not
new - see for example [21, 22, 23], or the section on Fourier descriptors in
the work by Keys et al. [24], which matches Harmonic decompositions of
real space density. The plethora of techniques available highlight the diffi-
culties associated with accurate structure identification. Used in conjunction
with the per-atom structure factor Harmonic decomposition provides bene-
fits in the analysis of laser-shocked solids that has not been presented before.
In contrast to previous work our method remains intentionally sensitive to
lattice compression, achieved through taking a slice rather than a projec-
tion of reciprocal space, and to lattice rotations, allowing identification of
twinning and twin fraction. This work provides a middle ground which al-
leviates issues with existing approaches; this is demonstrated in the much
more complex environment of a shock, where effects due to disorder must be
mitigated.

2. Per Atom Structure Factor

The basis of this method is calculating the atomic structure factor, a
technique analogous to taking the discrete Fourier transform of the atomic
positions. The structure factor easily identifies periodicity in the crystal
micro-structure and, in a solid with a single atomic species, is defined by,

S(k) =
1

M
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∣

∣

∣
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where k is a reciprocal space lattice vector and rn are the atomic coordinates.
The summation in equation 1 typically runs from n = 1 to M , where M

is the total number of atoms in the simulation, hence the structure factor
is by definition a non-local metric. For decades, calculation of the crystal
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Figure 1: Prototypical evolution of the lattice-level micro-structure for a bcc system during
a laser induced shock. From left-to-right is the unit cell, the effect of 20% uniaxial com-
pression along z, a lattice rotation consistent with the {112}<111> twin systems expected
in bcc material and lastly a phase change to a hcp structure. Shown is the crystallographic
unit cell (a), the iso-surface of the 3-D PASF (b) and the equirectangular projection of the
ellipsoid slice (c). The color in the 3-D PASF is used to highlight the symmetries present.
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structure factor has allowed comparison between experimentally recorded X-
ray diffraction patterns and theoretically derived crystal micro-structures as,
within the kinematic approximation, the intensity of an X-ray diffraction
pattern is related to the modulus squared of the structure factor calculated
over the X-ray interaction region[25].

In order to reduce the crystal structure factor to a per-atom quantity we
reduce the region over which the summation in equation 1 runs to include
only those atoms that lie within a predetermined radius around each target
atom. This quantity we call the per-atom structure factor. A judicial choice
of this radius is required, as too small a number will result in too few atoms
being within the calculation sphere increasing the effect of noise and hiding
any periodicity or symmetries present in the crystal. On the other hand, a
larger radius will afford an increased reciprocal space resolution at the cost of
real space resolution and thus could obscure features smaller than the chosen
radius. In agreement with previous work we find a radius of 4 Å, typically
producing a sphere containing between 10 and 20 atoms, to provide a good
balance between these competing effects[20].

An outline of the general method is given in Fig. 1. The top row shows
real space representation of a body-centred cubic (bcc) crystal structure along
with three additional structures that could occur during prototypical high
rate crystal deformation; these are a 20% uniaxial compression along z, a
lattice rotation consistent with the {112}<111> twin systems expected in
bcc material and lastly a phase transformation into hexagonal close packed
(hcp), e.g. the α to ǫ phase transition in iron. The middle row of Fig. 1 shows
high resolution iso-surfaces of the PASF for each real space lattice, calculated
with a reciprocal space resolution of 10−2 Å−1 and containing 106 k-points.
From each 3-D PASF the deformation mechanism is readily apparent, as
indicated by the arrows. However, there is a large computational cost with
calculating such a number of reciprocal space values.

To reduce this computation cost without assuming a-priori knowledge of
the system, here we instead calculate the value of the 3-D PASF on a ellipsoid
slice through reciprocal space which passes through the nearest neighbour re-
ciprocal lattice points, i.e. the outer vertices of the second Brillouin zone.
The same reciprocal space resolution can be achieved with just 103 k-points.
The final row of Fig. 1 shows the equirectangular projections, S(θ, φ), of
these ellipsoidal slices for each of the cases discussed above. In each case the
effect of crystal deformation is easily identified by the 2-D plot and the crystal
symmetries readily apparent; uniaxial strain leads to the k-space reflections
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moving away from the origin reducing their intensity, a rotation causes the
reflections to move on the surface but the number remain the same, while a
phase transformation changes the pattern drastically. Although some infor-
mation is lost from the 3-D to 2-D representation the huge computational
speed up allows this per-atom quantity to be calculated for millions of atoms
within minutes.

Previous work has taken linear slices through reciprocal space in order to
visualise changes in the PASF, but has required a-priori knowledge of the
deformation mechanism to determine where to slice the data; our method
is more general and more lenient. However, the lengths of the three semi-
principal axes of the ellipsoid must still be defined in advance; these should
be chosen to intersect as many of the reciprocal space reflections as possible
and intersect the outer vertices of the second Brillouin zone. For an initial
bcc structure this is given by ak = bk = ck = 2π

√
2
a
, for fcc it is given by

ak = bk = ck = 2π
√
3
a

and for hcp it is given by ak = bk = 2π 4
3a

and ck = 2π 2
c
.

In each case a and c are the lengths of the unit cell in real space and ak,
bk, ck the lengths of semi-principal axes in reciprocal space. The inclusion
of the factor of 2π is related to the definition of the reciprocal lattice. It is,
of course, possible to perform the analysis for multiple distinct ellipses (e.g.
fcc, bcc and hcp) in cases where the crystal structure is unknown in advance
and compare the results to aid in structure identification.

It should be noted that although the ellipse is defined in terms of the
initial lattice parameters it is generally not necessary to dynamically alter
the ellipsoid during deformation. This is in part due to the broadening of the
peaks in reciprocal space which is inversely proportional to the radius of the
real space sphere over which the PASF is calculated. Since here the real space
radius is extremely small, 4 Å in this case, reciprocal space blurring ensures
even large deformations of up to 20% can be identified on the ellipsoid, see
Fig. 1. Although allowing the ellipse to dynamically deform per atom could
allow for easier identification of crystal structure, removing any dependence
on compression or rotation, however, it would introduce difficulties regarding
correspondence between different atoms and increase computational require-
ments. Future work could extend the method introduced here in this way to
increase the generality of the method.

2.1. Projection onto Spherical Harmonics

Taking only an ellipsoidal slice of reciprocal space affords a computational
speed up over calculating the full 3-D PASF. Furthermore, by projecting
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Figure 2: Examples of the spherical harmonics utilized in this work, where Y
m

1
and Y

m

3

have been omitted for clarity. The magnitude of the spherical harmonic is shown as
distance from the origin with positive values yellow and negative values blue. The Y

−3

4

and Y
3

4
harmonics are sensitive to lattice rotations, while the harmonics with degree m=0

characterize uniaxial compression.

the 2-D PASF onto the set of spherical harmonics, defined as the angular
portion of the solution to Laplace’s equation, produces a series of coefficients
characterizing the lattice deformation. The set of spherical harmonics form
a complete set of orthonormal functions, however here we make use of the
first 25, projecting the 2-D PASF onto only these (see Fig. 2),

cml =
1

N

∫

Ω

S(θ, φ)Y m
l (θ, φ)dΩ (2)

resulting in a series of coefficients, cml , which can be used to characterize the
lattice and discriminate between various deformations. Here, S(θ, φ) is the
2-D PASF, Y m

l (θ, φ) the spherical harmonic with order l and degree m and
N a normalisation factor equal to

∫

Ω
S(θ, φ)dΩ.

Due to the symmetrical nature of both the spherical harmonics and of
reciprocal space, the resultant coefficients are close to zero for most perfect
crystals and identically zero for odd order harmonics. As deformation and
symmetry breaking occurs, however, they can gain large finite values. Table
1 gives the values of these coefficients calculated for an atom at the centre of
a lattice undergoing the idealized deformation cases shown in Fig. 1. While
not all coefficients demonstrate large sensitivity to crystal changes it can be
see that c−3

4 and c34 are particularly sensitive to lattice rotations around x
and y, while the coefficients with degree zero help to characterize uniaxial
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Table 1: Values of the projected spherical harmonics for the prototypical crystal deforma-
tion given in Fig. 1. Values are given for a standard bcc lattice, 20% uniaxial compression
along z, a lattice rotation consistent with the {112}<111> twin system in a bcc material
and phase transformation to a hcp structure. The value of each coefficient is given to 2
significant figures.

bcc bccuc bccrot hcp
c00 10.4 6.5 10.2 4.7
c02 0.0 -2.8 0.0 -0.8
c−3
4 0.0 0.0 -3.1 0.0
c04 -4.0 3.0 2.6 -1.5
c34 0.0 0.0 3.1 0.0
c44 -3.4 -8.1 -0.1 -0.2

compression along the z axis, typically aligned along the shock direction.
Inspecting the spherical harmonics in Fig. 2 demonstrates that this is due to
the negative or low equatorial values and increasingly positive or large values
towards the polar regions.

The set of spherical harmonic coefficients can then be used to either
visualize or classify the MD simulation on a per-atom basis. This results
in a clear identification of each region of the crystal and of the different
deformation mechanisms present.

The current algorithm, implemented in MATLAB, is able to compute
the first 25 coefficients at a rate of approximately 1000 atoms per second per
CPU core. The algorithm demonstrates an almost linear scaling with number
of cores (t ∝ n−0.8) and number of atoms (t ∝ n0.94). See supplementary
information for further details.

3. Examples

In order to demonstrate the flexibility of the method we investigate two
trial systems that represent challenging deformation mechanisms to identify
and visualize with current standard techniques. The first is deformation
twinning in Ta where the crystal structure remains constant but the lattice
undergoes a rotation during deformation-induced twinning. The second is
the α to ω phase transformation in Ti which cannot currently be identi-
fied with standard real space techniques. All simulations were performed in
the LAMMPS code[26] and visualized using the OVITO visualization and
analysis software for atomistic simulation data[27].
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T0 = 0 K
(a)

T0 = 1000 K
   (b)

 (c)

[001]

[010]

[100]

Unshocked Twin 1 Twin 3Twin 2 Twin 4

Figure 3: The results of an MD simulation of Ta with a piston velocity of 0.8 km s−1

using the extended Finnis-Sinclair potential with an initial temperature of (a) 5 K and
(b) 1000 K. The shown sample is 462 × 462 × 6605 Å3 and contains approximately 70
million atoms. The top visualization is colored according to standard CNA techniques
(bcc - blue, hcp - red, Uncategorized - white) while the bottom figure shows the results of
categorization based upon the spherical harmonic coefficients c−3

4
and c

3

4

detailed in the text. Blue represents the un-twinned orientation with green,
red, cyan, and yellow denoting the twinned orientations. Equirectangular
projections of the ellipsoid surface for the un-twinned and four twinning
categories are shown in (c).
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3.1. Deformation Twinning in Tantalum

We present large scale MD simulations of shock compressed Ta using the
extended Finnis-Sinclair potential[28, 29, 30]. As shown previously, for shock
waves propagating along the [001] direction at pressures above the Hugoniot
elastic limit, stress relaxation occurs through deformation twinning[20, 31].
Although previously studied, here Ta acts as an example where current visu-
alization techniques either fail or require significant input to differentiate be-
tween each of the four {112}<111> twin regions. Previous work has utilized
the concept of the PASF represented through planar sections of reciprocal
space to identify the four different twin states, however a-priori knowledge
of the twin systems was required. While this requirement was justified in the
case of deformation twining, which obeys specific orientation relationships
between parent and twinned crystals, this is not necessarily the case for all
structural transformations.

The utilized extended Finnis-Sinclair potential does well to reproduce
the zero pressure phonon dispersion curves and the high pressure elastic con-
stants, as well as having excellent agreement between the experimental and
simulated shock Hugoniot. Samples of 140×140×2000 cells (462×462×6605
Å3) were initially thermalized to 5 K and 1000 K before being driven by
a reflective wall piston along the [001] direction with a fixed velocity of
Up = 0.8 km s−1, generating pressures in excess of the single crystal HEL
for this potential (∼50 GPa[20]). It should be noted that this value is far
in excess of the HEL of both polycrystalline[32] and single crystal[33] Ta.
Thus, it should be used as an opportunity to discuss deformation twinning
mechanisms and demonstrate the technique rather than for use as a predic-
tive tool. Periodic boundary conditions were chosen for the two transverse
directions. The low starting temperature of 5 K ensures twinning remains
the dominant deformation mechanism while the 1000 K simulation is used
to demonstrate the robustness of the method at high temperatures.

Adaptive common neighbor analysis[19] was performed with the visual-
ization tool OVITO[27] and is shown in the top image of Fig. 3a. Due to
the sensitivity of the coefficients c−3

4 and c34 to lattice rotations we utilized
these to identify each of the four degenerate {112}<111> twin systems[34]
that exist in Ta. Each of the twins are characterized by the value of the co-
efficients being either both positive, both negative, positive and negative or
negative and positive. Values where the modulus of the coefficient was found
to be less than 0.5 were left uncategorized. The resultant coloring shown at
the bottom of Fig. 3 is similar to previous work but only required knowledge
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[110]

[001]

[110]

Figure 4: The results of an MD simulation of Ta with a piston velocity of 0.6 km s−1

employing a 5 ps ramp. The simulation utilized the Ravelo potential with an initial tem-
perature of 300 K. The shown sample is 231 × 233 × 3400 Å3 and contains 11,207,000
atoms. The top visualization is colored according to standard CNA techniques (bcc -
blue, hcp - red, Uncategorized - white) while the bottom figure shows the results of cate-
gorization based upon the spherical harmonic coefficients c−3

4
and c

3

4
detailed in the text.

Blue represents the un-twinned orientation with green, red, cyan, and yellow denoting the
twinned orientations.

of the equilibrium lattice constant. The common neighbor analysis identifies
the appearance of crystallites with the same crystallographic structure as
present ahead of the shock, however each of the four twin systems cannot be
uniquely identified. For the high temperature case shown in Fig. 3b the CNA
analysis performs even more poorly, particularly in the elastically deformed
region ahead of the shock. We attribute this to the effect of temperature and
lattice vibrations on the real space analysis, while the 2-D PASF technique
still adequately identifies each twinned region. A representative atom within
each of the twinned regions was chosen and Fig. 3c shows the equirectangu-
lar projection for the original lattice and each of the four twin states. The
similarity to the rotated lattice shown in Fig. 1 shows that these are rotated
bcc lattices with an orientation relationship in agreement with {112}<111>.

Quantitative information on the state of the system can also be extracted
from the simulations. For example, twin volume fraction can be computed by
combining the classification of twins with the volume of the particle’s Voronoi
cell calculated through OVITO[27]. The resultant twin volume fractions are
given in Table 2 and are consistent with previous high volume fractions found
for the Finnis-Sinclair potential [20]. Variation in the twin volume fraction
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[1010]

[1210]

[0001]

c2
0

CNA

0 7

0.7

Figure 5: The results of an MD simulation of Ti with a piston velocity of 0.75 km s−1

using the Trinkle potential with an initial temperature of 30 K. The shown sample is
147 × 234 × 2556 Å3 and contains 5012500 atoms. The top visualization is coloured
according to standard CNA techniques (bcc - blue, hcp - red, Uncategorised - white) while
the bottom figure shows the coefficient of the Y

0

2
spherical harmonic. Each region (A -

un-shocked, B,C - uniaxially compressed, D - 90◦ lattice rotation, E - phase transformation
to ω) is clearly visible while the full 3-D PASF aids in phase identification. The red, green
and blue coloring has been chosen to enable the reader to more easily compare the different
deformation mechanisms.
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obtained by increasing and decreasing the radius of the PASF sphere by
1 Å are denoted by the sub- and superscripts in the table. We find little
variation by increasing the sphere radius above 4 Åwhile larger variation
occurs when decreasing to 3 Å due to a reduction in the number of atoms in
the sphere.

We also demonstrate our method with a potential that predicts a substan-
tially lower twinning fraction by utilizing the Ta1 potential created by Ravelo
et al.[31]. A Ta crystal 231× 233× 3400 Å3 in volume and consisting of ∼11
million atoms was thermalised to 300 K. Following the procedure detailed in
[31] the crystal is shocked along the [110] direction with a piston velocity of
0.6 km s−1 initiated with a 5 ps ramp. A snapshot of the simulation taken at
60 ps was analyzed with the SH method and the CNA technique, see Fig. 4.
In agreement with previous work we find twin nucleation at the shock front
and twins that rapidly thicken and grow. However, in contrast to the Finnis-
Sinclair potential, only two twin orientations are present and a significantly
lower twin volume fraction of 13.5% is found. This calculated twin volume
fraction is more similar to that found in nano-indentation experiments on
Ta[35].

Table 2: Values of the twin volume fraction (%) in shock compressed Ta using the ex-
tended Finnis-Sinclair (FS) potential initialized at 0 K and 1000 K and the Ravelo potential
initialized at 300 K. The twin volume was calculated by combining the classification mech-
anism defined in the text with the volume of each particle’s Voronoi cell. The sub- and
superscripts denote the variation in the result with varying the sphere radius from 4 Å to
3 Å and 5 Å respectively.

Twin Variant FS0K(%) FS1000K(%) Ravelo300K(%)

1 15.1−0.6
−1.2 21.7−0.3

−1.9 0.0+0.0
−0.0

2 26.8−0.1
−1.3 22.4−0.2

−1.9 0.0+0.0
−0.0

3 16.6−0.4
−1.3 19.8−0.3

−1.7 4.2+0.1
−0.3

4 28.7−0.1
−1.5 21.7−0.2

−1.9 9.3+0.0
−0.6

Total 87.2−1.2
−5.3 85.6−1.0

−7.4 13.5+0.1
−0.9

3.2. Twinning and Phase change in Titanium

Secondly we present large scale MD simulations of shock compressed Ti.
Ti is a group-IV hcp metal which undergoes an α (hcp) to ω (hexagonal)
phase transition at high pressure. This phase transition has been exten-
sively studied both computationally and experimentally and, when using the
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Trinkle potential[36, 37], the phase transition proceeds through a collective
deformation mode, namely a 90◦ lattice rotation that does not conform to
any known hcp twin systems. Furthermore, the ω phase can be difficult to
identify with standard techniques such as common neighbour analysis. Here
we show that the c02 spherical harmonic coefficient is able to identify the elas-
tic compression, lattice rotation and phase transition in a single parameter
and that the 3-D PASF allows easy identification in each region.

Simulations of 50 × 50 × 500 cells (147 × 234 × 2556 Å3) containing
5012500 atoms were initially thermalized to 30 K before being driven by
a reflective wall piston along the [101̄0] direction with a fixed velocity of
Up = 0.75 km s−1. Periodic boundary conditions were chosen for the two
transverse directions. The top image in Fig. 5 has been colored according
to adaptive common neighbor analysis while the bottom figure is coloured
according to the c02 spherical harmonic coefficient. Five distinct regions are
clearly identified. A representative atom in the centre of each region was
selected and the 3-D PASF is shown. The initial un-shocked sample (re-
gion A) has the characteristic PASF for a hcp lattice, a hexagonal pattern
interspersed with a central line of points. Initially the sample undergoes uni-
axial compression along the shock direction; this compression in real space
manifests as an expansion in reciprocal space, the spots highlighted by the
isosurface move outwards (region B). Secondly the 90◦ lattice rotation occurs
from region B to D, resulting in a 90◦ reflection of the PASF about the kx
axis, although regions of un-rotated sample at a higher compression remain
(region C). The final deformation mechanism is a phase change from α to ω

(region E). The ω phase is identifiable by a central point surrounded by a
hexagon of neighboring k-space points, while for the hcp lattice the central
point is offset. The phase transition here is consistent with the orientation
relationship found in previous work[38, 39]. Each region is clearly identified
by the c02 spherical harmonic coefficient.

4. Conclusion

An extension of a technique for identification of both elastic and plastic
deformation in molecular dynamics simulations is presented. In agreement
with previous work, the full 3-D per atom structure factor, although compu-
tationally intensive, is shown to easily identify elastic deformation, twinning
and phase changes, even at high temperatures and with the large defect
concentrations present in high-rate deformation. A faster and less compu-
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tationally intensive method based around taking a 2-D ellipsoid slice of re-
ciprocal space was shown to retain a significant portion of the information
contained in the 3-D counterpart and furthermore could be projected onto
the set of spherical harmonics to provide a numerical value for classification
or visualization.

The method was demonstrated on two test cases. In shock compressed
Ta each of the four {112}<111> twin systems were able to be visualized
using the spherical harmonics Y −1

1 and Y 1
1 . In shock compressed Ti the

same method but utilizing the Y 0
2 spherical harmonic was successfully able

to simultaneously visualize deformation regions corresponding to uniaxial
elastic compression, lattice rotation and the α to ω phase transition.

The robustness and speed of this method suggest that building both the
2-D PASF and 3-D PASF into existing MD visualization software or post-
processing tools would be beneficial to those studying shock deformation.
Future work involving modifying the ellipsoid dynamically would improve
generality of the model. Furthermore, the reduction of information from
the 3-D PASF, to the 2-D PASF and finally the set of spherical harmonic
coefficients could one day be used together with machine learning algorithms
to aid in identification of lattice deformation mechanics.
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