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Abstract—Bayesian recursive estimation using large volumes based particle flow (DHF) together with the SMCMC. We
of data is a challenging research topic. The problem becomes propose an initial measurement clustering, after whichdle
particularly complex for high dimensional non-linear state spaces.  homotopy flow is applied. The samples after the flow are as-
Markov chain Monte Carlo (MCMC) based methods have been — gymed to be approximately in the vicinity of their true poiste
successfully used to solve such problems. The main issue whe |ocations, though not exactly there. Hence, they can form an
employing MCMC is the evaluation of the likelihood function exceIIent’proposaI to be used within the Sut;sequent cordiden

at every iteration, which can become prohibitively expensie to : - ;
compute. Alternative methods are therefore sought after taover- sampling driven MCMC procedure. The main purpose of the

come this difficulty. One such method is the adaptive sequeial  |ast step is to profit from the convergence guarantee thaesom

MCMC (ASMCMC), where the use of the confidence sampling is associated with later procedure. In this way, we essentiall

proposed as a method to reduce the computational cost. The ile~ bring the strength of both methods under one banner.

idea is to make use of the concentration inequalities to susample . )

the measurements for which the likelihood terms are evaluagd. The paper is organized as follows. The problem formula-

However, ASMCMC methods require appropriate proposal disti- tion and the possible approaches for big data processing vis

butions. In this work, we propose a novel ASMCMC framework ~ SMCMC are highlighted in section II. This is followed by

in which the log-homotopy based particle flow filter form an  section Ill, where the probabilistic subsampling i.e. coefice

adaptive proposal. We show the performance can be significdly  sampling methodology is discussed in the detail. Potential

enhanced by our proposed algorithm, while still maintainig 2 jssyes with the choice of proposal distribution for SMCME@ ar

comparatively low processing overhead. mentioned in section IV. The use of DHF together with the
Keywords—Particle flow filters , Log-homotopy , DHF , big data, data clustering to form a better proposal is also advocated i

SMCMC, Confidence sampling, Multiple target tracking. the same section. In section V, we describe our newly devised

DHF based confidence sampling driven SMCMC algorithm.

Mathematical models and simulation setup for the test seena

.- INTRODUCTION used in evaluation of the new scheme are presented in sectiol

considered as a ”big data” pr0b|em_ It faces serious CompuV”, which is followed by the conclusion in section VIII.
tational challenges, in particular for numerical methoiéte |

sequential Monte Carlo (SMC) and sequential Markov chain

Monte Carlo (SMCMC). The problem can be pinpointed to [I.  BIG DATA PROCESSING USINGMCMC

the computation of the likelihood term, or its derivatives
which become the bottle neck. Dimensionality reduction may,
be employed, for example through data clustering, but it i
unclear whether the samples generated thereof still belong
the true posterior distribution. An interesting soluticastbeen
provided in [1] based on an earlier work done in [2], where
probabilistic subsampling also termed as tomfidence sam-
pling has been employed to reduce the number of likelihoo
evaluations in the context of SMCMC. A major benefit of this

approach is that it comes with a theoretical guarantee déugr P(Xt1|Z1) = /p(xk+1|xk)p(xk|zk)dxk (1)
the generated samples, i.e. the sampled distribution ligsnw
a user specified tolerance of the true posterior distributian
the other hand, the use of a better suited proposal distibist P(Xp41|Zk+1) = P2 X1 JP (X1 |Z5) (2)
one of the key requirements for the algorithm. While for some p(Zr+11Z)

problems the selection of the proposal could be straigivdicd  In the case that all measurements are independent, the likel
e.g. for moderately nonlinear or Gaussian models, for agtherhood can be written as,
the choice may not be that obvious.

Let x; € R? denote the state vector azg € R™ denote
he measurement vector at tirkeFurthermore, leZ; denote
he set of measurements up to tikéncluding z;, such that,
Z, ={z1, 2, ... , Z }. Then according to the Chapman-
Kolmogorov equation and the Bayes theorem, the prior den-
sity p(Xk+1|Zx) and the posterior density(Xy11|Zx+1) are
decursively defined as,

M,

In this paper, we present a novel approach for the Bayesian P(Zes1Xki1) = [ [ P2 Xes1) 3)
processing of the big data by combining the log-homotopy i=1



where M}, is the number of measurements present at tkme original chain also has the said property. Most importantly
For big data,M; >> 1. An exact closed form solution of (1) the algorithm provides a theoretical guarantee that the- sam
and (2) is generally not available for nonlinear systems. pled density is with theO(d) of the true posterior density

. . X Z . The disadvantage of the approach is that the
Markov chain Monte Carlo methods were invented top( kt1|Zkt1) g bp

. . . o evaluation of the stopping criterion is based on a measure of
simulate the dynamics of gaseous systems in equilibrium [3h,o yange of the log-likelihood ratio set, which except fewf

X , . : Simple cases requires likelihood calculation for the wiiznéa
literature as an alternative to the importance sampling fOket ~Concentration inequalities are therst caseassurances
sampling higher dimensional spaces. SMCMC, as used in thg; they carry with them an additional processing cost. &inc
target tracking application [4],[5] and [6].differs fromM& 0 meihod wtilizes a confidence bound, it is termed as the

in that they do not sample from the posterior distribution qnfijence sampleNext, we briefly mention the highlights
directly. Instead, at each time instari¢e stationary, reversible ¢ 1o ~onfidence sampling procedure.

jump, Markov chain is constructed through a Markov trapsiti
kernel ¢(x;_ ,IX¢.,). The kernel is also referred to as the =~ We begin with the formulation of the Metropolis Hastings
proposal. The chain is started at an arbitrary location and istep for proposing a hew sample in a MCMC chain,
continuously lengthened by appending samples. The chain is

* m—1|y%
assumed to have the posterior distributig®y.1|Z;+1) as its P12 1) XGg 1) 4)
stationary distribution. Every new sample generated thinou p(x’g;l|Zk+1)q(x,*€+1|x;”+*11)

the proposal distribution is either accepted or rejectedetd

on the Metropolis Hastings procedure (MH). whereu € U[0,1], ¢(.].) is the proposal distribution while:

is the chain iteration index. Now assuming that the liketitio
Big data describes the situation where a large number ofan be decomposed into individual terms i.e. assuming inde-

observations / measurements are available to be processedpandence of the measurements (3), we can re-write as (2),

any time instant. This can occur in several situations. & th

most typical scenario, big data could arise in the trackihg o " P51 1Z1)a (K 1 X5 1 1) H P(Zy 1 X5 1) 5)
a single or multiple target(s) using the measurements gadhe P(XZZF1|Zk)Q(XZ+1|X2n+]1) - p(z;‘€+1|xgz+1)

through a multitude of sensors. Examples are bearing only
estimation in the presence of clutter [7], and in the presencFurther manipulation of the equation leads to,
of position biases and offsets [8]. Alternatively, big datn mo ook A (X X 6
occur when the tracked target(s) can no longer be modelled as X1 Xegr) <Anr(Xiyr, X)) 6)
point source object(s) due to the enhanced sensor resalutioyhere,
for example in the case of extended object tracking [9]. © 7 mlos
The presence of big data can render the employment of YO LX) = il { P k>‘1(xk+1|xk+1)}
traditional state estimation methods like EKF/UKF inadztgy T M PO 1Z8) g (X1 X7 1)
while other methods like SMC and SMCMC could simply be LM Pz X )
computationally too expensive. Apr (X1 X)) = i Zlog [W]

i=1 k+11"7k+1

MCMC processing for big data has been a subject of
continuing research. The proposed methods can largely bEhe left side of the inequality is independent of the dataijavh
categorized into two main classes. The first class of method&e right hand side exclusively depends on the measurements
uses the so called divide and conquer approach, where meWe define the average log-likelihood ratio using the fulladat
surements are divided into non-overlapping batches orkbloc set asA,,. When using a subset of measurements of aizg
to be processed by individual processers. Divide and canquéhe average log-likelihood ratio can be defined as,

methods, though quite simple in terms of tractability and M ; .
implementation, rely on the underlying Gaussian assumptio An = P(Zj 1 1XGs1) 7
for the data. Their performance degrades when the assumptio ™ Npm P p(Z};+1|XLn+711)

of local Gaussianity is violated. The other class of methods o o ) .
uses the idea of subsampling or decimation of the measutemefoncentration inequalities can be used to define to obtain a
set, such that the MCMC is only applied to a subset of thdound on thedy, .

whole data. PO ) = A (61 X )] < o) 2 1=
I1l. CONFIDENCE SAMPLER PROBABILISTIC wheredy,, is a used-defined threshold (probability) asnd,
SUBSAMPLING WITHIN MCMC FRAMEWORK is dependent on the particular form of inequality used. is th

i . ) work, we useBernstein’snequality, as suggested in [2], which
An interesting approach has been proposed in [10], whergagyts in,

the probabilistic subsampling of the data has been intreduc
It relies on the use of the so callembncentration inequal- 2V, log(3 x 5&1) 3R1og(3 x 5&1)
ities, which provide a theoretical bound on the maximum c¢n,, = N - N -
absolute deviation of the average likelihood ratio. Thehudt m m
automatically selects a subset of the measurement datd base the formula aboveVy,, is the sample variance of the
on the evaluation of a stopping criterion. The MH accept-subsampled log-likelihood ratios arfdl is the range given by
reject decision is based on a user defined probabildy The the difference of the maximum and minimum log-likelihood
resulting Markov chain is uniformly ergodic provided thhet ratios. Now referring back to the standard MCMC method, we

9)




note that the accept-reject decision is based on evaluafion Algorithm 1 Confidence sampler with proxy
(6). The average log-likelihood ratio based on the wholadat ;. procedure CONFSAMPLER
set is not of our interest, instead, we would like to base our . Ny i1 = 0 > Number of subsampled measurements

decision ond,, (X}, 1, X; 1) Itresults in a stopping criterion 3. 4" =0 > Subsampled log-likelihood

[AN™ (x50 X 1) = (X1 Xy )| > e, This, whenseen 4. zx' =) > Set of subsampled measurements
in the light of the concentration inequality, can be intetpd 5: In=1 > Batch size
as taking_the right_dec_ision with probability at least - , if 6: i=0 > Loop counter
the stopping criterion is met. 7: FLAG = UP > Flag variable
. B i

We start with the user-defined parameter € (0,1). & CETputeRktl_acco(;dmg to (13) > Range
The algorithm begins with an empty set for the subsam- % ~ While FLAG ==UPdo
pled measurement8;. At each iteration, measurements are 10: ! ‘N'm“;}ﬁl?* b 2
added to the subset and the stopping criterion is checked- {z.4 i ’i}c—&-l} o /repl. 1;;1\21%1
T?e data agﬁregation hSt?dpS as soodﬁféﬁm(x}fﬁl,xzﬂ) _h 12: Zi =25, U{z, "”“tl RPN L
Y(Xg' 1, Xp11)| > en,, holds true, or all measurements have ;.. 0 —siv PO 1) g m
been added to the s&,, 1, in which case the accept-reject de- e rpa T O Xi)
cision is based on the evaluation of the full data setGas1, 14 AN = 1 (Nimgks1 X AN, + 2)
we setdy,, = -Ei7i-d, which leads toXy,, ,>16n,, < 5. 15 Nrmk+1p= In

sk ’ . — Ps— -2
The event, ' 16: ON,, = oo O .
17: Compute ¢ according to (9)
&= n {lAI\/I (X;gn_t:lla Xlt+1) - ANm (in_;ll, XZ+1)| < CNm} 18: ZN = 'Y'rrbc7rchrrL,1§\}-1 A Mk-i—l
Non e 21 : = mo s
' (10) 19 if A, + 3 Y P X)) — v ()| > ¢

therefore holds with the probability of at leakt- dy,,. The or N,, » == M; then =t
range in (9) requires the evaluation of log-likelihoodeatfor 5. " FLAG = DOWN
the whole data set. While for some problems the range can;. end if

be computed straightforwardly e.g. in the case of a Gaussiag,. end while
likelihood, this is generally not the case. Thus any poénti 5. return Ay, , {2:i(X" |, X 1)}%;1
gain achieved by subsampling the data is lost. 24: end procedurg Tk

To alleviate the problem of the still high processing cost, a
approximate method is presented in [2] which makes use of the
so-calledproxies Proxies are supposed to be cheap to evaluate, [V. A BETTER PROPOSAL DISTRIBUTION FOR THIMH
but at the same time should approximate the actual liketihoo STEP
term sufficiently well. The resulting algorithm yields emipal . . .
gains, but still keeps the guarantees of the original scheme AS alluded to in the introduction, the log-homotopy based

Additionally, proxy terms act as control variate, therefor particle flow can be used to form a better proposal. This is_ ow-
reducing the variance of the estimates. ing to the fact that the flow incrementally moves the particle

towards their posterior locations by gradually incorpimgthe
The introduction of the proxy term leads to the modificationmeasurements. This helps to solve the issugegeneracyn a
of the termAy,,, standard estimation problem. DHF, if carefully implemehte
M i y can also be computationally cheaper than a standard articl
_ 1 PZa X)) | met s filter [11]. Hence, it comes naturally to use the particlesafu
ANm - Z log - m—1 yl(xk-ﬁ-l axk+1> P .
N, = P(Z 1 X0 ) the DHF to form the proposal distribution for the subsequent
(11) MCMC step. Below we describe some basics of the homotopy
l:E'Jased particle flow and its implementation methodology.

Amongst several choices available for the proxy terms, th

simplest is provided by the first order Taylor series expamsi )
[1], A. Log homotopy based particle flow

m—1 x* _ T * m—1
ZiX K1) = (VO ) O —x050) - (12) The whole procedure is shown as a pseudo-code in the

i ol Np e Np
where V¢ is the gradient of the log-likelihood and the Algorithm 2. Here{x;,}; ", and{x; .}, are the set of
linearization is carried out about some poit,,. This leads ~Prior and posterior particles, respectively. We plan to use

to the following form of the range the DHF based approximation of the posterior density as
5 ’ the proposal distribution in the confidence sampler based
Ry, =2 lg%{le(xZﬁ) = Br(Xi4 1)} (13)  SMCMC i.e. q(Xx41].) ~ ppmr(Xes1|ZF+1). We follow the

implementation framework for the DHF as described in [11],
where Bi11(.) is the Hessian matrix of the log-likelihood. which can be consulted for more details regarding methods
Also, the maximum is taken of the absolute values of thdike shrinkage estimation, numerical integration of thewflo
difference matrix entries. The main advantage of using thequation and the redrawing. But before this can be done,
Taylor series based proxy is the ease in computation of ththere are two main issues to be resolved. The first one is the
proxy terms and the range measure R. The full confidencprocessing time for the DHF. As the main focus of the work is
sampling algorithm using proxies is described in the Aldoni  to propose a MCMC based method that can handle big data, the
1. dimensionality of the measurement space becomes a critical



factor here. As it can be noted [11], the nonzero diffusion V. SEQUENTIAL MCMC wITH DHF BASED PROPOSAL
constrained flow equation requires the Hessian of the log- FOR BIG DATA PROCESSING

likelihood function. A direct application of the DHF in a big
data scenario, therefore, can become prohibitively expens
The question becomes, how to use the DHF while maintainin

a reasonably low processing cost. One answer to this proble
lies in the decimation of the measurement set.

In [1], MCMC is used together with the confidence sampler
estimate a high-dimensional non-Gaussian state. Thalbve
ocedure is termed as Adaptive Sequential Markov chain
onte Carlo (ASMCMC). The algorithm is based on two main
steps: an initial joint drawing of th&;, x;_; with the target
density,

Algorithm 2 Log homotopy flow based measurement update

1: procedure LOGHOMOTOPYFLOWUPDATE
2: P41 = SHRINKAGEESTIMATOR(X;, , 1)

POk, Xk 11277 1) o p(Xk[Xr—1)p(Xk—11Zk—1) (14)
and a secondary refinement step redrawing both of these

3 fori=1:N,do variables individually. ASMCMC has three sub stages, edch o
4 Yo = Koy 1 which uses an MH step, with the first and the third employing
5: forj=1: N, do the confidence sampling since the likelihood evaluatioms ar
6: H = GETHESSIAN( log A (Zk|Y; 1) ) involved.
7 hy = GETGRADIENT( log h(zxy;_1) )
_ [a-1 -1 5 Algorithm 3 Adaptive SMCMC with particle flow based
& m(y,) = -[P. +AHa| i oroposal
1?)2- endy%o; Vi1 ¥ M) AN 1: procedure SMCMCWITHPARTICLEFLOW
11 g = 2. Initialize the particle{x}} ",
12 end ?o+r1 Y 3 for k =1 : kyae do
13:  Evaluate the posterior meaf,,; and covariance 4 z; = CLUSTERMEASUREMENTYZ; )
iy D 5 Z¢ = LIKELIHOODBASEDCOMPRESSIONZS )
matrix Py kT o It k
14 REDRAWPARTICLES({X, |} %) 6: {X@}zj-v:ﬁ = PRIORSAMPLING({X;._; };)
15 reum {x_ .}, ik s Prot 7 {Xi}i21 = LocHomoToPYFLOWUPDATE
16: end procedure 8 g(X;|Xj*) = GETPROPOSALDENSITY({X},};.";)
o: Markov chain Monte Carlo
10: Initialize the Markov chainx!
11: form=1:N.+ N, do

The second question relates with the finding of an an-1,.

. QU . ! if m=1VN, then
alytical approximation forpprr(Xx|Z"), for its subsequent 13

UPDATEPROXYPARAMETERS

sampling and evaluation in the ASMCMC procedure. 14: end if
15 X ~ a(xpx)
. m oyx) = 1 POGIZF N 1X5)
B. Data reduction 16 DO X) = g log [u BEHE=IE )

17: AN, {ﬂi(xg’b,xz)}fiﬂ =CONFSAMPLER
n

oMy, = ANnﬁi/f(XZn,XZ) + ML,C Z (@i(x}rcn’xz)
=1

if oar, >0 then

We tackle the issue of dimensionality reduction through
clustering. Clustering turns out to be quite effective neeah 18
dimensionality reduction. We ug€&-medoidsclustering, with

the partitioning done around medoids. A medoid is a point,. XM — x*

within a cluster whose average dissimilarity to all otheinp® : else

in the cluster is minimal, i.e. it is a most centrally located ... X — ym—1

point in the cluster. K-medoids clustering is said to be more,. end :“f k

robust to noise and outliers as compared to K-means clogteri ,,. end for

because it minimizes a sum of pairwise dissimilaritiesaasit . L »
of a sum of squared Euclidean distances. 25: PXK|ZT) = 75 >0 6(Xk —X},)

I
A

(2

26: end for
27: end procedure

C. Proposal density representation

As discussed before, the output of the DHF are the approx-
imated posterior samples, represented through the Deta-d
approximation. For it to be used as a proposal density withi
a MCMC step, it has to be further approximated by som
closed form probability density expression. As described i
[11], the redrawing step in the Algorithm 2 (step 14) retutives
approximated density either as a single multivariate Ganss
(MVG) or as a Gaussian mixture model (GMM). In the current  In the current work, we make a distinction from [1] in
work, we use a MVG approximated form for the proposalthat we specifically use a DHF based proposal distribution
density. within the sequential MCMC. Since all components have

Transitional density is used to form proposals distribngio

n the MH steps. ASMCMC has been shown to sample
osterior density reasonably well, with lesser executioret
hen compared to the plain MCMC while still maintaining a

reasonable performance. The confidence sampling is the ke

in reducing the computational burden.



been described in the earlier sections, the task at hand is targets start at position (-50 , -50) and (30, 30), whereisiglin
embed all of them within a unified framework. We call the velocities for the two targets are given by (-0.1 , -0.1) and
scheme Adaptive SMCMC with particle flow based proposal0.1 , 0.5) respectively. We consider 100 particles for DHF
or ASMCMC-DHF. It is described in the Algorithm 3. The N, = 100 and 30 geometrically spaced pseudo-time points
optional secondary level data compression method is based dor solving log-homotopy flow ODE. We use root average
choosing the most likely samples from the set of the preWyous mean square error (RAMSE) as the performance metric. We
clustered measurements. simulated each scenario a total of fifty time¥(,, = 50),

VI. MODEL & SIMULATION SETUP with each simulation running for a total of 50 time steps. The

In order to test the performance of our algorithm, Westandard parameter setting are shown in Table I.

consider a multi-target tracking scenario in the preserfce o VIl. RESULTS

clutter, similar to the one used in [1]. However, as a distntg '

we use a nonlinear measurement model. Observations are \We compare the performance of our proposed ASMCMC-

generated by a sensor located at the origin and consist géran DHF scheme against other methods. In the current analysis,w

and bearing of the targets. The state vector for the tdarget have used two such methods: the sampling importance re-

time instank is x,(f) _ (méi),yl(ci)7$l(€i), y-(i)), Wherea:g) andy,(f) sam_pling particle filter (SIR-PF) with 1000, 10900 qnd 250_00

represent the position white® and 6 representing velocit particles, and the ASMCMC method as described in [1] with
P p k Yp ' rep 9 Y 500 and 1250 MCMC chain lengths. The effort is made to

gogin'spc?gteent/\slh?tlgr;%itsleaﬁ C%Tgri}gﬁ'?nfjge(%w&lﬁ)wgi:s:ldv"}ﬁake the comparison fair, in the sense of similar execution
' Simes for all procedures. Simulation were run on a servergisi

are considering a big data scenario, multiple measurerpents ATLAB version 7.9 with 2x Intel Xeon E5530 2.40 GHz
target are generated. The number of measurements perstargﬁ ocessors and witH 12GB of RAM. In figures 1 a&b, we plot

ga%i%g?]slgetrﬁg ttgr beet fgtljrsr?sn ?r:setrrzlab:trzdcmgthe rlnrtqegggz;t;ne the RAMSE for all schemes under comparison together with
9 ’ the Cramer-Rao Lower Bound (CRLB),

whose number at any time instance is also Poisson distdbute

with intensity \.. Furthermore, target-data association is not

assumed to be known, but we do not use any data association

algorithm. This is justified as the main purpose of this wark i
to test the efficacy of the use of DHF together with ASMCMC. 3l == AseE 8z
The total number of measurements received at the time in- ) e
stancek is given by, = NpMP 4+ My, whereM ! represents

the number of measurements per target (considered same foi

all targets) andV/¢ the number of clutter measurements. The

joint likelihood can then be expressed as,

_ My, Nt
e~ _ : o ‘ ‘ ‘ ‘
1060 = S TT |Mepe(@i) + 0 oozl | @5) 0w S a0 s
i=1 j=1

The measurement vector for the targdas given bysz) =

(r'",6\")), wherer("” is the range to the target while” e
is the target bearing and with the sub-likelihood getting Y |y
the form po(z;|Xk;) = p3’ = N(Zy|h(Xk;),Re), with = e

, . 1.5
h(xx,;) = [ [Tk T Yk, tan™! (%gl and R, being the ENE
measurement covariance matrix. e clutter measurements 1

are independent of the target measurements and are though }
to be uniformly distributed within the surveillance area. i. 0.5 [
pe(Zy) = Us (121, 20,0) Uy (120,15 28,0)- / ‘ ‘ | ‘
© 10 20 30 40 50
Parameter Value Parameter Value Parameter Value Timel[k]
N, 100 Nonome 400 Nyurn Noneme/4
Ymeme 15 Os 0.1 Ps 2 (b)
Ts 1 Az 50/500 M. 200/2000
oz 05 oy 10 o 0.01 Figure 1: Comparison of ASMCMC-DHF with other schemes
Ameos  400x 400 Toim 20 Kerus 30 for (a) A, = 50, A.=200, (b)\, = 500, \,=2000
Table I: Parameters while a tabulated description is provided in the Table II.

We consider tracking of two targetgv{=2), under two  SIR-PF with 1000 particles exhibits the largest RAMSE, show
separate conditions: a moderately big data scenariowi#b0 ing a degree of divergence towards the end. This reflects the
and)\.=200, and an extremely big data scenario with= 500 inadequacy of the number of samples to properly approximate
and ). = 2000. In the subsequent analysis, we will refer to thethe involved densities. The approximation gets progressiv
former case as the BD1 (big data 1), while the later as BDdetter as more samples are added. As can be seen for SIR-P
(big data 2). We use K-medoids clustering with 30 medoidswith 25000 particles, the RAMSE for both cases (BD1 & BD2)
for the initial clustering of the measurement data. The twais not still close enough to the CRLB, thereby suggesting



Method RAMSE[m] | Acceptance rate | Compression ratio | Processg time[s]
SIR-PF-1000 2.42]1.57 - - 4.31/33.86
SIR-PF-10000 1.8/1.05 - - 57.27/324.52
SIR-PF-25000 1.73/0.82 - - 144.02/676.21
ASMCMC-500 2.10/0.98 0.27/0.20 1.01/2.01 128.07/486.29

ASMCMC-1250 1.52/0.70 0.25/0.18 1.05/2.57 372.48/1239.4
ASMCMC-DHF-125 2.19/1.18 0.27/0.22 1.97/2.42 42.92/84.2
ASMCMC-DHF-500 1.24/0.54 0.24/0.21 2.52/2.69 77.14/879.
ASMCMC-DHF-1250 1.17/0.49 0.23/0.21 2.67/2.77 125.11/47

Table I1I: Median RAMSE, Acceptance rate and Compression fat different filtering schemes under BD1/BD2

potential improvements to be gained by further increadiig t be interesting to use non-Gaussian measurement noises, e.g
number of particles. The error for BD2, naturally, is lesban  Gaussian mixture to model the range ambiguity.

for BD1. Next, we discuss the results for ASMCMC. Again,

we note a significant drop in the RAMSE by the increase of
MCMC chain Iength from 500 to 1250. ASMCMC-500 seems We acknow|edge the Support by the EU’s Seventh Frame-
to have performance similar to the SIR-PF-10000, while With\NOI’k Programme under grant agreement no 607400 (TRAX
increasing the chain length to 1250 makes performanceaimil - Training network on tRAcking in compleX sensor systems)
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to that of the latter with 25000 particles. The differencquste
noticeable in the RAMSE for the two schemes in the case of
BD1. Although, ASMCMC based schemes exhibit quite decent
median acceptance rate they have rather insignificant esnpr
sion ratio. This means that to achieve better performamee, t [1]
whole data needs to be exhausted therefore defeating thie ver
purpose of using the confidence sampling. Next, we discus§2]
the results for ASMCMC-DHF. It is to be noted that 20% of
the initial samples of the chain are considered to be from the
burn-in phase and subsequently discarded. For a chainhlengt
of 125, we note that the error is quite high, only slightlydwel  [3]
the SIR-PF-1000. This illustrates that although the chisge
based DHF proposal is better than a simple particle filteth wi

a too short MCMC chain could be detrimental to the overall
performance. We note drastic reduction in the error with the
use of a moderate chain length of 500. Finally, we discuss
the processing time for a single update step (both time and
measurement) for all procedures. SIR-PF-1000 is the fastesls]
of all methods, while ASMCMC-1250 being the slowest.
The latter is because of the double use of the confidence
sampling. Furthermore, we note that the SIR-PF-25000 and
the ASMCMC-DHF-1250 have execution times comparable to (g
that of the ASMCMC-500, although the latter has higher error
ASMCMC-1250, can be seen as the most optimal method
offering a right trade-off between the estimation accuraag

the execution speed.

(4]

[7]
In the retrospect, it can be seen that the choice of the

proposal density quite significantly affects the perforoean

A better choice for the proposal, e.g. using DHF particles no (€

only decreases the error, it also takes lesser time for sampl

the posterior density in the MCMC step. (9]

VIIl. CONCLUSION
[10]

A large number of measurements provides a high informa-
tion content, leading to an increased estimation accukmy-
ever, this comes with enhanced computational requirements
hence limiting the use of many standard estimation methodsg1l
such as MCMC. In this work, inspired by ideas from [1], we
propose con?dence sampling based MCMC within the log-
homotopy based particle ?ow ?lters. The log-homotopy filter
is used to construct adaptive proposals. We have termed our
newly proposed method as the Adaptive SMCMC with particle
flow based proposal or ASMCMC-DHEF. It has been shown that
our method not only outperforms the well established method
like the particle filter, but also performs better than itsgues
algorithm, ASMCMC. As a future work, we would like to
derive theoretical bounds for the new algorithm. It woulsoal

http://www.trax.utwente.nl/.
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