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Abstract 

Myogenic regulatory factors (MRFs) are known to have essential roles in both the establishment and differentiation 

of the skeletal muscle cell lineage. MyoD is expressed early in the Xenopus mesoderm where it is present and active 

several hours before the activation of muscle differentiation genes. Previous studies in cultured cells and in Xenopus 

laevis have identified sets of genes that require MyoD prior to differentiation of skeletal muscle. Here we report 

results from experiments using CRISPR/Cas9 to target the MyoD gene in the diploid frog Xenopus tropicalis, that are 

analysed by RNA-seq at gastrula stages. We further investigate our data using cluster analysis to compare 

developmental expression profiles with that of MyoD and -cardiac actin, reference genes for skeletal muscle 

determination and differentiation. Our findings provide an assessment of using founder (F0) Xenopus embryos from 

CRISPR/Cas9 protocols for transcriptomic analyses and we conclude that although targeted F0 embryos are 

genetically mosaic for MyoD, there is significant disruption in the expression of a specific set of genes. We discuss 

candidate target genes in context of their role in the sub-programs of MyoD regulated transcription. 
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1. Introduction 

 

The MyoD family of bHLH transcription factors are well studied developmental regulators that provide a paradigm 

for how cell lineages are determined during embryogenesis (Tapscott, 2005). The expression of these key 

transcriptional regulators is activated in specific cells in the developing embryo by local signals (Emerson, 1993), and 

effectors downstream of signal transduction pathways act on discrete enhancers present in MRF genes (Carvajal and 

Rigby, 2010). The activation of any one these master regulators is sufficient to drive skeletal muscle differentiation in 

many types of cultured cells (Tapscott et al., 1988; Weintraub et al., 1989) and this dominant activity is part due to 

the ability of these transcription factors to auto- and cross-activate each other’s expression (Thayer et al., 1989; 
Weintraub et al., 1989). 

 

During myogenesis, proliferative myoblasts exit the cell cycle and fuse to form multinucleated myotubes; at the 

same time the transcription of contractile protein genes is co-ordinately activated. MyoD and Myf5 have overlapping 

roles that are required for the early commitment of cells to the myogenic lineage, while MRF4 and Myogenin play 

later roles in myoblast fusion and differentiation (Kaul et al., 2000).  Using cell culture based models of myogenesis, 

together with chromatin immunoprecipitation and transcriptomics, several sub-programmes of gene expression 

downstream of MyoD have been described and the transcriptional activity of MyoD in myoblasts prior to the 

activation of contractile protein genes during differentiation has been established (Bergstrom et al., 2002; Cao et al., 

2010; Gianakopoulos et al., 2011; Soleimani et al., 2013).  The outcome of these studies has been a detailed 

understanding of how the MyoD transcription factor targets genes for transcription, including its surprising 

widespread binding throughout the genome, preference for a specific E-box sequence, ability to modify chromatin 

and interact with other transcriptional regulators (Blum et al., 2012; Conerly et al., 2016; Fong et al., 2015).  

 

In vivo, skeletal muscle cells are derived from the mesoderm and in amniotes the MRFs are first expressed in cells 

of the early somite (Pownall et al., 2002). However, in frogs and fish the MRFs are expressed in the mesoderm prior 

to somitogenesis where MyoD and Myf5 genes are transcribed during gastrula stages (Hopwood et al., 1989; 

Weinberg et al., 1996) and in Xenopus, the MyoD protein has been localised to the nascent mesoderm by 

immunohistochemistry (Hopwood et al., 1992). Xenopus laevis MyoD has been shown to be required for the early 

expression of a set of genes during gastrulation, prior to any activation of contractile gene expression (Maguire et al., 

2012). This study took advantage of the time window during Xenopus development where the embryo expresses 

MyoD protein, but myogenic differentiation has not yet begun. Isolating a similar timepoint in amniote embryos 

would be difficult due to the relatively few myoblasts in the early somite expressing MyoD/Myf5, and the rapid 

rostral to caudal progression of myogenic differentiation. Therefore, the frog embryo provides a vertebrate model to 

investigate the requirement for MyoD transcriptional activity prior to myogenic differentiation in vivo.   

 

CRISPR/Cas9 protocols are particularly effective in Xenopus (Liu et al., 2016; Shigeta et al., 2016): synthetic guide 

RNAs (gRNAs) are transcribed in vitro and co-injected with Cas9 protein directly into to the one-cell embryo, 

circumnavigating any delays from transcription and translation inherent to plasmid based protocols used in other 

systems. Here we used CRISPR/Cas9 to target the MyoD gene in the diploid frog Xenopus tropicalis and analysed 

gene expression at gastrula stages by RNAseq. We show that founder embryos targeted for MyoD, while genetically 

mosaic, show specific disruption in the expression of genes previously identified as MyoD targets. We further classify 

sets of genes identified in our RNAseq analysis according to their expression profile during normal development. This 

study provides an insight into the earliest genetic targets of MyoD in vivo, as well as an assessment of founder 

embryos derived from genetic targeting using CRISPR/Cas9 protocols and their usefulness in transcriptomic analyses. 
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2. Results  

 

2.1 Gene targeting X. tropicalis MyoD using CRISPR/Cas9 

Detecting genetic disruption of MyoD in embryos 

Xenopus tropicalis is a diploid frog and, as such, genetic methods are simplified using this model. We targeted X. 

tropicalis MyoD (Fisher 2003) using CRISPR/Cas9 in order to identify genes that require MyoD for their expression in 

the early mesoderm, prior to myogenic differentiation.  A synthetic guide RNA (gRNA) was designed against a 

sequence in exon 1 coding for the amino terminal part of the bHLH domain, and injected this together with Cas9 

protein directly into 1- to 4-cell embryos. In order to test mutagenesis, single embryos were collected for sequencing 

analysis. Non-homologous end-joining (NHEJ) that repairs DNA after cleavage by Cas9 results in random insertions or 

deletions (INDELs), therefore genomic DNA was extracted from each embryo and the targeted region of the MyoD 

gene was amplified by PCR and cloned such that different individual mutations could be identified. A total of 35 

embryos were collected and between 3- 15 clones were sequenced from each individual. Of these 35 embryos, 31 

contained at least one mutated sequence (targeting of 88.6%; Figure 1A), indicating a high efficiency of gene 

targeting. As expected, each embryo differed in the proportion of mutant sequences, some returning all mutated 

sequences, and others showing only 50% mutant sequences.  

 

Characterising alleles 

A detailed analysis of the nature of mutations produced by Cas9 targeting, each sequence mutation was 

characterised to determine whether it was an insertion, a deletion or a point mutation. The average targeting 

efficiency throughout sequenced embryos shows that 78% of returned sequences were mutated (Figure 1B), of 

which the majority were deletions (77%) rather than insertions or point mutations (Figure 1C). We found that the 

level of mosaicism within a single embryo was high, and Figure 1D shows 10 sequences from a single embryo aligned 

to the predicted wild type MyoD sequence. As predicted, all mutation events occur and the near the protospacer-

adjacent motif (PAM) where NHEJ results in many different alleles (Shigeta 2016).  Figure 1E depicts the proportion 

of the alleles that code for frameshift mutations as a result of either a deletion or an insertion. We found that only a 

small proportion of sequences (2.3%) represent in-frame insertions. Frameshift mutations represent the majority of 

mutated sequences identified, however, this equates to less than half of all sequences returned (43.7%). This 

highlights a caveat when using F0 embryos for genetic analyses; although CRISPR/Cas9 targeting results in a very 

high proportion of mutated alleles in an individual embryo, in this case, less than half of these mutations will result 

in a truncated protein or a genetic null.  
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Figure 1.  Assessment of CRISPR/Cas9 targeting efficiency of Myod1 by genotyping. 

(A) The proportions of mutated vs wild type sequences identified in individual embryos is 

shown as a bar graph. 88.6% of injected embryos have at least one clone mutated at the 

target sequence. (B) The overall proportion of mutated sequences identified in targeted 

embryos. An average of 78% of clones per embryo were mutated. (C) Characterisation of 

mutation types shows the frequencies of insertions/missense as compared to deletions. 

(D) 10 sequences from a single Cas9 targeted embryo indicates the level of mosaicism 

present in F0 individuals. Sequences were aligned to the predicted wild type amplicon 

sequence (bottom row) and the Cas9 PAM sequence (red underline). (E) Individual 

sequences were assessed for deletions, insertions and missense mutations.  Mutations 

causing INDELs in multiples of 3 were categorised as in-frame deletions/insertions. 25.9% 

sequences returned were confirmed wild type, 35.1% showed frame shift deletions, 8.6% 

showed frame shift insertions, 24.1% showed in frame deletions, 2.3% showed in frame 

insertions and 4% showed missense mutations. (Blue indicates mutation or disruption; 

orange indicates wildtype sequence or silent mutation) 
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Figure 2. Analysis of transcripts in embryos target for MyoD using CRISPR/Cas9 

Experimental and control embryos were collected at NF stage 11.5. (A) qPCR analysis shows the 

expression of MyoD and the known MyoD target gene Rbm24.  Pair-wise t-tests for the mean 

relative expression for Cas9 only and Cas9 plus gRNA injected sets for each gene. Error bars 

represent SEM, * = p<0.05, ** = p<0.01. (B) MyoD sequences returned from mapping raw RNA-

Seq reads to the Xenopus tropicalis myod1 gene. A total of 1200 reads were extrapolated across 

the three biological replicates and the proportion of reads showing each mutation type was 

calculated. The mutated sequences are shown aligned to the sequence for wild type MyoD. The 

total number of reads for each of the mutations shown is as follows: #1= 175 (15%), #2= 13.5 

(1%), #3= 219 (18%), #4= 70 (6%), #5= 69.5 (6%), #6= 40 (3%). 

 

2.2 Analysis of transcripts in MyoD-targeted embryos 

 

Disruption of MyoD gene transcription and MyoD activity 

To further characterise embryos targeted by CRISPR/Cas9, we extracted mRNA from groups of ten embryos at NF 

stage 11.5 and used qPCR to analyse the expression of MyoD and its known target gene Rbm24 (Seb4) (Li et al., 

2010). We found that there is a significant decrease in Myod expression (P< .01) and Rbm24 (P<.05) when embryos 

injected with MyoD gRNA + Cas9 protein are compared to those injected with embryos injected with the same 

amount of Cas9 protein alone.  The results were calculated as relative proportions of expression and repeated for 

three biological replicates; we found that the relative expression of Myod in targeted embryos compared with 

controls is reduced to 0.57 and Rbm24 is reduced to 0.77 (Figure 2A). 

 

 

Identifying genes that require MyoD using RNA-seq analysis 

Three biological repeats for X.tropicalis experimental embryos (targeted for MyoD) and sibling controls (Cas9-only 

injected) were collected at NF stage 11.5 and mRNA was extracted for RNA-seq. cDNA libraries were prepared and 

Illumina deep sequencing resulted in 440 million reads across the 6 samples. RNA-Seq reads were mapped using the 

Xenopus tropicalis genome version 9.0 (Xenbase.org) and FPKM values were established for all genes.  Transcripts 

that align to MyoD were analysed for INDELs, and Figure 2B shows that a significant proportion of the reads have 

deletions in the expected target site adjacent to the PAM. Insertions are less likely to be detected as they would fail 
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to align with reference genome. 

To produce an overview of the significance of fold changes observed in CRISPR targeted samples, a volcano plot for 

(log2) fold change vs (–log10) paired t-test P-value was constructed using Python script (Figure 3). Each individual 

point represents a gene and the dotted line represents a p-value of <0.05. Points in red indicate genes with a fold 

change of less than 1; that is, where the average FPKM value of experimental samples have not doubled or halved 

compared to that of the control. Blue points represent genes with a fold change greater than 1 but a P-value of 

>0.05, so not statistically significant. Yellow points represent genes with a fold change greater than 1 and a P-value 

of <0.05.  The majority of points show a fold change of less than 1 and P-values of >0.05, indicating no significant 

change in gene expression at NF stage 11.5 in response to CRISPR/Cas9 targeting of MyoD. However, 1165 genes 

mapped to the X.tropicalis genome display significant change and are further analysed in Sections 2.3.  

 

2.3 Computational analysis of early genetic targets of MyoD 

Of the 1165 genes found to be significantly altered in the absence of MyoD, some showed very low expression 

levels. Therefore, a minimum expression threshold of 5.0 FPKM average for the control samples was applied. In 

addition, as MyoD expression in targeted samples showed a fold change of 0.71, therefore genes with fold changes 

in this same range (between 0.68 and 0.91) were selected for further analysis. During our manual curation, we 

included two genes that fell just outside the criteria cutoff: FoxC1 (0.84; P<.058) and Pbx2 (0.93; P<.02).  This 

resulted in a short list of 100 potential target genes (Supplemental Data, Table S1). 

 
Figure 3. Overview of results from RNA-Seq 

RNA-Seq reads were mapped using the Xenopus tropicalis genome version 9.0 (Xenbase). 

FPKM (fragments per kilobase of transcript per million mapped reads) values were calculated 

to avoid bias towards longer genes by normalising the number of reads per fragment to the 

length. FPKM values for three biological replicates were analysed by pairwise t-tests 

comparing expression in Cas9 only control embryos and MyoD CRISPR-targeted samples. A 

volcano plot showing t test significance value (-log10 p-value) vs fold change (log2) was 

constructed in Python. Genes in blue indicate a fold change of greater than 1, genes in yellow 

indicate a fold change greater than 1 and a p value of <0.05. 
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Figure 4. Hierarchical clustering of Myod target genes.  

Genes identified as significantly downregulated in targeted samples were further analysed 

using expression data from (Tan et al., 2013) to create a heatmap. Relative expression is shown 

as a scale of low (blue) to high (orange). Euclidean distance was used as the metric for 

hierarchical clustering of complete samples, which resulted in 5 clusters showing distinct 

expression profiles. (*) indicates genes which have known or predicted roles in myogenic or 

pre-myogenic cells. The expression profiles for Myod and a-actin (actc1) are boxed and shown 

to highlight clusters relevant to determination and differentiation respectively. 
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Figure 5 

qRT-PCR analysis of identified early targets of MyoD at NF St11.5. Analysis shows the 

expression of MyoD and the known MyoD target gene Rbm24 alongside predicted target 

genes Rbm20, Gli2, Foxc1 and Zeb2. Pair-wise t-tests were carried out for the mean relative 

expression of three biological replicates for Cas9 only and Cas9 plus gRNA injected sets for 

each gene. Error bars represent SEM, * = p<0.05, ** = p<0.01. 

Temporal expression analysis of potential target genes 

To further investigate whether the identified genes are expressed at a time consistent with activation by MyoD, 

temporal expression profiles were analysed. As MyoD protein is first detected in the mesoderm at NF stage 11, 

candidate genes with expression prior to these stages are less likely to be bonafide target genes of MyoD. 

Furthermore, as our analysis was carried out at Stage 11.5, genes coding for contractile proteins or other 

differentiation specific genes are not expected to be identified by our study, however, we include the expression 

profile of actc1 as a reference for this class of genes. RNA-Seq data from a development time course of Xenopus 

tropicalis is available (Tan et al., 2013) and these expression profiles were used for hierarchical cluster analysis of 

target genes. To do this, expression data was extracted for the 100 short-listed genes (Supplemental data Table S1) 

and used to create a heatmap of expression levels over a developmental time course (Supplemental data Figure S1). 

Genes aligning with reference profiles for determination (myoD) and differentiation (actc1) were selected for further 

heat mapping and cluster analyses (shown in Figures 4 and 5).  Euchlidean distance was used as the metric of linkage 

for complete samples and a selected cutting point for the clustered dendrogram resulted in the formation of 5 

clusters of distinct expression profiles; this is shown in the heat map where orange boxes represent highest 

expression levels (Figure 4). To determine the expression patterns observed within the 5 clusters, profiles of relative 

expression for each stage were constructed from the expression data used in the heatmap and clustering.  

 

Clusters 1 and 2 show similar overall expression profiles: genes within these clusters have very low or no 

maternal expression with earliest notable expression at stage 10. Expression in both clusters increases during 

gastrula and neurula stages, however, in Cluster 1 expression increase is more rapid, as highest expression is 

observed at stages 13-14, whilst genes in Cluster 2 show peak expression at stages 16-18. Both clusters then show 

decreases in gene expression in later stages. Notably, MyoD itself is allocated to Cluster 2. Genes located in Cluster 3 

also show low or no expression prior to mid-blastula transition (MBT) and the overall expression trend shows 

increasing expression until early tailbud stages 20-22. Expression then decreases in later stages. Individual gene 

expression within this cluster however, is more varied than in other clusters. Cluster 4 is a much smaller cluster 

containing the known MyoD target alpha-cardiac actin (actc1). Gene expression for this cluster shows delayed gene 

activation with increases occurring from stage 14 onwards, this increasing expression is maintained through tailbud 

stages and only decreases slightly in the later tadpole stages. Cluster 4 contains the muscle glycogen phosphorylase 

pygm. Cluster 5 is distinct from all other clusters in that the genes located within this cluster show maternal 

expression. Expression decreases rapidly after MBT and is at lowest levels during neurula stages, then increases 

again during tailbud stages (20-28) through to later tadpole stages (31-45). 
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Hierarchical cluster analysis was used to highlight genes that show developmentally relevant expression 

profiles, and strengthen their status as candidates for early genetic targets of MyoD; clusters 1 and 2 include genes 

identified in other studies as myogenic or pre-myogenic genes (highlighted by an asterix and discussed in Section 3).  

In order to validate whether any of these genes require MyoD for their expression during gastrula stages, we 

injected gRNA targeting MyoD together with Cas9 protein and directly assayed the expression of several candidate 

genes in these embryos at stage 11.5 as compared to Cas9 only injected embryos using qPCR (Figure 5). Figure 5 

shows that Rbm20, Rbm24, gli2, FoxC1, and Zeb2 (aka XSip1), as well as myoD itself, are all significantly down-

regulated in targeted embryos. This validation supports the notion that our gene targeting and transcriptomic 

analysis of founder embryos has provided a robust list of candidates genes regulated by MyoD prior to the onset of 

skeletal muscle differentiation. 
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Gene 

symbol 

ENSEMBL ID Average 

FPKM 

Control 

Average FPKM 

Experimental 

Experimental 

Relative 

expression 

p-value 

bmpr1b ENSXETG00000019220 8.01 5.45 0.68 0.02 

pgp ENSXETG00000016097 6.12 4.52 0.74 0.03 

gbx2.2 ENSXETG00000003293 42.10 31.57 0.75 0.01 

sp8 ENSXETG00000030115 12.27 9.28 0.76 0.05 

nkx6-2 ENSXETG00000023614 20.42 15.51 0.76 0.02 

tsfm ENSXETG00000009653 5.08 3.96 0.78 0.05 

decr2-like ENSXETG00000010329 12.93 10.08 0.78 0.04 

rbm20 ENSXETG00000025245 7.04 5.51 0.78 0.04 

zeb2 ENSXETG00000000237 18.67 14.88 0.80 0.01 

foxc2 ENSXETG00000016387 80.68 65.42 0.81 0.03 

babam1 ENSXETG00000025571 9.14 7.47 0.82 0.02 

gli2 ENSXETG00000011189 12.23 10.04 0.82 0.01 

sp5 ENSXETG00000025407 64.04 53.11 0.83 0.03 

pmm2 ENSXETG00000004549 45.85 38.21 0.83 0.04 

pygm ENSXETG00000034136 123.57 103.71 0.84 0.04 

foxc1 ENSXETG00000000594 73.17 61.58 0.84 0.06 

fstl1 ENSXETG00000018009 25.29 21.31 0.84 0.02 

pex16 ENSXETG00000001027 8.44 7.15 0.85 0.05 

slc13a4 ENSXETG00000008163 18.80 15.99 0.85 0.03 

ak6 ENSXETG00000018174 14.39 12.24 0.85 0.03 

pgk1 ENSXETG00000007447 19.96 17.15 0.86 0.02 

mrps30 ENSXETG00000017716 11.89 10.23 0.86 0.04 

flvcr2 ENSXETG00000027282 8.63 7.47 0.87 0.04 

cdx1 ENSXETG00000010282 77.18 66.87 0.87 0.03 

pdlim7 ENSXETG00000007240 13.77 11.97 0.87 0.01 

msi1 ENSXETG00000012216 55.14 47.91 0.87 0.00 

rnf7 ENSXETG00000014753 99.16 86.80 0.88 0.04 

pcdh8.2 ENSXETG00000008792 73.31 64.29 0.88 0.01 

herpud2 ENSXETG00000013111 5.58 4.91 0.88 0.04 

rnf157 ENSXETG00000019548 5.75 5.16 0.90 0.05 

epn1 ENSXETG00000022662 42.43 38.19 0.90 0.04 

dnajc24 ENSXETG00000008179 14.14 12.76 0.90 0.03 

pbx2 ENSXETG00000005223 169.56 158.17 0.93 0.02 

 

Table 1: A shortlist of genes identified as early targets of MyoD.   After heat-mapping and cluster analysis, only 

genes located within clusters showing developmentally relevant expression profiles were shortlisted as early Myod 

targets. The list was manually curated using existing available expression profiles and published literature to curate 

the 33 genes shortlisted as early targets of Myod. 
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3. Discussion 

 

MyoD is known to direct several different sub-programmes of gene expression during myogenesis 

(Bergstrom et al., 2002; Blais et al., 2005; Soleimani et al., 2012) consistent with its role as an essential 

determination gene for the proliferative myoblast (Rudnicki et al., 1993). However, MyoD is also a robust initiator of 

transcriptional targets during myogenic differentiation, distinguishing itself in this way from Myf5 (Conerly et al., 

2016). It is an interesting proposition that one transcription factor can activate distinct panels of genes at two 

different stages of cell lineage specification. Indeed, this notion of promoter swapping is supported by MyoD binding 

analysis using chromatin immunoprecipitation (ChIP-seq) protocols that have shown that MyoD functions as a 

transcriptional regulator during both myogenic determination and differentiation by binding and activating distinct 

sets of genes (Soleimani et al., 2012).  

The ability to model myogenic differentiation in cell culture has been exceptionally informative; pointing the 

way to a detailed understanding of how transcriptional regulators can direct cell fate. Our study investigated genes 

that require MyoD during the earliest stages of myogenesis in vivo, using the diploid frog model X.tropicalis.  

CRISPR/Cas9 gene editing very effectively targeted the MyoD gene in embryos, however not all INDELs result in 

alleles that would generate a disrupted protein. Approximately 80% of injected embryos are successfully targeted 

and the penetrance of mutation in each individual is also very high. However, because Cas9 can act on one or both 

(or neither) alleles in cells as the early embryo divides, and the nature of NHEJ is leads to random INDELs, the 

resulting F0 embryos are inherently genetically mosaic. This leads to a population of F0s with ill-defined genotype, 

with less than half of alleles analyses carrying a disruptive mutation. In zebrafish, it is standard practice to outcross 

founder fish and breed to a known mutant genotype (Li et al., 2016); outcrossing frogs is not as practical as it 

requires more space and time.  

Nevertheless, we have established here that using founder embryos from gene editing protocols in 

transcriptional analyses is valuable. We show here that CRISPR/Cas9 targeting of MyoD results in a significant 

reduction of MyoD transcripts overall and a high percentage of these with INDELs (Figure 2); moreover, the known 

target gene Rmb24(Seb4) is significantly down regulated in these samples. Our transcriptomic analysis has provided 

a shortlist of genes that require MyoD, in vivo, prior to myogenic differentiation (Table 1). 

Our analysis of putative MyoD targets in the context of a published time course of gene expression during 

Xenopus tropicalis development (Tan et al., 2013) provided a way of curating genes on the basis of temporal 

expression, however spatial restriction of expression is also an important factor to consider. MyoD and Rbm24 (aka 

Seb4) share a very close expression pattern, both temporally and spatially, with the notable exception that Rbm24 is 

expressed in the cardiac as well as the skeletal muscle cell lineage (Li et al., 2010; Maguire et al., 2012). The spatial 

expression pattern of Rbm20 has not been examined in Xenopus, however, in chick embryos it shows very early (yet 

transient) expression in somites with persistent expression the heart (Geisha.arizona.edu). Gli2 and Zeb2 (aka XSip1) 

are expressed in the neurectoderm just after gastrulation (Aguero 2012 and Papin 2002); however, during 

gastrulation Zeb2 is expressed in the dorsal marginal zone with some mesodermal expression; there is no in situ 

hybridization data for gastrula specific expression of Gli2. FoxC1 shows both early mesodermal and later somitic 

expression in Xenopus, and like Rbm24, FoxC1 was also identified as a target of MyoD in an earlier alaysis using 

morpholino oligos (Maguire et al., 2012). 

We found that FoxC1 and FoxC2 are significant targets in our analyses, and are known to be expressed in the 

paraxial mesoderm amniotes (Kume et al., 1998), as well as fish and frogs (Köster et al., 1998; Maguire et al., 2012; 

Topczewska et al., 2001). FoxC1/C2 are essential for somitogenesis (Kume et al., 2001; Topczewska et al., 2001), and 

identified as transcriptional targets of MyoD in previous studies (Gianakopoulos et al., 2011; Maguire et al., 2012). In 

the early paraxial mesoderm, FoxC1/C2 are co-expressed with the early muscle regulator Pax3, however later in 

somitogenesis FoxC1/2 regulate the endothelial lineage (Lagha et al., 2009; Mayeuf-Louchart et al., 2014) but their 

expression is nonetheless essential for the normal migration of muscle precursor cells to the limb (Mayeuf-Louchart 



McQueen and Pownall 

 

12 

 

et al., 2016). Interestingly, another gene we identified in our screen, Gli2, has been found to act upstream of FoxC1/2 

in the induction of myogenesis in P19 cells (Savage et al., 2010).   

Pbx2 is also an interesting target as this family of TALE-class homeodomain proteins are associated with 

myogenesis (Berkes et al., 2004; Maves et al., 2007) and binding sites for Pbx transcription factors are found in 

regions of the genome associated with MyoD binding (Fong et al., 2015); it is thought that Pbx proteins help 

‘pioneer’ or establish the myogenic programme (Yao et al., 2013). This model fits well with Pbx genes being early 

targets of MyoD in vivo.   Rbm24 (Seb4) is an RNA binding protein essential for skeletal muscle specific alternative 

splicing (Yang et al., 2014) and has been shown previously to be a direct target of MyoD (Li et al., 2010). Recently, it 

has been found that Rbm24 is essential for normal somitogenesis in fish (Maragh et al., 2014) consistent with the 

findings in our previous publication in Xenopus where Rbm24 was identified as a MyoD target gene (Maguire et al., 

2012). Rbm20, a related gene with similar functions in directing cell specific alternative splicing (Li et al., 2013), was 

also identified as a target in our analyses.  Zeb2 codes for an E-box binding repressor, which could act like Snail 

repressors in modulating ‘enhancer swapping’, where MyoD binds to regulatory sequences in different genes in 
myoblasts as compared with myotubes (Soleimani et al., 2013). Genes coding for the zinc finger transcription factors 

Sp8 and Sp5 were also identified as targets in a screen for early targets of Wnt signalling (Nakamura et al., 2016) and 

as downstream regulators promoting FGF signalling (Branney et al., 2009; Kasberg et al., 2013). Identifying the genes 

coding for Sp5/8 as early MyoD targets is consistent with the important role for FGF (Fisher, 2002) and Wnt (Hoppler 

et al., 1996) signalling in activating MyoD in Xenopus. The fact that we finding some regulators that are known to act 

with MyoD (such as Pbx and Sp5/8) as downstream targets of MyoD is not surprising as our analyses are focus on a 

window of time very early during the specification of the myogenic lineage when transcriptional feed-forward 

pathways are being established. More surprising is that we were able to detect later targets of MyoD at this early 

stage: the skeletal muscle specific protocadherins (pcdh8) and kinases (pgk1 and pygm), and follistatin (fstl1) are 

expressed in somites (Berti et al., 2015) and are notable as they are identified as MyoD targets at such an early 

timepoint.  

Considering the statistically significant hits identified in our study in the context of their normal 

developmental expression patterns and with regard to other findings in the published literature, we describe here a 

set of genes (Table 1) that require MyoD in vivo, early during the establishment of the skeletal muscle cell lineage in 

Xenopus tropicalis. 

 

 

4. Experimental Procedures 

 

4.1 Gene targeting in Xenopus tropicalis 

 

gRNA design 

The basic domain of MRFs functions as a DNA binding domain, binding at E-box consensus sequences in regulatory 

regions downstream genes to activate transcription. Therefore, a synthetic guide RNA sequence (gRNA) was 

designed to disrupt a region within the Xenopus tropicalis MyoD basic domain, located in exon 1 of the coding 

sequence. The design tool ChopChop (https://chopchop.rc.fas.harvard.edu/) was used to scan the input sequence 

for suitable Cas9 target sequences including a PAM site. Any off-targets with up to 2 mismatches in the first 20bp of 

sequence were searched for using the Xenopus tropicalis genome version (xenTro3/GCA_000004195.1).  

 

gRNA template synthesis 

A sequence spanning 71-89bp in the first exon of the XtMyoD coding sequence  

(5’-TCGTCGTAGAAGTCATCGG-3’) on the reverse strand was selected as no off-targets were predicted for this 

sequence. We designed the 5’ primer to include an increased efficiency promoter for transcription by T7 RNA 

https://chopchop.rc.fas.harvard.edu/
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Polymerase, and an added 5’ G nucleotide to fit requirements of the T7 polymerase. Our resulting forward primer 
consisted of the sequence 

5′- GCAGCTAATACGACTCACTATAGG TCGTCGTAGAAGTCATCGG GTTTTAGAGCTAGAAATA-3′    
and the reverse primer is common to all gRNAs is 

5’AAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 3’  
(Nakayama et al., 2014). 

 

gRNA transcription 

Phusion polymerase was used to amplify the template using 5uM of each primer, annealing at 60C and extending for 

15 seconds over 35 cycles. Template was taken directly from the PCR reaction for in vitro transcription using 

Megashortscript® T7 Transcription Kit (Life Technologies) following the manufacturers guidelines. Incubation at 37˚c 
overnight was followed by TURBO DNase treatment, and gRNA purification by phenol-chloroform extraction and 

NH4OAc/ethanol precipitation. gRNA was resuspended in a final volume of 20ul. RNA quality assessment by gel 

electrophoresis and nanodrop measurement was also carried out. An optimal concentration of 1.8ug/ul is desired 

for Cas9 coinjection mixtures. 

 

Cas9 protein production 

Cas9 protein was made using the plasmid (Addgene) by expressing in Rosetta-2 cells (Novagen) at 30C in 

kanamycin/chloramphenicol substituted autoinduction media (Studier F.W., Protein 

Expression and Purification 2005). Pelletted cells were resuspended in lysis buffer (buffer A (50 mM Tris-HCl pH 8.0, 

500 mM NaCl, 10mM imidazole) with cOmplete EDTA-free protease inhibitor cocktail (Roche) and lysed by 

sonication. GE Healthcare HiTrap Nickel NTA column was equilibrated in 50 mM Tris-HCl pH 8.0, 500 mM NaCl, 

10 mM imidazole) and washed before a gradient of Buffer B (Buffer A + 500 mM Imidazole) was applied to elute the 

protein. The peak eluted between 7- 30% buffer B. The fractions containing Cas9 were pooled and concentrated 

before size-exclusion chromatography in 20 mM Tris, 200 mM KCl, 10 mM MgCl 2 (Superdex 200 16/60; Amersham 

Pharmacia Biotech). The purified Cas9 was concentrated to 50 mg/ml using ultrafiltration in Amicon centrifugation 

filter units (Millipore). Aliqouts were flash-frozen and stored at −80 °C. 
 

4.2 Analysis of X.tropicalis embryos 

Genotyping embryos: 

To assess the efficiency of Cas9 targeting, genomic DNA was extracted from single embryos and the target region 

was amplified by PCR, cloned into pGEM T-easy and sequenced. Single embryos at NF Stage 25 were transferred to 

0.5ml PCR tubes containing 200ul of lysis buffer (50mM Tris pH7.0, 50mM NaCl, 5mM EDTA, 0.5% SDS, 10% Chelex, 

fresh 250ug/ml Proteinase K) and incubated at 55˚c for 1hour followed by 95˚c for 15minutes to deactivate the 
Proteinase K. After centrifugation, the DNA is diluted 1:10 and amplified by PCR reaction using primers flanking the 

Cas9 target site (forward:  TTA CTT TGC GCC GTT GCT AT and reverse: GTT GCG CAA AAT CTC CAC TT). PCR products 

were cloned into the pGEM®-T Easy vector system as per manufacturer’s guidelines and transformed into E.coli. 

Minipreps of individual clones sequenced by GATC Biotech using an SP6 primer. 

Sequences from 3-10 clones from each embryo were aligned alongside the wild type amplicon sequence using 

DNAStar SeqMan to identify INDELs. 

 

Expression analysis of targeted embryos 

To assess the level of MyoD transcripts and that of its known target Rmb24 (Seb4) in CRISPR/Cas9 targeted embryos 

prior to RNA-Seq analysis, control and experimental embryos were collected at NF stage 11.5 and snap frozen on dry 

ice. RNA was extracted using Sigma TRI Reagent® together with Zymo RNA  Clean  &  Concentrator™-5 column, and 

purified as per the manufacturer’s instructions. For qPCR, cDNA was synthesised using Thermo Fisher Scientific 



McQueen and Pownall 

 

14 

 

Superscript IV Reverse Transcriptase according to manufactures guidelines. Primers for MyoD, Rmb24, and 

normalisation gene Dicer were used with Fast SYBR Green 2X master mix in triplicate for three biological repeats. 

 

RNAseq 

mRNA libraries were prepared for sequencing using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina, using 

the NEBNext Poly(A) mRNA Magnetic Isolation Module to isolate poly(A) mRNA from total RNA. HiSeq3000 2 x 150 

bp paired end sequencing was performed by the University of Leeds Next Generation Sequencing Facility. 

 

 

4.3 Computational analysis of RNAseq data 

Illumina deep sequencing resulted in ~440million reads across the 6 samples. Raw RNA-Seq reads were mapped 

using the Xenopus tropicalis genome version 9.0 (Xenbase).  FPKM (fragments per kilobase of transcript per million 

mapped reads) values were calculated to normalise the number of reads per fragment to the length of the fragment 

in order to avoid bias towards longer fragments. FPKM values for three biological replicates were analysed by 

pairwise t-tests comparing expression in control and MyoD CRISPR-targeted samples. 655 genes showed differential 

expression based on paired t-tests (p<0.05). Expression data for target genes was extracted from RNA-seq data 

available (Tan et al 2013) and uploaded to https://software.broadinstitute.org/morpheus/ creating a heatmap of 

expression and hierarchical clustering.  
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Figure Legends 

Figure 1.  Assessment of CRISPR/Cas9 targeting efficiency of Myod1 by genotyping.  

Embryos at the one-cell stage were co-injected with 1ng Cas9 protein and 300pg of MyoD gRNA. At NF stage 25 

genomic DNA was extracted and a 432bp region including the predicted CRISPR target site was amplified by PCR and 

cloned into pGEM T-Easy. 3-15 clones per embryo were sequenced and a total of 153 sequences were analysed. (A) 

The proportions of mutated vs wild type sequences identified in individual embryos is shown as a bar graph. 88.6% 

of injected embryos have at least one clone mutated at the target sequence. (B) The overall proportion of mutated 

sequences identified in targeted embryos. An average of 78% of clones per embryo were mutated. (C) 

Characterisation of mutation types shows the frequencies of insertions/missense as compared to deletions. (D) 10 

sequences from a single Cas9 targeted embryo indicates the level of mosaicism present in F0 individuals. Sequences 

were aligned to the predicted wild type amplicon sequence (bottom row) and the Cas9 PAM sequence is indicated in 

red underline. (E) Individual sequences were assessed for deletions, insertions and missense mutations.  Mutations 

causing INDELs in multiples of 3 were categorised as in-frame deletions/insertions. 25.9% sequences returned were 

confirmed wild type, 35.1% showed frame shift deletions, 8.6% showed frame shift insertions, 24.1% showed in 

frame deletions, 2.3% showed in frame insertions and 4% showed missense mutations. (Blue indicates mutation or 

disruption; orange indicates wildtype sequence or silent mutation) 

 

Figure 2. Analysis of transcripts in CRISPR/Cas9 targeted embryos.  

Experimental and control embryos were collected at NF stage 11.5. (A) qPCR analysis shows the expression of Myod 

and the known Myod target gene Rbm24.  Pair-wise t-tests for the mean relative expression for Cas9 only and Cas9 

plus gRNA injected sets for each gene. Error bars represent SEM, * = p<0.05, ** = p<0.01. (B) Myod RNA sequences 

returned from mapping raw RNA-Seq reads to the Xenopus tropicalis myod1 gene. A total of 1200 reads were 

extrapolated across the three biological replicates and proportions of reads showing each mutation type were 

calculated. The mutated sequences are shown aligned to the sequence for wild type MyoD. The total proportions for 

each of the mutations shown are as follows: D1= 175 (15%), D2= 13.5 (1%), D3= 219 (18%), D4= 70 (6%), D6= 69.5 

(6%), D8= 40 (3%). 

 

Figure 3. Overview of results from RNA-Seq  

RNA-Seq reads were mapped using the Xenopus tropicalis genome version 9.0 (Xenbase). FPKM (fragments per 

kilobase of transcript per million mapped reads) values were calculated to avoid bias towards longer genes by 

normalising the number of reads per fragment to the length. FPKM values for three biological replicates were 

analysed by pairwise t-tests comparing expression in Cas9 only control embryos and MyoD CRISPR-targeted samples. 

A volcano plot showing t test significance value (-log10 p-value) vs fold change (log2) was constructed in Python. 

Genes in blue indicate a fold change of greater than 1, genes in yellow indicate a fold change greater than 1 and a p 

value of <0.05. 

 

Figure 4. Hierarchical clustering of Myod target genes.  

Genes identified as significantly downregulated in targeted samples were further analysed using expression data 

from (Tan et al., 2013) to create a heatmap. Relative expression is shown as a scale of low (blue) to high (orange). 

Euclidean distance was used as the metric for hierarchical clustering of complete samples, which resulted in 5 

clusters showing distinct expression profiles. (*) indicates genes which have known or predicted roles in myogenic or 

pre-myogenic cells. Myod and a-actin (actc1) were included in the analysis to highlight relevant clusters. 

 

Figure 5.  MyoD target gene cluster analysis.  

Expression data from (Tan et al., 2013) was used in a time course analysis of whole embryonic development. Target 

genes with developmentally relevant expression profiles were identified from the initial heatmap. After hierarchical 
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clustering, profiles of relative gene expression over time for each cluster reveals distinct expression profiles between 

clusters. Genes in clusters 1 and 2 show similar expression profile to MyoD are better candidates for target genes. 

Mean relative expression is shown for each cluster along with expression profiles for each gene. (A-E) represent 

clusters 1-5 respectively.  
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Gene symbol ENSEMBL  ID mean 

control 

mean 

experimental 

fold  

change 

p-value 

bmpr1b ENSXETG00000019220 8.01 5.45 0.68 0.02 

myod1 ENSXETG00000001320 90.10 64.29 0.71 0.02 

ndufaf3 ENSXETG00000024755 15.31 11.02 0.72 0.03 

tmem141 ENSXETG00000003949 8.53 6.25 0.73 0.04 

pgp ENSXETG00000016097 6.12 4.52 0.74 0.03 

trdmt1 ENSXETG00000027671 5.01 3.72 0.74 0.04 

rassf8 ENSXETG00000023490 11.13 8.34 0.75 0.04 

gbx2.2 ENSXETG00000003293 42.10 31.57 0.75 0.01 

nodal  6.12 4.62 0.76 0.03 

sp8 ENSXETG00000030115 12.27 9.28 0.76 0.05 

ndufb4  16.41 12.42 0.76 0.01 

nkx6-2 ENSXETG00000023614 20.42 15.51 0.76 0.02 

tsfm ENSXETG00000009653 5.08 3.96 0.78 0.05 

decr2-like ENSXETG00000010329 12.93 10.08 0.78 0.04 

rbm20 ENSXETG00000025245 7.04 5.51 0.78 0.04 

zeb2 ENSXETG00000000237 18.67 14.88 0.80 0.01 

mespa  9.87 7.87 0.80 0.05 

znf638 ENSXETG00000015780 6.74 5.38 0.80 0.02 

sod1 ENSXETG00000007350 28.27 22.64 0.80 0.05 

foxc2 ENSXETG00000016387 80.68 65.42 0.81 0.03 

babam1 ENSXETG00000025571 9.14 7.47 0.82 0.02 

gli2 ENSXETG00000011189 12.23 10.04 0.82 0.01 

arl10  9.70 7.98 0.82 0.01 

ccne2 ENSXETG00000006660 72.36 59.78 0.83 0.02 

mrpl15 ENSXETG00000008103 12.68 10.49 0.83 0.05 

sp5 ENSXETG00000025407 64.04 53.11 0.83 0.03 

lrrn1-like.1  6.57 5.46 0.83 0.05 

mthfs ENSXETG00000024293 17.77 14.80 0.83 0.01 

pmm2 ENSXETG00000004549 45.85 38.21 0.83 0.04 

c4orf32  26.81 22.39 0.83 0.04 

endog ENSXETG00000025614 9.73 8.14 0.84 0.04 

pygm ENSXETG00000034136 123.57 103.71 0.84 0.04 
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foxc1 ENSXETG00000000594 73.17 61.58 0.84 0.06 

sowahc  5.89 4.96 0.84 0.01 

fstl1 ENSXETG00000018009 25.29 21.31 0.84 0.02 

sema4c ENSXETG00000001251 22.06 18.66 0.85 0.04 

pex16 ENSXETG00000001027 8.44 7.15 0.85 0.05 

fahd1-like  8.00 6.79 0.85 0.05 

ephb1 ENSXETG00000013722 7.89 6.71 0.85 0.03 

slc13a4 ENSXETG00000008163 18.80 15.99 0.85 0.03 

AK6 ENSXETG00000018174 14.39 12.24 0.85 0.03 

rbm24 ENSXETG00000024618 30.00 25.56 0.85 0.03 

tmem18 ENSXETG00000027985 42.69 36.39 0.85 0.01 

hunk ENSXETG00000007352 41.66 35.63 0.86 0.00 

cdr2 ENSXETG00000016662 6.64 5.69 0.86 0.01 

dctpp1 ENSXETG00000018900 12.09 10.36 0.86 0.03 

pgk1 ENSXETG00000007447 19.96 17.15 0.86 0.02 

mrps30 ENSXETG00000017716 11.89 10.23 0.86 0.04 

dgcr14 ENSXETG00000022387 6.43 5.54 0.86 0.02 

jam3  5.05 4.36 0.86 0.05 

stx18 ENSXETG00000016051 14.61 12.60 0.86 0.02 

cables2 ENSXETG00000002013 24.42 21.07 0.86 0.00 

zbtb8a.1  5.58 4.82 0.86 0.04 

cinp ENSXETG00000010255 7.06 6.10 0.86 0.03 

bicd2-like.1  38.26 33.10 0.87 0.04 

flvcr2 ENSXETG00000027282 8.63 7.47 0.87 0.04 

cdx1 ENSXETG00000010282 77.18 66.87 0.87 0.03 

vps25 ENSXETG00000024599 15.21 13.19 0.87 0.05 

mib1 ENSXETG00000003146 14.11 12.25 0.87 0.03 

sept6-like  12.70 11.03 0.87 0.02 

pdlim7 ENSXETG00000007240 13.77 11.97 0.87 0.01 

msi1 ENSXETG00000012216 55.14 47.91 0.87 0.00 

znf219 ENSXETG00000016157 19.87 17.28 0.87 0.05 

rnf7 ENSXETG00000014753 99.16 86.80 0.88 0.04 

rint1 ENSXETG00000023226 9.88 8.66 0.88 0.02 

hmg20b ENSXETG00000022092 12.48 10.94 0.88 0.04 

pcdh8.2 ENSXETG00000008792 73.31 64.29 0.88 0.01 

lrpap1 ENSXETG00000005500 11.86 10.41 0.88 0.02 

ext1 ENSXETG00000019136 47.42 41.62 0.88 0.03 

wipf2-like  24.34 21.36 0.88 0.02 

nr6a1 ENSXETG00000008578 71.16 62.60 0.88 0.05 

herpud2 ENSXETG00000013111 5.58 4.91 0.88 0.04 

plekhg4  10.65 9.42 0.88 0.04 

cenpf ENSXETG00000023124 34.80 30.79 0.89 0.00 

rnf34 ENSXETG00000020965 7.57 6.71 0.89 0.04 

dhx32-like  17.74 15.73 0.89 0.05 
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bri3bp ENSXETG00000001207 16.21 14.38 0.89 0.01 

ggnbp2  24.95 22.16 0.89 0.05 

ell2 ENSXETG00000013296 18.61 16.58 0.89 0.05 

vdac3  17.56 15.66 0.89 0.05 

ephb3 ENSXETG00000017293 42.52 37.95 0.89 0.02 

rhog-like.1  14.00 12.52 0.89 0.05 

pttg1ip.2  5.42 4.86 0.90 0.05 

rfc2 ENSXETG00000018234 11.70 10.49 0.90 0.01 

rhoa.2 ENSXETG00000009241 445.54 399.57 0.90 0.02 

rnf157 ENSXETG00000019548 5.75 5.16 0.90 0.05 

prr13-like  65.55 58.85 0.90 0.04 

mybl2 ENSXETG00000012125 51.14 45.92 0.90 0.01 

gigyf1 ENSXETG00000018415 23.73 21.32 0.90 0.03 

ilvbl  6.74 6.07 0.90 0.05 

epn1 ENSXETG00000022662 42.43 38.19 0.90 0.04 

nacc1 ENSXETG00000005594 44.47 40.05 0.90 0.03 

irf6.2 ENSXETG00000018661 13.55 12.22 0.90 0.02 

rhpn2 ENSXETG00000018271 9.65 8.71 0.90 0.02 

fmnl3-like  15.30 13.80 0.90 0.02 

slc30a1  26.69 24.09 0.90 0.04 

dnajc24 ENSXETG00000008179 14.14 12.76 0.90 0.03 

usp28 ENSXETG00000022958 10.14 9.16 0.90 0.03 

nsd1-like  7.39 6.68 0.90 0.02 

cdc42se2-

like.1 

 6.09 5.51 0.90 0.01 

pbx2 ENSXETG00000005223 169.56 158.17 0.93 0.02 

actc1 ENSXETG00000012911 - - - - 

 

Table S1: After paired t-test analysis, 1165 genes were identified as showing significant differences in expression in 

MyoD targeted samples as compared to Cas9 only injected controls. Of these genes, 100 were shortlisted as 

potential target genes of Myod showing a mean fold change of 0.68-0.91 and an average control FPKM of >5. In 

addition, foxc1 and pbx2 were manually added to the list despite although just outside of the criteria cutoffs due to 

their known interactions with Myod. The differentiation gene actc1 is a known target of MyoD and, while not 

identified in our screen, was included in our cluster analysis as a reference gene.  
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Figure S1: Hierarchical clustering using Euclidean distance of developmental expression profiles of 73 target genes shortlisted 

from the initial RNA-Seq results filtering. Genes included are those which had ENSEMBL IDs and were included in the dataset 

from (Tan et al., 2013). Myod1 and actc1 were also included as reference genes. Clusters were manually assessed to shortlist 

developmentally relevant clusters for further analysis (*). 


