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Abstract

Natural chemistry deals with non-deterministic processes,
and this is reflected in some artificial chemistries. We can
tune these artificial systems by manipulating the functions
that define their probabilistic processes. In this work we con-
sider different probabilistic functions for particle linking, ap-
plied to our Jordan Algebra Artificial Chemistry. We use five
base functions and their variations to investigate the possible
behaviours of the system, and try to connect those behaviours
to different traits of the functions. We find that, while some
correlations can be seen, there are unexpected behaviours that
we cannot account for in our current analysis. While we can
set and manipulate the probabilities in our system, it is still
complex and still displays emergent behaviour that we can
not fully control.

Introduction

We present an exploration of the space of and effect of

‘probability spawning functions’ in artificial chemistries

(AChems). We use Jordan Algebra AChem (JA AChem)

as an example of the use of probability spawning functions

(psfs).

Natural chemistry is a probabilistic process where en-

vironmental variables (such as temperature) can affect the

probability of bonding. AChems are inspired, to a greater or

lesser degree, by natural chemistry, but there are many prob-

abilistic attributes of natural chemistries that are often made

deterministic in artificial chemistries, such as some aspects

of movement, linking, and decomposition of links. This ig-

nores a key feature of natural chemistry that could help our

AChems to exhibit more complex behaviour.

Different AChems take different approaches in terms of

determinism. Some systems, such as Hutton (2002), always

link particles that encounter each other and match a link-

ing rule. Young and Neshatian (2015) investigate different

approaches by which reactants are chosen for linking, but

the linking is then deterministic. There are a few AChems

that have probabilistic processes, such as the selection of pa-

rameter sets in a recipe in SwarmChem (Sayama, 2009), or

probabilistic movement in the 2D membrane AChem (Ono

and Ikegami, 2001).

Here we focus on our Jordan Algebra Artificial Chem-

istry, JA-AChem (Faulkner et al., 2016), which is a subsym-

bolic AChem, one where various particle and linking prop-

erties emerge from the underlying structure of the particles

(Faulkner et al., 2017). Subsymbolic AChems may include

stochastic processes, such as stochastic decay in Stringmol

(Hickinbotham et al., 2012; Clark et al., 2017), but others are

deterministic, for example RBN world (Faulconbridge et al.,

2010, 2011) and Spiky-RBN (Krastev et al., 2016, 2017).

JA-AChem’s properties emerge from its underlying alge-

braic structures. It uses 3×3 Hermitian matrices to represent

both atomic and composite particles, and the Jordan matrix

product (McCrimmon, 2006) to represent linked particles:

A •B = 1

2
(AB +BA) (1)

This provides a commutative non-associative product, which

allows non-trivial isomers (Faulkner et al., 2016). JA-

AChem uses the matrices’ eigenvalues and vectors to de-

fine the probability of a link forming, and for other parts of

our system. We partition a base set of matices (Eqn 2) into

69 equivalence classes based on their eigenvalues, and take

one representative atom from each class, to form our basic

atomic set.







A =





a11 a12 a13
a21 a22 a23
a31 a32 a33



 : aij ∈ ±1, 0,±i,±1± i







(2)

JA-AChem has a few probabilistically driven processes,

including particle linking and decomposition. In Faulkner

et al. (2016) the design of these probabilistic processes is

chosen in a somewhat arbitrary manner. Here we explore

how different choices for these processes may be exploited

to “tune” our system in different ways and towards different

behaviours, while still keeping an open mind about systemic

properties.

Probability Spawning Functions

We introduce a set of functions F for our system that use the

state of the system to yield a probability for some event or
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Figure 1: Plot of the function f(x) where x is the absolute

difference in the most similar eigenvalues of two particles.

The shaded area shows the combination of x and z for which

linking succeeds.

reaction. We call these probability spawning functions (psf),

as they are used to ‘spawn’ specific probabilities for linking.

They are not probability distribution functions, as there is

no requirement for their integral to be 1. A real-valued psf,

f ∈ F , is such that f(x) ∈ [0, 1] for all states of the system

x ∈ Σ.

Consider a pair of eigenvalues, ea and eb, one from each

of the reactant particles. Define x = |ea − eb| ≥ 0 as the

only parameter of the psf. We take the absolute value of

the difference in order to preserve commutativity of the link

(Faulkner et al., 2016).

For illustration purposes, consider a simple psf, the linear

decreasing function with a cut-off (Figure 1):

f(x) =

{

2

15
(3− x) for x ≤ 3

0 otherwise
(3)

The constants 3 and 2/15 are chose to give behaviour eas-

ily comparable to that of the hard-wired psf used in the JA-

AChem in Faulkner et al. (2016). With this particular choice

of f , the more similar the eigenvalues, the larger the proba-

bility of linking, and two particles all of whose eigenvalues

differ by more than 3 have zero probability of linking.

This function f is used to determine the success or fail-

ure of a linking attempt (ignoring for now any other factors)

as follows. Choose the relevant eigenvalues ea and eb from

each particle (see later for how this choice is made). Gener-

ate a random number z in the interval [0,1] using a uniform

distribution. The linking attempt succeeds if z ≤ f(x), that

is, if (x, z) falls in the shaded area of Figure 1.

Other Probability Spawning Functions

The linear function f of equation (3) is just one possible

function. There are many others we can use to determine

linking probability. For example, a link would always be

formed using the constant function c(x) = 1.

There are many aspects of such functions that we can con-

sider. Here we focus on three: total area, position of peak,
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Figure 2: Plots of the five basic functions used in JA

AChem. (a) uniform u(x); (b) Gaussian g(x); (c) Maxwell-

Boltzmann b(x); (d) Energy Maxwell-Boltzmann k(x); (e)

triangle t(x).

and size of tail. To help us identify effects on the system

caused by each of these aspects, we start with a basic set

of functions that cover a variety of different possibilities for

each of these. Our basic functions are shown in Figure 2.

Consider the uniform function (Figure 2a):

u(x) = 0.15 (4)

Here we have an infinite area overall, no peak, and a very

large tail. All links, regardless of the eigenvalues, have a

probability of 0.15. This particular value is chosen to give

it a similar area as the other basic functions within our main

zone of interest. The other functions that extend to + inf all

converge to 0. The zone we are mainly interested in here is

x ∈ [0, 3].
Consider the Gaussian distribution (Figure 2b), as used in

Faulkner et al. (2016):

gσ(x) =
1√
2σ2π

exp
−x2

2σ2
(5)

Here we take σ = 1, so use g = g1. Our prior use of the unit

standard deviation Gaussian explains the choice of constants

in the other functions here, to roughly match area and cut-

off. This function has a peak at zero, so near equal eigenval-

ues have the highest probability of linking. It has a slightly

larger area in our zone of interest, x ∈ [0, 3], than does u. It

has a long but quickly diminishing tail, so eigenvalue pairs
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with large differences can link (unlike with f ), but with a

quickly decreasing probability.

Consider the Maxwell-Boltzmann velocity distribution:

(Figure 2c):

ba(x) =

√

2

π

4x2

a3
exp

−4x2

2a2
(6)

Here we use b = b1.5. This has a similar area to g, but

has a shifted peak. So linking is more likely with pairs of

eigenvalues that are similar but not the same.

Consider the alternative Maxwell-Boltzmann distribution,

k = k0.23; this has a different tail shape due to the change

to the exponential. This requires different variables to match

the peak height and rough area of the other base functions.

(Figure 2(d)):

ka(x) =

√

2

π

0.04x2

a3
exp

−0.2x

2a2
(7)

This has a fatter tail, to see the effect of a large tail and a

shifted peak.

Finally, consider the triangle function, which we use to

examine the separate effects of long tails and non-zero peaks

(Figure 2e):

t(x) =











4

15
x : 0 < x ≤ 3

2

4

15
(3− x) : 3

2
< x ≤ 3

0 : 3 < x

(8)

This has a shifted peak at a similar position and height to b,
but has no tail. We use it to assess the effects of long tails. It

is also the only function in this set whose slope is discontin-

uous, which may allow us to assess the appropriateness of

functions with discontinuous derivatives for our purposes.

Linking in Jordan Algebra AChem

We test these psfs g, b, u, k, and t in our JA-AChem

(Faulkner et al., 2016), to investigate how changes in peak

and tail affect the behaviour of our system. Three probabil-

ities contribute to the overall probability of linking in JA-

AChem: Xcoll, pa and ps (and pl which is a combination of

others).

The initial occurrence of a probability is when we select

the list of reactants for our link. We randomly sample with

replacement from our well-mixed tank, using a uniform dis-

tribution. After we sample the first two components, we

have a probability for sampling further reactants, to produce

an n-tad Jordan product link. We continue to sample, for one

reactant at a time, with success probability Xcoll, until we

fail. This gives a small but non-zero probability for attempt-

ing links with more than two reactants. Here we consider

this to be part of the algorithm of how our tank functions,

rather than an aspect of the rules of particle linking, and we

set Xcoll = 0.2.

If we have more than two reactants in our link attempt, we

take the reactants in sampling order, and consider the linking

probabilities between each neighbouring pair of reactants.

The minimum of these is taken as the linking probability of

the overall link. So the probability of success depends on the

probability of the weakest link forming. For four reactants,

this is:

pl(A,B,C,D) = min{pl(A,B), pl(B,C), pl(C,D)}
(9)

This linking probability pl comprises two probability

terms, combined here, and used separately elsewhere. We

relate these to two different analogies with natural chem-

istry. We have the strength or potential strength, ps, of the

link, and the relative orientation, pa, of the particles.

The orientation probability is defined as:

pa(A,B) = 1− (va · vb) + 1

2
(10)

where va ·vb is the scalar (dot) product of the two unit eigen-

vectors. When the vectors are parallel, pa = 0; when they

are anti-parallel, pa = 1.

This orientation probability is used in two ways. It first

defines which pair of eigenvalues are used to calculate link

strength. We select the pair of eigenvalues ea, eb (where ea
is one of the three eigenvalues of matrix A) such that their

corresponding eigenvectors va,vb maximise pa. We can in-

terpret this as the best aligned set of eigenvalues. The ori-

entation probability also contributes to the probability of the

link actually occurring.

Once we have used pa to select ea and eb, we calcu-

late x = |ea − eb|. This value of x is used to calculate

ps(A,B) = ps(x), the strength of the link that the particles

would form using these eigenvalues. As well as its part in

forming links, ps is also the strength of the link once formed,

and is the probability of the link not decomposing on a de-

composition attempt.

We define the probability of the link occurring to be:

pl(A,B) = max{pa(A,B), ps(A,B)} (11)

So linking happens if the link will be strong or if the particles

are particularly well aligned.

Here we compare the effect on the system’s behaviour

when we use each of the above functions, u, g, b, k, t, as ps.

For each function, we run 5 rounds of linking and decompo-

sition phases. We initialise the tank with 69 atomic particles.

A linking phase performs a number of linking attempts equal

to the number of particles in the tank at the beginning of the

phase. For each linking attempt, we select a sample of par-

ticles from the tank. If the attempt is successful, and if the

resulting particle is a novel particle, it is added to the tank.

The reactants are not removed, allowing them to take part

in further reactions. Hence the tank contains one of each

kind of atom, and one of each kind of composite particle
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Algorithm 1 Linking and Decomposition in Well Mixed

Tank

Tank := {69 atomic particles}
for 1 to no of rounds−1 do

LINKING PHASE

DECOMPOSITION PHASE

LINKING PHASE

collect data from Tank

procedure LINKING PHASE

for 1 to size(Tank) do

reactants := 2 random particles from Tank

while RANDOM() < Xcoll do

reactants += a random particle from Tank

attempt to link reactants

if successful and product is new then

add new particle to Tank

procedure DECOMPOSITION PHASE

for all particles in Tank do

attempt to decompose particle

if successful and any product is new then

add new particle(s) to Tank

made. This particular system does not have mass conser-

vation, as here the “tank” is just the collection of possible

particles found by the system so far. We have no interest

here in the frequency with which any particle is formed; our

focus is on finding novel particles so only these are added to

the tank.

A decomposition phase performs a decomposition at-

tempt on particle in the tank. If this leads to any new par-

ticles, they are added to the end of the tank and we attempt

to decompose them in this phase. (We do not perform a de-

composition phase after our final linking phase due to com-

putational memory limitations.) See algorithm 1.

Speed and Area

The area under the psf directly relates to the general proba-

bility of any particular link occurring. The larger the area the

more links will occur and the stronger they will be. We can

see the area then as a sense of ‘speed’ in this system. If we

do not change the shape of the function but simply decrease

its area, then we should see roughly the same behaviour. It

would be slowed down, as fewer links will form and decom-

pose per generation. Due to this we try to keep the area of

our functions reasonably similar with in the zone of interest

(here taken to be x ∈ [0, 3]). We do not keep the areas ex-

actly the same, preferring to have the peak height, shape and

position more equal across functions, e.g. matching triangle

peak height and span in t to peak height and span of zone of

interest in b.
From the areas shown in Table 1 we can see that the func-

tions’ varying areas have similar numbers of particles pro-

Function Area Particles

u 0.45 1331

g 0.49865 1796

b 0.499433 1938

k 0.715772 1852

t 0.6 1900

Table 1: The area under each of the probability spawning

functions (integrated between 0 and 3), and the number of

unique particles produced on running algorithm 1 including

the 69 atoms.

duced in each system, allow for a sensible comparison of

results. It is important to note that Table 1 gives the area in

our “zone of interest”, x ∈ [0, 3]. The overall area of u is

much larger than that of the other functions as it is constant

along the entire x axis while the other functions all tend to

0.

Investigating Functions’ Influence on System

In this section we look at the influence of these functions on

different properties of the particles in our system. While we

can collect data on many properties (such as total number

of atoms in particles, number of distinct atoms in particles,

. . . ), we focus here on three properties that show the most

variation across the shape of the functions used. Other prop-

erties vary primarily with the size of the system. Systems

that generate more particles tend to having bigger particles

(ones with more atoms in them).

The three properties reported here are:

1. Largest Link: The largest number of particles involved

in a single link within a particle (a link is formed by an

n-tad Jordan product involving n particles).

2. Strength: The product of the strengths of each link in the

composite particle:

Ps =
∑

l∈P

ls (12)

Atomic particles have no strength as they have no link,

and are excluded from the strength statistics

3. Self-synthesis: The number of times in each particle there

is a link linking two particles (atoms or composites) of the

same kind

We consider how two features of our psfs may have af-

fected each of these properties in our system:

(a) Peak position: In our base functions there are three dif-

ferent sorts of peak positions: none (u), zero (g) and non-

zero (b,k and t).
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Figure 3: How particle properties vary with probability

spawning function: (a) largest number of components in a

link in each particle; (b) log-strength of the particles; (c)

number of occurrences of self-synthesis in each particle.

(b) Tail size/length: We have four different sorts of tail in

our functions: constant large (u), constant zero (t), small

(g, b, O(exp−x2)) and large (k, O(exp−x)).

In comparing these functions we are looking for how their

features may be contributing to “interesting” distributions

of particle properties. Here we are looking for wide dis-

tributions of values, preferably with outliers and a wide in-

terquartile range. There should be a strong sense of me-

dian or common particle properties, but there should also be

outliers and less common particles that stretch over a large

range, indicating a rich variation in particles produced.

g b t k

u 0 0.64 0 0.64 0 0.58 0 0.67
g - - 0.07 - 0 0.67 0.003 0.53

b - - - - 0 0.65 0.835 -

t - - - - - - 0 0.69

Table 2: p-values (left column) and effect sizes (right col-

umn) for size of largest link. Statistically significant p values

(p < 0.05) are shown in bold; effect size A values are cal-

culated for these; medium or larger effect sizes (0.64 ≤ A)

are shown in bold.

Largest Link

We start with how our functions affect the ability of our sys-

tem to form larger (and possibly more complex) particles by

looking at the largest links (Figure 3(a)).

Given a null hypothesis that psf has no effect on the num-

ber of particles in the largest link, we calculate the p-values,

using the ranksum test, and the effect size, using the A test

(Vargha and Delaney, 2000), between the tanks produced

with each function (Table 2). These results split our func-

tions into two groups whose distributions only have small

differences: u and t; and g, b and k
For g, b and k there is very little spread and almost all

particles have a maximum of 4 components in a link, but

a few have as many as 7 or 8. Looking at u and t we see

they have larger interquartile ranges, but spanning a different

range of values: half of the particles produced with u have

a largest link size of 3–4, and half of those produced with t
have 4–6.

These groupings do match any particular peak position

but do group to separate our constant and non-constant tails.

Strength

Since many of our particles have very small strength we use

a log scale to make the distributions clearer (Figure 3b). All

of u, g, b and k have skewed distribution, with the largest

range being with k.

Notably t has a near non-existent distribution. Most of the

particles in the t system have zero strength, and so a proba-

bility of 1 of decomposing. This is due to the constant zero

tail. The selection of eigenvalues is based on alignment (see

earlier), not on the similarity in value. This means links can

occur with large differences in values, that is, large values

of x. This results in low strength with long tails, but zero

strength with no tail. So the tails on our distributions are

important for being able to generate stable particles.

There is no indication that peak position has any influence

on strength in the system.

Self-synthesis

There may be an advantage to a lack of tail. All the dis-

tributions have at least one instance of self-synthesis, but a

Carole Knibbe et al, eds., Proceedings of the ECAL 2017,  Lyon, France, 4-8 September 2017,  

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).  

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives 

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

501

Poster



a)
0 1 2 3 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a

b
ili

ty
b

b
c

b
1

b
2

b)
0 1 2 3 4

x

0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a

b
ili

ty k

k
.33

k
.13

k
c

c)
0 1 2 3 4

x

0

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty

0.5

1

1.5

d)
0 1 2 3 4

x

0

0.2

0.4

0.6

0.8

P
ro

b
a

b
ili

ty

g
s

g
s

I

g
s

R

Figure 4: Sets of variations of base functions: (a) four vari-

ants of b; (b) four variants of k; (c) three variants of g; (d)

four variants of g based of on the shifted peak variant: gs.

median of zero (Figure 3c). The only function that produces

significant self-synthesis is t.
The u, g and k functions also have at least one instance of

a particle with more than one link with self-synthesis.

Again there is no connection to peak position, but there is

a strong indication that having no tail affects this property.

Variations of Functions

In order to further investigate the above results we need a

larger number of functions with different features. We now

further test the effect of constant zero tails, and of tail size

in general. We look at four sets of variations on our existing

functions:

1. b: b1.5 (original), and b1, b2, bc, where

bc =

{

b1.5 x < 3
0 otherwise

(13)

2. k: k0.23 (original), and k0.13, k0.33, kc, where

kc =

{

k0.23 x < 3
0 otherwise

(14)

3. g: g1 (original), and g0.5, g1.5

4. shifted gaussian, gs: gs0.5, gs1, gs1.5, where

gsσ =
1√
2σ2π

exp
(x− 1)2

2σ2
(15)

The areas under these curves are not particularly similar,

however any area effects caused by this difference should be

identifiable across all four sets of variations so normalisation

is not required. By allowing the areas to change we also

allow ourselves to investigate if there are any area effects

not previously noted.
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Figure 5: Distribution of largest link sizes with: (a) variants

of b and k; (b) variants of g

Largest Link

Although the results in Figure 5 show statistically significant

differences (p < 0.05), these all have small effect size (A <
0.61).

So the size of the largest link in each particle is not af-

fected by the area under the curve, its steepness, the position

and height of its peak or the size of its tail. This means there

must be some other property involved that effects the size of

the largest links. The largest effect size between any pair of

variations is between gs and gs0.5, with A = 0.61.

Strength

The results shown in Figure 6 show near non-existence of

variation in the strength values of both bc, with the cut-off,

and b1, the larger area b function. This agrees with the pre-

vious result: bc has no tail, and, because of the increased

steepness of the curve in b1, it has much less of a tail than

the other functions.

We can also see that b2, with its larger tail, has a larger

range of strengths than the base b functions. This further

supports the idea that a longer tail results in a wider variety

of link strengths.

When we look at the k variants we see kc and k.13, the

smaller of the functions, both have low variation in strength.

However k.33 has a larger tail than k—much like b2 and b—
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Figure 6: Strengths of particles for: (a) variants of b and k,

(b) variants of g

but a smaller range of strengths, suggesting the spread of

strengths is not simply correlated with tail size.

Our g variants further break our established pattern. g0.5
has the smallest tail of the g variants, but the largest range

of values. g1.5 with the largest tail has the smallest range of

strength values. This is contrary to our results look at just

the base functions but agrees with our k results. The b and g
functions have similar tails, so clearly something other than

the tail has a strong effect on strength.

The large range found on the g0.5 strengths might be con-

nected to the larger range of values the function has.g0.5 has

a higher peak than g and a larger range of strengths. How-

ever b1 also has a higher peak but has a very limited range

of values.

The strength distributions of our particles seem to be more

complicated than a simple aspect of tails or peak position,

though in some cases there is still a correlation.

Self-synthesis

The self-synthesis results are shown in Figure 7. These show

another effect of the lack of tail: an increased rate of self-

synthesis. The only variant of b with any range of self-

synthesis is bc, which also has far more outliers than in the

other functions.

The k variations seem to be anomolous until we consider

the overall shape of k.13. This function has a very small area
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Figure 7: Occurrences of Self-synthesis with: (a) variants of

b and k, (b) variants of g

and a very long tail meaning that because it has a very small

tail that starts early it acts more like a function with no tail

than our other functions. On the otherhand kc has a very

little self-synthesis. The reasons for this are not clear but

it is the only function with a high value before the cut-off

which may be influencing this.

Parameter changes have very little effect on self-synthesis

in g functions, Figure 7b.

Summary

We have developed a set of probability spawning functions

for use in linking in Jordan Algebra Artificial Chemistries.

These have covered a wide range of options in terms of peak

height, area, tail length, and height. These have produced

various and different effects in our system. Some of these

effects correlate with particular features, such as the tail cut

off seeming to be connected to an increase in self-synthesis.

We have also found that there is a lot of complexity in our

system. We see that different sets of functions can have very

different effects. There are complex interactions between

our psfs and the rest of our system.

Further Work

Here we have investigated only one of the probabilities used

in our AChem: that used to give the link strength. There are
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other probabilities that should be similarly investigated, and

potentially tuned, to give different behaviours. For example,

parameters to the functions, such as a and σ, could be cou-

pled to states of the system, such as temperature, to allow

the probabilities to change with the system state.

The orientation probability pa (eqn.10) is a candidate for

variation. It has a role in both the overall linking proba-

bility pl, and, crucially, in the choice of pair of eigenval-

ues. Currently we chose the eigenvalues and vectors that

maximise pa. We might instead chose by minimising pa, or

weight the choice in a less deterministic manner. Allowing

the system, at times, to use less optimally “aligned” eigen-

value pairs may produce weaker or stronger bonds between

the same particles. This would allow hard-to-form but then

very strong links to occur. It would also provide weaker ver-

sions of particles. Because of their weaker links, these may

be better at enabling catalysis by linking to further particles

before decomposing.

Currently pl uses the maximum of its two probabilities.

Again, a different choice, such as the minimum, or some

other combination of the two functions, would give different

system behaviour.

We see there are many potential ways of combining prob-

abilities. Further work will investigate how algebraically-

defined combinations of psfs could be used to give combined

properties that allow finer tuning of our system, for example,

taking the maximum of the high-peaked g0.5 and the large-

tailed b2 to give both properties.
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