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Abstract

We explore the effects that different reactor types have on
Spiky-RBN AChem systems, looking at mass conserving and
flow reactors. To assist in analysing the behaviour we in-
troduce an activity measure based on possible system state
changes as a result of changes in particle properties. This
leads to a discussion on approaches to engineering complex
systems towards specific goals.

INTRODUCTION

The Spiky-RBN Chemistry (Krastev et al., 2016) is a type

of subsymbolic Artificial Chemistry (ssAChem) designed

such that particle properties and behaviour are derived from

its underlying system dynamics. The dynamic behaviour

of the constituent random boolean networks (RBN) (Kauff-

man, 1969; Kauffman et al., 2003) allows us to define the

properties of our atomic particles. The RBN’s nodes are

partitioned into “spikes”, which form the basic linking units.

Each spike has a linking property derived from the behaviour

of the underlying RBN. The linking property has an integer

value and can be positive or negative. Figure 1 shows a rep-

resentation of an RBN partitioned into spikes. A reaction

occurs when the linking properties of the reactants are com-

patible, and results in a composite particle. This composite

particle is a composite RBN built from the reactant RBNs,

and its new spike properties are based on the new compos-

ite RBN dynamics. See Figure 1 for an overview, and see

Krastev et al. (2016) for the details of the various algorithms

involved.

Krastev et al. (2016) use a heuristic algorithm to search

for suitable sets of 20 atomic Spiky RBNs, from the vast

space of possible RBNs. These sets are chosen to be reactive

and to produce a rich variety of composite particles, in terms

of particle size, structure and composition.

The reactor rules used during that search are geared to-

wards an exploration of the possible reaction space rather

than any analysis of the dynamics. The reactor contains one

of each atomic particle and each unique composite particle

found so far; there are equal concentrations of all particles

found so far, and there is always enough material for further

Spike Bond

Figure 1: An atomic and composite particle in the Spiky-

RBN system.

reactions. The original 20 atomic particles quickly become

a small portion of the overall reactor contents, which biases

the exploration towards larger composite particle reactions.

Such reactor rules are not very realistic. A mass-

conserving reactor, in which concentrations change as a re-

sult of reactions, is closer to reality. From a system’s per-

spective, it also provides pressures on the types of particles

that can be seen, and could lead to more diversity in the

smaller composite particles generated. Reactant concentra-

tions play an important role in reaction dynamics, so it is in-

teresting to compare different reactor rules and their effects

on observed system dynamics. Here we explore how differ-

ent types of mass-conserving reactors affect the dynamics of

our system.

Analysing and quantifying the effects of these differ-

ent rules on the observed systems can be challenging. In

AChems with defined reaction rules there is often a desired

behaviour that the rules aim to produce, so analysis can be

geared towards finding that behaviour. With the Spiky-RBN

Chemistry, the aim is to explore the dynamics and activity

of ssAChems and how they are affected by different rules.

One approach to analysis is quantifying the complexity

of the system. There are multiple definitions of complex-

ity, and from there, multiple approaches to measuring it.

Within our system we could look at the complexity of the

RBNs (Ciencias del Espacio, 2000; Wang et al., 2011), or of

the composite particle geometries (Rashevsky, 1955; Kar-

reman, 1955). We are interested in the reaction networks

our system produces. There are metrics for chemical reac-

tions specifically (Karreman, 1955; Bonchev and Trinajstić,
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1977), and for graph complexity (Dehmer and Mowshowitz,

2011). However, we want our analysis tooling not only to

provide a numeric quantity, but also to allow us to analyse

and reason about the system behaviour. Therefore, we move

away from these more generic complexity measures, and de-

fine our own metric, which is designed to accommodate the

reaction processes of our Spiky-RBN system, while still be-

ing based on core concepts of complexity.

An Activity Measure for Spiky-RBN

The dynamics of our system can be described as a reaction

network: a directed graph where nodes are particles in the

system, and observed reactions are directed edges connect-

ing reactants to products. Defining where a complexity mea-

sure should be maximum can be difficult. We can state that

our measure should tend to zero when the behaviour is ‘un-

interesting’, by which we mean when the system is either

ordered or random in terms of reaction possibility and par-

ticle properties. The particle properties (the spikes in our

system) are the only thing that particles can observe about

each other, and the main thing that dictates what reactions

can take place. We therefore think of these spikes as a de-

scriptor of the system. This does not fully describe our sys-

tem, since it is capable of degeneracy: two different RBNs

could have the same spikes produced by different underlying

dynamics. In this case their properties would be the same,

however their different dynamics could become visible after

they have reacted and formed different composites.

A purely random system has no structure for defining

which reactions occur, or the resulting properties of the

products. Every possible reaction attempt would be success-

ful, and any two particles could create a composite linked

between any of their spikes. Additionally, there would be

no connection between the property of the product and the

properties of the reactants that formed it. In effect we would

see a huge number of possible unique particles with almost

no internal structure. Eventually the system would tend to

one single composite containing all atomic particles.

A fully ordered system can take two forms. The simplest

is a completely inert system where no reactions are possi-

ble at all. Alternatively, some reactions are possible, but

no reaction changes particle properties—composites have

identical spikes as their reactants—and therefore no reac-

tion changes the behaviour in the system. In this case the set

of possible reactions never changes. In practice this would

be a system which produces only “polymers”, particles with

a rigid internal structure which are only ever capable of the

same reactions they are a product of.

”Interesting” systems lay in between these extremes of

order and randomness. Some reactions maintain the be-

haviour of particles and composites, while other reactions

result in changes in behaviour causing products to have dif-

ferent spikes from their reactants, therefore changing the

possible set of reactions. An open ended system is one

Figure 2: Set of reactions expressed as a reaction graph

(top), and a functional grouping (bottom). Edges represent

reactions labelled with how many spikes were changed by

the reaction.

where a comparatively small but still unlimited number of

reactions cause changes in behaviour. The occurrence of

such reactions would open up new possible interactions to

the system, possibly leading to new particle types. Our met-

ric is designed to measure such behaviours in terms of spike

properties.

Functional Grouping

We start from a complete reaction network, a graph describ-

ing all reactions that have occurred in the reaction vessel we

are analysing.

We reduce this full reaction network graph to include only

those reactions which result in a change to spikes, where

the spikes of the product are different from the (non-linked)

spikes of the reactants. This focusses on products that have

new linking properties. We do this by merging particle

nodes where reactions do not change spikes. Figure 2 shows

an example of this grouping, reactions that produce ABC

and ABCAB do not cause a change in spikes therefore we

merge the reactants with the products.

These groupings represent sets of particles that share a

common root structure and for which there exist reactions

that do not change the reactant’s spikes.

If we describe the state of the system as the set of possi-

ble reactions that the system can undergo, reactions within a

group do not change the system state. Edges between groups

represent reactions that change unbound spikes. A change

of unbound spikes means a change in possible reactions and

therefore a change in system state.

This method of ‘functional grouping’ also allows us to

reason about the bonding spikes themselves. If we observe

that most successful reactions involving a given spike result

in no change to unbound spikes we can think of that bonding

spike as “frozen”. Alternatively if any link on a given spike

changes the properties of the other unbound spikes then we
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can consider that bonding spike as “active”. We can then

reason about the likelihood of reactions causing changes to

the system based on what spikes are involved in the link and

how frozen or active those spikes are.

In most cases a reaction will change only some spikes,

not all of them. This allows us not only to label spikes as

frozen or active, but more precisely say how perturbing they

are to the system, how many other spikes they change. We

label edges on the reaction network with how many spikes

are changed as a result of the reaction. Any change in a

spike will result in a different set of reactions being possible,

therefore tracking how much an individual spike changes

gives no additional information, so we do not track that.

Activity Measures in Terms of Functional
Grouping

We reason about the dynamics of our system in terms of the

identified functional groups as follows. As the number of

groups approaches the total number of unique particles, we

describe the system as random, since each particle has prop-

erties different from the reactants that made it. Conversely,

as the number of groups approaches one we have an ordered

system, since all found particles share the same properties.

We plot the activity A of the system in terms of the ratio

between the number of groups and total number of unique

particles produced:

A =
FG(t)

U(t)
(1)

Here FG(t) is the number of functional groups after t

bonding attempts and U(t) is the number of unique particles

after t attempts.

Clearly, 0 < A ≤ 1. As A tends towards 1 the system is

more random, and as it tends towards 0 the system is more

ordered. This can more clearly be observed as change in

activity, ∆A, over a period of t+ n reaction attempts.

∆At

n
=

FG(t+ n)− FG(t)

U(t+ n)− U(t)
(2)

Mapping these values over the runtime of a reactor and

comparing them across different reactor types provides us

with a way to reason about the system dynamics. It also

highlights moments of increased activity, which we can then

explore in more detail.

Experimental Implementation

Krastev et al. (2016) found 20 different sets of 20 atoms that

display more interesting behaviour than randomly chosen

atom sets. Here we use those atom sets to explore four dif-

ferent reactor rule sets: a simple mass conserving example,

two types of flow reactors and one hierarchical decanting

reactor.

The mass conserving reactor is initialised with 200 in-

stances of each atomic particle. A reaction attempt consists

of removing two particles at random, attempting a reaction,

and returning to the reactor whatever the products of the re-

action are: a new particle for a successful attempt, or the

original reactants for an unsuccessful attempt. Since no re-

action can create or destroy atoms, only change links, the

reactor will conserve its mass.

A flow reactor proceeds in the same way, by selecting par-

ticles to attempt reactions and returning the products. Peri-

odically, however, the flow reactor injects new atomic par-

ticles into the system. In order to maintain mass a random

set of particles with equal total mass is removed from the

reactor.

The first variant of the flow reactor injects those atomic

particles that have been involved in bonding over the period.

It ‘feeds’ reactions that have already been observed. This

should encourage more composite particles of similar types

and more closely explore a dominant particle type. The sec-

ond variant injects random atomic particles. This should en-

courage diversity of smaller composite particle types.

The decanting reactor outflows the largest 40 unique par-

ticles that are generated through a run to a second reactor.

This second reactor is populated with 100 copies of each of

these outflow particles, and is then run. This can be thought

of as decanting the heavier particles and allowing them to in-

teract separately. This is a way to observe if larger composite

particles have different activity from smaller particles.

Each reactor is run for 100,000 reaction attempts. For

each of the 20 previously found atom sets, denoted reactor

0–19, we run each reactor experiment 10 times.

Results

Figures 3–6 show results for six of the reactors, the two with

the highest number of unique particles (reactors 13 and 18),

two with the lowest (8 and 0) and two with a median num-

ber (7 and 2). Table 1 shows the average number of unique

particles found under each reactor type. A unique particle

is defined as one with a structure or composition that has

never previously been seen in the run. In Spiky RBN spikes

are uniquely identifiable so structural uniqueness also in-

cludes particles that have the same geometric structure but

the bonds are between different spikes. We consider reactors

with a high number of unique particles to be more reactive

and those with a smaller number more inert.

Figures 3–6 show the activity measure ∆A (Equation 2)

for each reactor with an n = 10, 000. Each boxplot rep-

resents the ∆A of the 10 repetitions of the reactor. So a

low median would indicate activity over those 10,000 reac-

tions was low (most reactions do not affect binding prop-

erty), a high median represents high activity (most reactions

do change binding property). The spread of each boxplot

shows the difference between the 10 runs, high spread indi-

cates the system is very dependant on the order of particles

selected for binding, low spread the system is less dependant

on the other of selection.
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Figure 3: Mass Conserving: Plot shows the change in activ-

ity every 10,000 reactions attempts. The boxplots show the

spread in behaviour over the 10 individual runs.

Mass Conserving

Figure 3 shows results for the mass conserving reactor. The

reactors with low numbers of unique particles (reactor 8 and

0) show a much higher spread in activity between runs. This

is likely because the overall activity of the system is much

more reliant on which specific particles emerge. Reactor

8 on average creates only 93 unique particles over the run.

The huge spread in activity is the result of precisely when

specific particles emerge in each run. In the top two systems

this is obscured since unique particles are more abundant.

The two top reactors show a difference in behaviour over

time. Since the reactors are mass conserving, the later in the

run the more likely it is that larger particles will be involved

in reactions. For example the activity of reactor 13 is similar

between different points in the run and averages around 0.5.

This suggests that there is a balance between reactions that

change binding property and those that do not, and that this

balance is not affected by the contents of the reactor. Reac-

tor 18 however shows an increase in activity value later in

the run. This suggests that successful reactions later in the

Reactor
Mass

Conserving

Food

Flow

Food

Random
Decanted

13 1445 2924 1478 1819

18 1286 2915 1302 2112

2 488 1117 486 1263

7 468 787 459 1156

0 182 251 180 307

8 93 181 97 293

Table 1: Average unique particles discovered

run are more likely to result in changes to binding property.

Since the only difference between earlier and later in the run

is the size of particles involved we can say that composite

particles have different behaviours from the atomic particles

in this reactor.

Flow Food

Figure 4 shows results for a flow reactor which inputs atomic

particles that were part of previous observed reactions.

This reactor type resulted in substantially more unique

particles being found in each reactor instance. Over the run

the concentration of intern particles in the system decreases

as they are replaced by reactive ones so the system finds

more reactions overall.

As with the mass conserving example we see spread

between runs increase as the reactors become more inert.

Comparing Figure 3 and Figure 4 shows that the flow food

reactor in general have a lower spread between runs. This

is likely for the same reason, since food flow reactors are

more reactive the system is less sensitive to exactly which

particles are observed.

Flow food reactors also show a decrease in activity mea-

sure compared to the mass conserving counterparts (Figure

3). A decreased activity measure indicates that more reac-

tions are found which do not change the binding property.

This behaviour is likely caused by reactions that progres-

sively add the same particle to a structure without changing

its binding property. Because these reactions are successful

the flow reactor keeps feeding them, increasing the concen-

tration of reactant particles and making the reactions more

likely.

Flow Random

Figure 5 shows results for a flow reactor which inputs ran-

dom particles from the reactor atomic set.

Overall this reactor type shows extremely similar be-

haviour to the mass conserving reactor, both in terms of

activity measure and number of unique particles produced.

This is not surprising since random inflow of particles will

maintain the concentrations of atomic particles in the sys-

tem making it equivalent to no flow. The similarity indicates

that the concentration of composite particles in the mass
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Figure 4: Flow Food: Plots showing the change in activity

for each flow food reactor every 10,000 reactions attempts.

conserving reactor is relatively low. If randomly replacing

particles does not effect behaviour that means that mostly

atomic particles are being replaced by other atomic parti-

cles. This suggests that the mass conserving reactor never

reaches a point where its behaviour is dictated by the reac-

tivity of composite particles.

Decanted Reactor

Figure 6 shows results for the decanted reactors. Each de-

canted reactor is populated with 100 copies of the 40 largest

particles discovered in the Mass Conserving Run. The de-

canted reactors are then run under mass conserving condi-

tions for 100,000 reaction attempts. While each reactor in-

stance is initialised with the same total number of composite

particles, the total mass of each reactor instance varies de-

pending on the total mass of the 40 largest particles discov-

ered.

Table 1 shows that the decanted reactors are even more re-

active then the atomic ones. In all cases substantially more

reactions finding unique particles. This trend is not neces-

sary uniform with reactor 18 showing a larger increase then
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Figure 5: Flow Random: Plots showing the change in activ-

ity every 10,000 reactions attempts.

reactor 13, the same is true of reactors 8 and 0. This suggests

that the behaviour of the reactor differs based on concentra-

tion of composites.

This change in behaviour is also observed when compar-

ing Figure 3 and Figure 6. For example reactors 8 sees a very

large decrease in activity measure. The majority of reactions

in the decanted reactor now result in no change to the bind-

ing property. This explains the substantial increase in unique

particles found since reactions of the form X-X+X → X-

X-X are more likely not to change the binding property,

meaning more X particles can be added to find new longer

sequences.

Conversely reactor 0 shows an increase in activity mea-

sure. This means the system will find it harder to simply

combine particles to create new larger composites since each

reaction is more likely to change the binding property.

A similar trend can be seen between reactors 18 and 13.

The decanted reactor 18 shows a much larger decrease in

activity measure corresponding with a much larger increase

in unique particles found. Meanwhile reactor 13 shows a

smaller decrease in activity measure and a smaller increase
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Figure 6: Decant: Plots showing the change in activity every

10,000 reactions attempts.

in unique particles found.

Overall this suggests that the main driving force behind

new composites being discovered are polymer-like reac-

tions, which are less likely to change the binding property of

the product, allowing for further addition. However, this ob-

servation cannot be generalised. Reactors 2 and 7 show very

similar increases in unique particles, yet the activity measure

of reactor 7 decreases, while increasing for reactor 2.

Some reactors also show a difference in activity measure

spread between Figure 6 and Figure 3. An increase in spread

between decanted runs (such as in reactor 18) suggests that

the system is more sensitive to the specific composite parti-

cles used to populate the run. Alternatively decreased spread

between runs (observed in reactor 2) implies that most com-

posites have very similar behaviour, so the system is less

sensitive to which ones are picked to populate the reactor.

Summary of Results

The results presented here illustrate some of the behavioural

richness that the Spiky-RBN system can exhibit.

We see that different particle sets exhibit varying be-
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Figure 7: Other mass conserving reactors with interesting

behaviour.

haviours over system runs and react in different ways to

changes in reactor rules.

Figure 7 shows the range of behaviours exhibited by some

of the other reactors that warrant in depth investigation. Re-

actor 3 shows growth in spread between runs over time pos-

sibly indicating diverging behaviour depending on which

particles emerge. Reactor 15 shows very high chaos sug-

gesting most reactions change the binding property and re-

actors 16 and 9 show strong trends towards order and chaos

respectively.

Our measure for activity highlights possible behavioural

differences in a way that can be related back to underlying

mechanisms in the system. This is important if we hope to

reason about the behaviours and the system as a whole.

The analysis methods used in this paper do obscure many

details about system behaviour, for example reaction dy-

namics and particle composition. However, the functional

grouping on which the activity measure is based preserves

some of that information. Further analysis on the functional

groupings can highlight other aspects of system behaviour.

Our reactor results for Spiky-RBN illustrate how the con-

figuration and initial state of a given AChem (here, varying

flow schemes under the same reaction rules) have a profound

effect on the resulting reactions.

In the next section we discuss how this might be exploited

in engineering emergent systems.

Discussion

Figure 8 depicts a layered structure that can apply to com-

plex systems in general; here it is instantiated with an in-
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stances of our Spiky-RBN components. The bottom two

(green) layers represent the explicitly implemented core

components of the system, defining the “physics” of interac-

tions, the specific environmental conditions, and the initial

conditions. The top (pink) layer represents the observable

data as gathered through analysis tooling for the particular

instance.

Between these top and bottom layers is a (blue) layer of

implicit “interaction channels”. These channels represent

the emergent ways in which (bottom layer) core components

can directly or indirectly influence each other, thereby giv-

ing rise to (top layer) observable emergent behaviours. The

channels capture the emergent interactions between the core

components, and will vary depending on the specific imple-

mentation of these components. In turn, observed emergent

behaviour is a product of these channels. These channels are

represented in their own layer in order to highlight that they

are not explicitly encoded by the bottom two layers, and that

the emergent behaviours observed depend on what interac-

tion channels are present through the runtime.

For example, in natural chemistry the core properties of

atoms give rise to a large number of such interaction chan-

nels. Different types of bonds, restrictions due to geometry,

and endogenous environmental effects (such as exothermic

or endothermic reaction effects) are all examples of emer-

gent interaction channels. These channels are closely linked

because they all derive from the same core properties.

We use this layered structure to discuss engineering emer-

gent systems towards completing tasks. Reasoning about the

behaviour of complex and emergent systems is inherently

challenging. Emergence implies that observed behaviours

are not readily apparent from the underlying components

and their interaction rules. Interaction channels present

themselves only when running the system, and are difficult

to identify and define beforehand. For a system to show

emergence and open-endedness, there has to be a rich set of

interaction channels. To provide such channels, the system

must be able to create new channels for itself, and exploit

them to produce new behaviours. Overall, a relatively small

set of core interactions has to provide a large rich set of pos-

sible interaction channels. These channels will be closely

linked, since they all derive from the same small set of core

components.

Because the system must generate its own closely linked

channels in order to show emergence, it can be difficult to

reason about it until after it has run. In order to reason about

the effects of a specific interaction channel, one would have

to observe what happens to the system when only that chan-

nel is changed. The only way to change an interaction chan-

nel is to change one of the core interactions from which it

emerges. But because all the interaction channels depend on

the core interactions, there is no way to guarantee that any

changes made will affect only the channel under investiga-

tion. So in turn, any change in observed emergent behaviour

Figure 8: A representation of an instance of a complex sys-

tem. The lower (green) layers represent explicitly defined

components. The middle (blue) layer represents the emer-

gent interaction channels. The top (pink) layer represents

a snapshot of the running instance, containing information

that has been selected for observation.

cannot in general be attributed solely to the one channel be-

ing investigated. This is a general issue with any complex

system, artificial or emergent.

In a top-down approach to engineering such systems the

developer needs to understand not only the lower two im-

plemented layers (Figure 8), but also the interaction chan-

nels that emerge from them. Attempting to engineer specific

emergent behaviour is complicated by the need to predict or

define the emergent interaction channels. The restrictions

that would have to be placed on the interaction channels in

order to get specific emergent behaviour would likely rob

the system of its ability to adapt and show novel emergence.

An alternative approach is to focus on the lower layer

components (Figure 8) comprising the core properties and

interactions. Any constraint that is maintained by all core

interactions will also be maintained by the emergent inter-

action channels. That constraint will therefore be present in

the observed emergent behaviours, provided the system is

closed and has no external stimulus (so interaction channels

are derived only from core mechanics). Here constraints on

the core properties could be used to engineer the system to-

wards a specific goal. Those constraints could be engineered

through environmental configurations and initial conditions.

The emergent behaviours of the system are then the steps

the system takes in order to reach and maintain those con-
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straints. These emergent behaviours become a by-product

of the system, and not the goal. The system can be thought

of as a tool that gives not only a possible solution to the en-

coded problem but, through its emergent behaviours, gives

an idea of how that solution was reached.

A top down approach to analysis of the system can then be

taken (pink box of Figure 8). This analysis provides a snap-

shot of the instance, and is not necessarily capable of fully

describing the interaction channels that lead to the observed

behaviours. It could however provide an idea of what algo-

rithm the system used to find a solution. This information

could in turn be used to suggest what further constraints and

initial conditions are likely to produce good results, without

having to resort to changing the core “physics” of the sys-

tem. For example, an evolutionary algorithm could be used

to explore configurations and initial conditions to generate

better instances of the system.

Conclusion and Future Work

In this paper we explore the range of dynamic behaviours

our system can exhibit by looking at different instantiations

of the model. We observe that there is a richness in the

dynamics which can be reached without changing the core

”physics” of the system.

A parallel can be drawn to Game of Life. Initial pat-

terns define different instances of Game of Life much like

the choice of atomic particles and environmental constraints

define instances of Spiky-RBN. System dynamics vary sub-

stantially depending on the instance. Some Game of Life

instances reach a “dead” state, others a dynamic final state;

there are instances that show self replication and even Tur-

ing completeness. Even complicated instances rely on basic

emergent elements, for example glider gun patterns are used

to propagate information in more complicated instances.

Game of Life is however very fragile: minimal differences

in instantiation can completely destroy complex dynamics.

Symbolic approaches to AChems are at the other end of

the spectrum. Dynamic behaviour is explicitly encoded into

the “physics” (the set of predefined reactions). As such

most of the instantiations of the system will behave simi-

larly. While this is useful in guaranteeing that behaviour will

be as expected, it inhibits the ability for new mechanisms to

emerge.

Sub-symbolic AChems aim to be in the middle of this

spectrum. By not predefining the reactions, the system can

be richer then symbolic Artificial Chemistries in terms of

emergent behaviour. Meanwhile mechanisms in the reaction

algorithm constrain the emergent properties to only those

that maintain predefined conditions, giving some level of

control.

Future work will focus on engineering instances of Spiky-

RBN. By identifying desirable properties and exploring the

emergent reaction channels that give rise to those properties

we aim to build instances with specific behaviour, for exam-

ple, ones generating composite particles with regular struc-

tures or generating reaction networks with cycles. This can

be thought of as a top-down process, leaving the “physics”

of the system fixed, and exploring the behaviours of in-

stances guided by experimentation. This process would be

akin to identifying gliders in Game of Life, and exploring

how they arose, in order to build glider guns.

As Artificial Chemistries mature and we move from an

exploratory to an exploitative phase, methods like this will

aid us in creating specific behaviours.
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