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Abstract—We show that it is possible to decrease the thickness
of the detection volume of total internal reflection fluorescence
microscopy (TIRFM) by ∼35% using a graphene layer in the
interface between glass and water layers of a typical TIRFM
structure without sacrificing the fluorescence intensity. The
highly mobile surface bound electrons of a graphene mono-layer
quenches the fluorophores that are less than ∼40 nm away from
it. The decreased detection volume using the proposed structure
will increase the resolution of a typical TIRFM technique.
We find that the results are qualitatively similar for different
incidence angles and polarizations of the excitation field. So,
the proposed structure will also find applications in variants of
TIRFM techniques, e.g., where incidence angles and polarizations
are varied.

Index Terms—Total Internal Reflection Fluorescence Mi-
croscopy, Graphene, and Detection Volume.

I. INTRODUCTION

When light propagating through a medium of high index of

refraction (glass) encounters a planar interface with a medium

of lower index of refraction (water), it undergoes total internal

reflection for incidence angles greater than the critical angle.

Although totally reflected, the incident beam creates an evanes-

cent electromagnetic field that penetrates into the medium of

low index of refraction and decays exponentially from the

interface [1]. Total internal reflection fluorescence microscopy

(TIRFM) employs this evanescent field to selectively excite

fluorophores only in a very thin layer near the substrate,

thereby achieving resolution much greater than that possible

by the diffraction limited optics [2], [3]. TIRFM has been used

for the last three decades in a wide range of applications, e.g.,

to image single molecules attached to planar surfaces and to

study the position, orientation and dynamics of molecules, and

organelles in living culture cells near the contact regions with

the glass [4], [5], [6].

Graphene is a single atomic layer of carbon arranged in a

hexagonal lattice [7], which has drawn intense interest after

being first discovered in 2004 [8], [9]. Graphene has excellent

mechanical strength, chemical stability, electro-optical tunabil-

ity as well as the highest mobility of carriers (both electrons

and holes) due to the unique conical band structure. Although,

initially, graphene was widely explored for applications in

electronics [10], in recent years, it has also shown promises

as a key element in photonics [11], optoelectronics [12],

plasmonics [13], metamaterials [14], and biology [15].

In this work, we propose a graphene-based TIRFM tech-

nique that will decrease the detection volume significantly and

thus, will increase the resolution of microscopy significantly.

In particular, we propose to place a graphene mono-layer

in the interface between glass and water layers of a typical

TIRFM technique. The mobile electrons of the graphene

quench the fluorescence of the molecules that are very close

to the graphene layer. This quenching effectively decreases the

thickness of the detection volume ∼35% of that of a typical

TIRFM technique without decreasing fluorescence intensity.

The decreased detection volume will increase the resolution

of TIRFM furthering the study of biology. We find that the

detection volume decreases for all angles of incidence greater

than the critical angle and polarizations of excitation field. So,

the proposed structure can also be used to reduce detection

volume in modified versions of TIRFM where incidence angle

and polarization variations are used to acquire image, e.g., in

polarized TIRFM.
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Fig. 1. Typical TIRFM structure where a glass-water interface is used to
generate the evanescent excitation wave.

II. PROPOSED STRUCTURE

In Fig. 1, we show a schematic illustration of a typical

structure that is used in TIRFM. The planar interface between

a glass prism (dielectric constant ǫp = 2.304) and water

(ǫw = 1.769) is used to generate the evanescent field. The

sample labelled with fluorophores is placed in water near the

interface. Excitation light incident from the prism side creates

an exponentially decaying field profile in water from the inter-

face. When fluorophores are excited by this evanescent light,



they become fluorescent and emit light, which is collected

in the prism side and converted to microscopy image using

appropriate optics [4]. In this work, we propose to place a

graphene mono-layer in the glass-water interface of a typical

structure. The excitation and collection schemes used in a

typical TIRFM technique can also be used in the proposed

technique.

III. THEORETICAL BACKGROUND

A. The Optical Properties of Graphene Sheets

The widely used model for optical response of graphene

is a very thin, two-sided surface characterized by a surface

conductivity σ(ω, µc,Γ, T ), where ω is the angular frequency,

µc is the chemical potential, Γ is the phenomenological

scattering rate, and T is the temperature. Graphene’s complex

conductivity can be determined from the Kubo formula [16],

[17], [18]

σ(ω, µc,Γ, T ) = σintra(ω, µc,Γ, T ) + σinter(ω, µc,Γ, T ), (1)

where σintra and σinter are intra-band and inter-band conductiv-

ity, respectively. The simplified intra-band contribution can be

written as [18]

σintra(ω, µc,Γ, T ) = i
1

π~2
e2kBT

(ω + 2iΓ)
{

µc

kBT
+ 2 ln

[

exp(− µc

kBT
) + 1

]}

, (2)

and the inter-band contribution can be approximated as

(µc >> kBT )

σinter(ω, µc,Γ, T ) = i
e2

4π~
ln

[

2|µc| − ~(ω + 2iΓ)

2|µc| − ~(ω + 2iΓ)

]

, (3)

where e is the electronic charge, ~ is the reduced Planck’s

constant, and kB is the Boltzmann constant.

The chemical potential µc can be tuned by application

of transverse gate voltage, electric field, magnetic field, and

chemical doping. Typically chemical potential can be varied

in the range of 0 to 1 eV. The phenomenological relaxation

rate Γ can be approximated to be 0.1 meV, as reported in

Ref. [19]. Because of the 2D nature of the graphene sheet, it

behaves as a uni-axially anisotropic material, whose dielectric

tensor can be written as

←→ǫgr =





ǫg‖ 0 0
0 ǫg‖ 0
0 0 ǫg⊥



 , (4)

where ǫg‖ and ǫg⊥ are the ordinary and extraordinary relative

permittivities of graphene. Due to the two dimensional nature

of graphene, the electric field that is polarized in the normal

direction to the graphene layer cannot excite any current

in it. So, the normal component of the permittivity or the

extraordinary permittivity of graphene is given by ǫg⊥ = 1
[20]. The ordinary or the tangential permittivity can be defined

by [17]

ǫg‖ = 1 + i
σ(ω, µc,Γ, T )

ωǫ0tgr

, (5)

where tgr = 0.264 nm is the thickness of a graphene mono-

layer. The real and imaginary parts of the graphene tangential

permittivity ǫg‖ are shown in Figs. 2(a) and 2(b) for varying

free-space wavelength (λ) and chemical potential (µc). We

note that the resonance wavelength of the graphene blue-shifts

as the chemical potential increases. In the analysis presented

in this paper, we choose µc = 0.9 meV.
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Fig. 2. (a) Real and (b) imaginary parts of the tangential permittivity of
graphene (ǫg‖) for varying wavelength (λ) and chemical potential (µc).

B. Total Internal Reflection

The critical angle for incident beam from glass is θc =

sin−1

(

√

ǫw/ǫp

)

, where ǫw and ǫp are the dielectric constants

of water and glass prism, respectively. For any polarization, if

the incidence angle (θi) of an incident wave of wavelength λ
is greater than the critical angle, then the transmitted wave is

exponentially decaying with the distance from the interface.

For both typical and proposed structures, the p-polarized

excitation field can be written as [25]

Eex = E0tp(x̂
√

ǫp sin
2 θi − ǫw + jẑ

√
ǫp sin θi) exp(−z/2d),

(6)

and the s-polarized excitation field can be written as

Eex = E0tsŷ exp(−z/2d), (7)

where d = (λ/4π)
√

ǫp sin
2(θi)− ǫw is the penetration depth,

E0 is the amplitude of incident light, and tp and ts are

Fresnel transmission coefficients for p- and s-polarized light,

respectively. The Fresnel coefficients of anisotropic layered

media are calculated using the 4 × 4 transfer matrix method

[21], [22], [23].

C. Fluorescence Near Planar Stratified Media

Flurophores are molecules that absorb light at a specific

frequency and emit at a different frequency. The emitted fluo-

rescence is collected by appropriate optics. If the fluorophores

are randomly oriented and the concentration C(z) is only z
dependent, then the collected fluorescence intensity from a

pixel in a planar microscope can be written as [24], [25]

F = k

∫

dz C(z)[w⊥(z)Q⊥(z) + w‖(z)Q‖(z)]

= k

∫

dz C(z)g(z), (8)

where k is a proportionality constant consisting of conversion

factors, normalization and arithmetic constants, w⊥,‖(z) are

the weighting terms, and Q⊥,‖(z) are the collection efficien-

cies for vertical and horizontal dipoles. The weighing function

g(z) = [w⊥(z)Q⊥(z) + w‖(z)Q‖(z)] acts as a mask on the

concentration profile and selects the region of sample volume

whose concentration contributes to the collected fluorescence



intensity. The shape of the weighing function g(z) determines

the thickness of detection volume. Calculation of g(z) requires

evaluation of collection efficiencies and weighing terms.

Collection efficiency is the ratio of fluorescent energy

collected by the imaging system to the total emitted energy

and it depends on the position, orientation and environment

of the fluorophore. The theory for calculating collection effi-

ciencies for fluorophores in any stratified media is outlined in

Refs. 24 and 25. We use this theory to calculate the collection

efficiencies for horizontal and vertical dipoles in typical and

proposed structures and show them in Fig. 3. In the proposed

structure, the collection efficiencies decrease significantly if

the fluorophores are near the interface.
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If Eex = x̂Eex
x + ŷEex

y + ẑEex
z is the phasor representation

of the excitation electric field, then the weighting terms can

be written as

w⊥,‖(z) = |Eex
x |2w⊥,‖

x (z)+ |Eex
y |2w⊥,‖

y (z)+ |Eex
z |2w⊥,‖

z (z).
(9)

The detail forms of the parameters w
⊥,‖
x,y,z(z) are given in

Ref. 24. The parameters w
⊥,‖
x,y,z(z) are functions of lifetime

ratio η(z) = τ⊥(z)/τ‖(z), where τ‖(z) and τ⊥(z) are the

lifetimes of horizontal and vertical dipoles situated at height

z.

IV. RESULTS

The lifetimes for horizontal and vertical dipoles in the

typical and proposed structures are shown in Fig. 4(a). The

lifetime ratio function η(z) for the typical and proposed

structures is shown in Fig. 4(b). We note a difference in η(z)
in a typical and the proposed structure when the fluorophores

are near the interface. The weighing terms, which are functions

of the lifetime ratio η(z) are shown in Fig. 4(c).

Figure 5 shows the weighing function g(z) that selects

a region of the sample, where the fluorophores are excited

to emit light and contribute to the collected fluorescence.

Figure 5(a) shows the weighing function for different values of

incidence angle of p-polarized excitation field for the typical

TIRFM structure. We note that, for any incidence angle,

the weighing function decreases with height (z) from the

glass-water interface. The weighing function in the proposed

structure is shown in Fig. 5(b) for p-polarized excitation. We

note that, for a region close to the interface, the weighing

function is zero due to quenching of fluorophores by the

graphene layer. The quenching of fluorescence decreases the

0 250 500
0

0.5

1

1.5

z (nm)

L
if
et
im

e
(n
o
rm

.)

 

 

(a)

τ
‖
G(z)

τ
⊥
G (z)

τ
‖
T (z)

τ
⊥
T (z)

0 250 500
0

0.5

1

1.5

z (nm)

L
if
et
im

e
R
a
ti
o

 

 

(b)

ηG(z)
ηT (z)

0 1 2
0

2

4

6

8

η

W
ei
g
ht
s

 

 

(c)

w⊥
x (z) = w⊥

y (z)

w⊥
z (z)

w
‖
x(z) = w

‖
y(z)

w
‖
z(z)

Fig. 4. (a) Lifetime of horizontal and vertical dipoles with position in
typical and proposed structures, (b) Lifetime ratio with position in typical
and proposed structures, and (c) weighing terms with lifetime ratio.

effective thickness of sample layer excited by the p-polarized

field. We observe similar results when the excitation light is

s-polarized, as shown in Figs. 5(c) and 5(d). The amplitude

level of the weighing functions in the typical and proposed

structures are similar.

We calculate the full width at the half maximum (FWHM)

of the weighing function g(z) to determine the thickness of

the detection volume in the z-direction. Figure 6(a) shows

the FWHM thickness of the detection volume for p-polarized

excitation in the typical (δpT ) and the proposed structures (δpG).

We find that the FWHM thickness of g(z) of the proposed

structure decreases by ∼80 nm and ∼40 nm for an angle of

incidence of 65◦ and 85◦, respectively. Similar quantitative

results are found for s-polarized excitation.
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V. CONCLUSION

We used mono-layer graphene in the glass-water interface to

modify the behaviour of TIRFM and found decreased detection

volume without decreasing fluorescence intensity. We found

that the detection volume in TIRFM can decrease as much

as ∼35% with the use of a graphene mono-layer. The results

remain qualitatively the same for both p- and s-polarized light.
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