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Coming Back into the Loop: Drivers’ Perceptual-Motor

Performance in Critical Events after Automated Driving

Tyron Louw∗, Gustav Markkula, Erwin Boer, Ruth Madigan, Oliver Carsten,
Natasha Merat

Institute for Transport Studies, University of Leeds, LS2 9JT, Leeds, United Kingdom

Abstract

This driving simulator study, conducted as part of the EU AdaptIVe project,

investigated drivers’ performance in critical traffic events, during the resumption

of control from an automated driving system. Prior to the critical events, using a

between-participant design, 75 drivers were exposed to various screen manipulations

that varied the amount of available visual information from the road environment and

automation state, which aimed to take them progressively further ’out-of-the-loop’

(OoTL). The current paper presents an analysis of the timing, type, and rate of

drivers’ collision avoidance response, also investigating how these were influenced

by the criticality of the unfolding situation. Results showed that the amount of

visual information available to drivers during automation impacted on how quickly

they resumed manual control, with less information associated with slower take-

over times, however, this did not influence the timing of when drivers began a

collision avoidance manoeuvre. Instead, the observed behaviour is in line with recent

accounts emphasising the role of scenario kinematics in the timing of driver avoidance

response. When considering collision incidents in particular, avoidance manoeuvres

were initiated when the situation criticality exceeded an Inverse Time To Collision

value of ≈ 0.3 s−1. Our results suggest that take-over time and timing and quality

of avoidance response appear to be largely independent, and while long take-over

time did not predict collision outcome, kinematically late initiation of avoidance

did. Hence, system design should focus on achieving kinematically early avoidance

initiation, rather than short take-over times.

Keywords: driver behaviour, automated driving, situation awareness, reaction time,

critical event kinematics
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1. Introduction

The advent of automated vehicles promises a number of benefits, including an

increase in the flow and capacity of the road network (Kesting et al., 2008, Ntousakis

et al., 2015), a wide range of economic benefits (Fagnant and Kockelman, 2015), an

increase in shared mobility (Fagnant and Kockelman, 2015), and a reduction in energy

consumption (Anderson et al., 2014). Many of these forecasts have received a great

deal of attention in recent years, including those predicting that vehicle automation

will result in a reduction in road traffic accidents (Bertoncello and Wee, 2015).

The aim of partial (SAE, 2016; Level 2; L2) automated driving systems is to relieve

drivers of the moment-to-moment demands of the control (lateral and longitudinal),

yet not supervision, of the driving task. In conditional (SAE Level 3; L3) automated

driving systems, drivers can relinquish both control and supervision of the driving

task. However, drivers are still expected to be responsible for the safety of the

vehicle when operating these systems, and should be available to resume manual

control, should the system reach some limit, for example, due to poorly marked lane

boundaries. During automated driving, drivers may shift their attention away from

information relevant to the driving task, for instance, the traffic environment or the

status of the automated driving system, to one of a range of non-driving related

activities (Carsten et al., 2012). This shift in attention potentially impairs drivers’

ability to perceive, comprehend, and predict events in the road scene, diminishing

their situation awareness (SA) (Endsley, 1995, De Winter et al., 2014). A key human

factors concern regarding L2 and L3 systems is that drivers with deteriorated SA may

be ill-prepared to regain the attention and motor control necessary to safely navigate

the vehicle, if a system limit is reached and manual intervention (or ’take-over’)

is required; an issue often referred to as the out-of-the-loop (OoTL) performance

problem (Endsley and Kiris, 1995).

There is evidence to suggest that the non-driving related task drivers engage in

during automation may affect how quickly moreover, safely they can resume control

(Gold et al., 2013; Zeeb, Buchner, and Schrauf, 2015; Radlmayr et al., 2014; Merat et

al., 2014; Louw et al., 2015), though there is little consensus. For instance, Merat et

al. (2012) compared drivers’ responses to critical incident scenarios, while engaging in

a verbal ”20 Questions Task” (TQT). Compared to when drivers were not engaging in

the TQT, the TQT had no effect on how long it took drivers to start the lane change,

but it did affect their ability to reduce the vehicle’s speed to a safe level quickly.

In contrast, Neubauer et al. (2012) found that drivers engaging in a mobile phone

conversation during a take-over, had shorter brake reaction times to a lead vehicle,
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compared to those who were not engaging in a mobile phone conversation. This lack

of consensus is not surprising as studies have employed different experimental traffic

scenarios (Naujoks et al., 2014, Radlmayr et al., 2014), with varying time-budgets

(Gold et al., 2013; Damböck et al., 2012; van den Beukel and van der Voort, 2013),

and human-machine interfaces (HMI), and in simulators of varying degrees of fidelity.

As non-driving related tasks demand different levels of drivers’ visual attention, it is

important to compare the effect of a range of tasks.

In this study, conducted as part of the EU AdaptIVe project, we aimed to

systematically take drives OoTL, by applying a number of screen manipulations that,

to varying degrees, limited the amount of system and environmental information

available to drivers during automation, before presenting critical and non-critical

take-over events. During these events, instead of a ’take-over request’, we used an

’uncertainty’ alert, which required drivers to monitor the road scene and determine

whether there was a need to resume control from automation. These manipulations

were introduced by Louw et al. (2015, 2016) and Louw and Merat (2017), and

are detailed further below. Previously, we showed that, during automated driving,

drivers’ eye-gaze concentration was differentially affected by the OoTL manipulations

(Louw and Merat, 2017), as was the location of drivers’ first eye-fixations in the road

scene, after the manipulations ceased (Louw et al., 2016). However, these differences

resolved within 2 s of the manipulations ceasing. While these studies have illustrated

how vehicle automation affects drivers’ visual attention when ’coming back into the

loop’, precisely whether and how the degree of visual information available to drivers

during automation affects their perceptual-motor performance during the take-over

is not clear, nor is what constitutes ’good’ performance, in this context. This study

aimed to investigate these issues.

A number of measures and metrics have been used to study drivers’ take-over

process once they have resumed control, including time to hands-on the steering wheel

(Zeeb, Buchner, and Schrauf, 2015), time to disengage automation (take-over time;

Damböck et al., 2014; Gold et al., 2014; Zeeb, Buchner, and Schrauf, 2015, 2016),

reaction time to an obstacle (Neubauer et al., 2012), first gaze to the road centre

(Gold et al., 2013; Louw et al., 2016). Take-over time in particular has been used

widely to judge driver performance during the resumption of control (for a review see

Eriksson and Stanton, 2017). However, we have previously argued that take-over time

measures may not be the most appropriate indicator of drivers’ preparedness for, or

appreciation of the unfolding situation (Louw et al., 2015), as drivers could simply be

reacting to take-over requests (TOR) from the system. Indeed, as reported in studies
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on braking behaviours in manual driving, there exists a driver-related delay between

initial brake application and full emergency braking (Ising et al., 2012; Hirose et al.,

2008; Perron et al., 2001; Kiesewetter et al., 1999; Yoshida et al., 1998). Therefore,

the current study analysed not only drivers’ take-over time, but also, the time it takes

for them to react to a threat in the road environment, as was considered by others,

such as Petermeijer et al. (2017).

While understanding the timing (Gold et al., 2013) and sequence (Zeeb, Buchner,

and Schrauf, 2016) of behaviours during the take-over is important, there is also

a need to understand whether, and how, automation affects the quality of drivers’

vehicle control following a take-over, as drivers do not mitigate all risk just by

resuming control or initiating a manoeuvre. Quality of vehicle control has previously

be described by vehicle-based measures, such as maximum accelerations during vehicle

control in the transition (Gold et al., 2013; Zeeb, Buchner, and Schrauf, 2015; Hergeth

et al., 2016), minimum Time To Collision (TTC; Gold et al., 2013, Louw et al., 2015),

minimum time headway to an obstacle (Merat and Jamson, 2009; Merat et al., 2014;

Louw et al., 2015). However, their interpretation is often constrained to the particular

scenario under investigation. Therefore, to provide scenario-independent measures of

drivers’ capabilities for vehicle control, and thus take-over quality, a possible solution

is to analyse drivers’ responses in relation to the kinematics of an unfolding situation,

i.e. the criticality at the point at which they respond. Inverse Time To Collision

(invTTC), for example, is a measure that accounts for the visual looming effect of a

braking lead vehicle (Lee, 1976; Summala et al., 1998; Groeger, 2000; Kiefer et al.,

2003, 2005), and is an important crash risk indicator (Kondoh et al., 2008). The

looming argument is closely related to the tau hypothesis. Inverse tau is the ratio

between the lead vehicle’s optical expansion rate on the driver’s retina, and its optical

size, therefore, describing visual looming. Inverse tau is simply a visually available

estimate of invTTC (Lee, 1976), though the latter was used in the current paper due

to it being easier to calculate.

Victor et al. (2015) and Markkula et al. (2016) used this measure to show that

a majority of drivers involved in naturalistic crash and near-crash scenarios during

manual driving, reacted within 1 s of the kinematic urgency of the scenario, reaching

values of invTTC ≈ 0.2 s−1, which suggests that the timing and response rate of

drivers’ initial response appears to be anchored to the criticality of the unfolding

event. Based on their findings, Markkula et al. (2016) proposed that how drivers

make use of and act on visual looming information from a lead vehicle in manual

driving may also explain drivers’ response processes when suddenly brought back into
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the control loop in automated driving. Some evidence of this in automation may be

found in an extended interpretation of the work of Gold et al. (2013). The authors

found that drivers who were given longer time budgets in a take-over scenario took

longer to intervene. However, it may be that the visual looming effect played some

part in when drivers decided to intervene, and the current paper seeks to investigate

this in more detail. If not being in physical vehicle control due to automation causes

a mismatch between drivers’ internal model of a vehicle’s dynamics and the actual

vehicle dynamics (Russell et al., 2016), then their ability to respond in manner that

is appropriate for the criticality of the situation in hand may be impaired (cf. Fajen

and Devaney, 2006; Fajen, 2008; Markkula et al., 2016).

The current study sought to evaluate this hypothesis, by analysing the timing and

rate of drivers’ responses (i.e. how fast they move brake pedal and steering wheel) in

relation to the kinematics of the unfolding situation, and how this interacts with the

degree of visual information available to drivers pre-take-over.

We hypothesised that drivers deprived of all visual information from the system

and road environment would be furthest OoTL and, therefore, take-over control later

and have the least consistent perceptual-motor control, than those who performed

visual and non-visual tasks pre-take-over. However, drivers who had access to all

visual information during automation were hypothesised to be the most in the loop

and would, therefore, take-over control the earliest and have the most consistent

perceptual-motor control during the transition.

2. Methods

2.1. Participants

Following ethical approval from the University of Leeds Research Ethics Committee

(Reference Number: LTTRAN-054, seventy-five drivers (41 male), aged 21-69 years

(M=36, SD=12) were recruited via the participant database of the University of Leeds

Driving Simulator (UoLDS) and were reimbursed £20 for participation. Participants

had normal or corrected-to-normal vision. Their average annual mileage was 8290

miles (SD=6723), and all participants had held a full driving licence for at least three

years (M=16, SD=12) and drove at least twice a week. Participants details for each

group are displayed in Table 1.

2.2. Materials

The experiment was conducted in the fully motion-based UoLDS, which consists of

a Jaguar S-type cab housed in a 4m spherical projection dome with a 300◦ field-of-view
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Table 1: Participant demographics for each OoTL condition.

Condition No. years holding

a full UK driving li-

cense (SD)

Mean annual

mileage (SD)

Mean age

(SD)

Number of

Male par-

ticipants

Number of

Female par-

ticipants

No Fog 16.07 (9.76) 9236 (12037) 36 (9) 8 7

No Fog + n-back 15.2 (10.29) 8780 (2392) 37 (11) 9 6

Light Fog 19.57 (14.13) 9967 (6650) 38 (13) 10 5

Heavy Fog 19.73 (16.5) 7800 (4068) 39 (15) 10 5

Heavy Fog + Task 9.89 (7.19) 5333 (3590) 29 (10) 4 11

projection system. A v4.5 Seeing Machines faceLAB eye-tracker was used to record

eye movements at 60Hz.

2.3. OoTL Manipulations

To vary the degree to which drivers had access to visual information from the

system and road environment during automation, we applied one of five OoTL

manipulation techniques, which have been described previously in Louw et al. (2015,

2016) and Louw and Merat (2017), but are repeated in Table 2 and shown in Figure 1.

As outlined in Figure 1, it was anticipated that drivers in the No Fog conditions would

be the most in the loop and drivers in the Heavy Fog + Task condition would the

most out of the loop (See Table 2). For the conditions that used a fog manipulation,

we drew a canvass over the existing screens to change the brightness. The colour of

the canvass was set to RGB 0.5 0.5 0.5 and the transparency was set to 0.0 for Heavy

Fog and 0.09 for Light Fog, where 0.0 is no transparency and 1.0 is full transparency.

In the two task conditions, participants were expected to engage with the tasks.

However, in the other conditions, participants were not instructed to behave in any

particular way.

2.4. Automated driving system

The automated driving system was only available when the vehicle was travelling

between 65 and 75 mph in the centre of the middle lane. Drivers could engage the

system by pressing a button on the steering wheel. When automation was engaged,

and drivers’ hands and feet were off the controls, automation could be disengaged by

either pressing a button on the steering wheel, turning the steering wheel more than

2◦, or depressing the brake pedal. If participants did not engage automation within

5 s of maintaining the vehicle position in the centre of the middle lane, the system

engaged automatically. Once engaged, the system assumed lateral and longitudinal
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Table 2: Description of the OoTL conditions.

Condition Description Motivation/Aim

No Fog The road scene was not manipulated in any way. This served as a baseline condition, where

drivers had access to all visual information

from the system and road environment dur-

ing automation.

No Fog + n-back The road scene was not manipulated in any

way, but participants completed the 1-back task

(Mehler et al., 2011) during automation, where

they heard a sequence of single digit numbers and

were expected to repeat out loud the last number

presented.

The aim was to simulate situations where

drivers had access to all visual information

from the system and road, but they were

engaged in a non-visual task.

Light Fog A translucent grey filter was superimposed on the

road scene.

The aim was to give drivers the opportu-

nity to perceive elements in the immediate

vicinity of the road environment but not

further afield, and to hinder their ability to

accurately predict how road events might

unfold in the future.

Heavy Fog An opaque grey filter overlaid the road scene block-

ing all visual information from the road environ-

ment.

The aim was to simulate situations where

drivers are completely looking away from

the road scene and are unaware of the traf-

fic conditions but not engaged in any other

activity.

Heavy Fog +

Task

An opaque grey filter overlaid the road scene block-

ing all visual information from the road environ-

ment. A visually presented secondary task was

projected onto the front scene, which involved a se-

ries of web-based multiple-choice IQ test questions

requiring verbal answers. Questions related to

visuo-spatial shape-matching, general knowledge

questions, and moderately challenging mathemat-

ics.

The aim was to simulate situations where

drivers are not attending to visual informa-

tion from the system or road environment,

due to interaction with a visual secondary

task.
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Figure 1: An example of drivers’ view in the (a) no fog, no fog + n-back, (b) light fog, (c) heavy

fog, and (d) heavy fog + task conditions..

control and adjusted the vehicle’s speed to maintain 70 mph, which is the national

speed limit for dual carriageways and motorways in the UK. All participants were

told in the pre-experiment briefing session that they were to follow the normal rules

of the road.

2.5. Human-machine interface

The human-machine interface (HMI) used for automation status related to the

colour of a steering wheel symbol located in the vehicle’s central display unit (Figure

2). This was solid grey when automation was unavailable, flashed green when available,

and appeared solid green when active. For each event (see below), at the end of the

OoTL manipulations, instead of a take-over request, drivers were presented with an

’uncertainty alert’. This was indicated by a flashing yellow symbol, which invited

drivers to monitor the roadway and intervene, if they deemed necessary. If the driver

deactivated the automation, the symbol appeared solid red for 2 s. Automation

activation and deactivation were accompanied by an auditory tone (1000Hz, 0.2 s).

In all conditions, a Forward Collision Warning (FCW) symbol included to the left

of the automation status symbol gave drivers a visual estimate of the lead vehicle

headway and a continuous alarm sounded if drivers reached an acceleration-based

time-to-collision (TTC) of 2 s.
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Figure 2: An example of the in-vehicle HMI with the Forward Collision Warning symbol on the left

and the Automation Status Symbol on the right (flashing green in this example).

2.6. Experimental and Scenario Design

Five groups of 15 participants each were recruited for this study. All participants

conducted an automated and manual (without the OoTL manipulations) drive, which

were counterbalanced across participants. However, given the scope of this paper,

only results of performance during the automated drive is included here. A 5 X 2

repeated-measures mixed design was used, with OoTL Manipulation (No Fog, Light

Fog, Heavy Fog, Heavy Fog+Quiz, No Fog+n-back) as a between-participant factor

and Event Number (1-6) as a within-participant factor.

Each experimental drive lasted about 20 minutes and encompassed six discrete

car-following events, within a free-flowing three-lane motorway, with ambient traffic.

As shown in Figure 3, each drive contained two critical events (2,6) and four non-

critical events (1,3,4,5). For all events, 7 s before the uncertainty alert, a vehicle

entered the lane ahead, from the right. In the critical events, after 3 s of the OoTL

manipulations ending, the lead vehicle decelerated at a rate of 5.0 m/s2. This resulted

in a collision if, after 3 s from the lead vehicle brake onset, there was no driver action.

In the non-critical events, after 3 s of the OoTL manipulations ending, the lead

vehicle either sped up or changed lane to the left, nullifying the event criticality.

2.7. Procedure

Upon arrival, participants read a hand-out which contained details of the ex-

periment, but which did not include information on the critical situations. After

signing the consent form, participants completed a 15-minute familiarisation drive,

consisting of non-critical events only. This began with a short manual drive. Once

familiar with the simulator controls, participants practised activating/deactivating
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Lead  vehicle

Non-critical Critical

1 2 3 4 5 6

≈150s

a b dc

Ego vehicle

100 s 3 s 3 s30 s

Event:

Figure 3: Schematic representation of each discrete event in the experimental drive. (a) to (d)

represent various phases of the drive, where (a) denotes automation being engaged, (b) denotes the

start of the OoTL manipulations, (c) denotes the end of the OoTL manipulations and the start of

the uncertainty alert, and (d) denotes the start of the lead vehicle braking in the critical event.

the automation, were shown how the HMI communicated automation states, and

experienced the OoTL manipulations. Participants then completed the experimental

drive described in the previous section and shown in Figure 3. Each event began

with a 30 s period of automated driving with no OoTL manipulation, after which

the manipulations would be active for 100 s before ceasing and being replaced by an

uncertainty alert. Participants completed a post-experiment survey, which probed

aspects relating to trust and acceptance of the automated driving system. However,

no interesting results emerged, therefore, and in the interest of space and scope of

the paper, they are not included here.

2.8. Analysis of drivers’ perceptual-motor performance

Reaction time measures

Two metrics were adopted for quantifying timing measures during the take-over

process: The first was take-over time (t take−over), which was defined as a measure of

the time between the end of the OoTL manipulations and a driver’s disengagement

of the automated driving system (by either pressing a button on a steering wheel,

turning the steering wheel more than 2◦, or depressing the brake pedal). We also

computed action time (taction), which was defined as the time from the end of the

OoTL manipulation, to when the driver started a significant deceleration or steering

action that was clearly intended to mitigate the impending crash. It is worth noting
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that participants were not given any instruction as to how they should deal with a

potential collision scenario.

During our studies, we have found that, in many cases, drivers touched the steering

wheel but did not initiate an evasive steering action, and similarly, they often pressed

the brake pedal but did not engage in an evasive braking action. Therefore, we looked

for a clear steering or braking action and then searched for the starting point of

this committed action. We developed a MATLAB (version R2015b, MathWorks)

tool to allow the experimenter to judge when the driver committed to their response

action. The following steps were taken to analyse taction for the braking and steering

responses, collected at a sampling rate of 60 Hz:

1. The brake pedal signal and steering wheel signal were each filtered with a 1st

order low-pass Butterworth filter, with a cut-off frequency of 3 Hz for braking,

and 6 Hz for steering.

2. (a) For braking, the first local maximum brake pedal sample greater than 4

was identified (Red diamond marker in Figure 4). The brake pedal sample

represented a unit-less value of brake effort, on a scale of 0 to 450.

(b) For steering, the local maxima and minima values with an amplitude

threshold of ±2.5◦ were first identified, as per Schmidt et al. (2014). Then,

the global maximum steering wheel angle amplitude prior to the lane

change manoeuvre was identified (Red diamond marker in Figure 5).

3. To identify the start point of the manoeuvre (taction), two criteria were used.

First, we identified the end of the plateau in brake or steering signal before the

point identified above, such that there was less than a 0.0005 difference in values

between consecutive samples (Red square markers in Figures 4 and 5). Second,

to ensure accuracy, each start point was manually confirmed on a case-by-case

basis, based on changes to the vehicle’s speed and longitudinal acceleration, for

braking, and the vehicle’s offset and lateral acceleration, for steering. Minor

adjustments to the location of the start points were made where necessary.

4. taction was calculated as the time from the end of the OoTL screen manipulations

(Figure 3) to the time corresponding to the start point identified in the previous

step.
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Figure 4: Example plot from the analysis of a brake signal, to determine taction. Longitudinal

acceleration values are multiplied by 10 for illustration purposes.

Figure 5: Example plot from the analysis of a steering signal, to determine taction. Lateral

acceleration and vehicle offset values are multiplied by 10 for illustration purposes.

12



Vehicle control

To determine the quality of drivers’ vehicle control after resuming control, we

considered whether drivers were able to scale the rate of their collision avoidance

response to the event criticality. For this, we calculated and correlated two different

measures.

The first measure was Inverse Time To Collision (invTTC; Kiefer et al., 2003,

2005) at taction, and was used to quantify the criticality of the unfolding event at the

point drivers began their collision avoidance manoeuvre. invTTC was calculated as

relative speed divided by distance gap between the ego and lead vehicle, which takes

the lead vehicle deceleration into account.

The second measure was the maximum derivative (Dmax) of the control input

that drivers used to avoid the collision, and was used to assess the rate and force of

drivers’ response to the critical event (Green circle marker in Figure 4 and Figure

5). Dmax was taken from the time period between the response onset (taction) and

the maximum value of the respective control input. If drivers changed lane, then

steering wheel angle was used, and if they braked, then brake pedal position was

used. If drivers braked then steered, then steering wheel angle was used. For both

steering avoidance (Markkula et al., 2014) and braking avoidance (Markkula et al.,

2016), drivers scale the rate of their avoidance manoeuvre (i.e. Dmax), to looming, as

measured by invTTC. By correlating invTTC at taction and Dmax, we aimed to assess

(i) whether similar situation-adaptive control behaviour would be present just after

a take-over from automated driving, and if so, (ii) whether it would be affected by

the OoTL manipulations. Specifically, as suggested in the Introduction, that drivers

who had access to less visual information during automation, would generally have a

more scattered correlation between invTTC at taction and Dmax.

As braking and steering inputs are measured in different units, they could not

be analysed as a single data set, without first being transformed. To achieve this,

separate regression equations were calculated for the steering and braking responses

between invTTC and taction. Next, the Dmax values of the braking responses were

transformed such that the intercept and slope of the regression equation was the

same as that of the steering responses, allowing for the comparison of braking and

steering responses.

Statistical analyses

The data were not normally distributed, therefore, Kendall’s non-parametric rank

correlation was used on the correlations between t take−over and taction, and between

invTTC at taction and Dmax. In addition, Kendall’s rank correlation was used because,
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compared to Spearman’s rank correlation, its p values are more accurate with smaller

sample sizes (Howell, 2012). Kendall’s rank correlation coefficient τ was used here

as a measure of goodness of fit. This was calculated using the cor.test R function in

the ’MASS’ package using the ”kendall” method (Venables and Ripley, 2002). For

illustration purposes, the approximate slopes and intercepts of the various factors

were also calculated using robust linear regression, using the rlm R function in the

’MASS’ package with default settings (Venables and Ripley, 2002). To test for an

effect of the OoTL manipulations on t take−over and taction, Kruskal-Wallis H tests were

conducted using SPSS V.21 (IBM, Armonk, NY, USA).

Included in this study, based on 15 participants in each of the five OoTL ma-

nipulation groups and two critical events per participant, there were 150 transition

cases considered for the analysis. However, twenty-six cases were excluded for various

reasons. In 13 cases, drivers avoided a collision by changing lane but, at the point

of automation disengagement, the initial steering wheel angle exceed ±5◦ (which

was possible because the steering wheel was not self-correcting) and there were no

subsequent salient steering inputs. This indicated the lane change was due to a slow

drift and the driver’s intentional response could not be determined confidently. In 11

cases, drivers steered while braking hard and thus skidded such that steering had no

effect. In 1 case, a driver did not respond at all, and in another the driver’s response

could not be determined using the method described above.

3. Results and Discussion

The results from this study will be presented with the aid of two types of graphs:

the first graph relates to the timing of drivers’ response and shows take-over time

(x-axis, t take−over) relative to action time (y-axis, taction), for example as illustrated

in Figure 6. If a data point falls on the dashed grey diagonal line, it indicates that

the driver began a collision avoidance manoeuvre at the same time as they resumed

control. The greater the distance along the y-axis between the data point and the

dashed diagonal line, the longer the time between when drivers resumed control and

initiated a manoeuvre. The red dashed lines on the x- and y-axes indicate the onset

of the vehicle brake light. The second graph relates to vehicle control and shows Dmax

(y-axis) relative to invTTC at the start of drivers’ response (x-axis), for example

as presented in Figure 7. This figure attempts to demonstrate the rate of drivers’

steering or braking input, during their collision avoidance manoeuvre, in relation to

the kinematic urgency faced by drivers when they began their manoeuvre (i.e. the

visual looming from the lead vehicle).
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Table 3: Mean (SD) of take-over time and action time for the five OoTL conditions.

No Fog No Fog + n-

back

Light Fog Heavy Fog +

Task

Heavy Fog

ttake−over (s) 3.70 (1.22) 4.11 (1.07) 4.13 (1.11) 4.39 (1.03) 4.53 (0.51)

taction (s) 4.95 (0.91) 4.93 (0.99) 4.68 (0.72) 4.96 (1.02) 5.10 (0.87)

Results from a Kruskal-Wallis H test showed that, the lower the degree of visual

information available to drivers during automation (from left to right in Figure 6), the

slower they tended to take-over control (t take−over, χ
2(4) = 9.820, p <0.05; Table 3).

However, an additional Kruskal-Wallis H test showed there was no difference between

the groups regarding when drivers began their collision avoidance manoeuvre (taction,

χ2(4) = 1.927, p = .749; Table 3), which suggests that, the further OoTL drivers

were, the higher the likelihood of a simultaneous take-over and manoeuvre initiation.

Figure 6 also shows that drivers who had access to all visual information pre-take-

over (No Fog group), were most likely to resume control before the onset of the lead

vehicle braking, suggesting more anticipatory responses. However, when drivers were

either engaged in a non-driving related task and/or had some or all visual information

withheld from them pre-take-over, they were more likely to resume control after the

lead vehicle braked. These results suggest that the more OoTL drivers were, the more

they reacted to external traffic than to system information, following the cessation of

the OoTL manipulations.

Figure 6: taction relative to t take−over for the five OoTL conditions in both critical events. Red

triangles show collisions and black circles show non-collisions. Note how, from leftmost to rightmost

panel, the general pattern is that cases group further to the right in the panel, indicating later

t take−over for more OoTL drivers whereas the scatter in the vertical direction remains largely

unchanged (no statistically significant effect of the OoTL manipulations).
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Figure 7: Dmax of response relative to invTTC at taction for the five OoTL conditions in both

critical events. Triangles show collisions and circles show non-collisions. The blue lines are for

illustration purposes only, showing the outcome of robust linear regression.

Taking the situation kinematics into account, it is clear from Figure 7 that the

lower the degree of visual information available to drivers, the more likely they were

to respond at invTTC of over 0.3 s−1. It is also evident that the majority of drivers

across the groups responded before the criticality of the situation reached a value of

invTTC ≈ 0.3 s−1. This is consistent with the findings of Victor et al. (2015) and

Markkula et al. (2016), who showed that, during manual driving, drivers reacted

within 1 s of the kinematic urgency of the scenario, reaching values of invTTC ≈

0.2 s−1. Overall, as the situation became increasingly critical, drivers scaled the

rate of their avoidance response to the criticality of the situation, just as in manual

driving, both for braking (Markkula et al., 2016) and steering (Markkula et al., 2014).

Tau values shown in Figure 7 suggest that the rates of drivers’ responses were less

scattered the lower the degree of available visual information, which goes against

our hypotheses. We proposed that Tau may be a good measure of scatter, however,

considering the distribution of the data across the groups, Tau may not be the ideal

measure, as it is sensitive to how much of the invTTC range is covered. Therefore,

larger data sets with better coverage of the invTTC spectrum and/or more detailed

analysis methods might clarify this further. Qualitative inspection of the plots in

Figure 7 suggest that the general nature of the perceptual-motor scaling, in terms of

slope and intercept, was rather similar between the OoTL manipulations.

For all cases that resulted in a collision, drivers began their avoidance manoeuvre

when the situation criticality exceeded invTTC ≈ 0.3 s−1. However, this cannot fully

account for why drivers crashed in some cases, as in other cases drivers responded at

the same criticality and avoided a collision. Further explanation can be derived from

the type of response adopted by drivers after the take-over.
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Results showed that, in the majority of cases, drivers mainly steered in response to

the lead vehicle (68/124), while in 36/124 cases drivers mainly braked, and in 20/124

cases drivers braked then steered (Figure 8). This is consistent with findings of Gold

et al. (2013) and Blommer et al. (2017), who also found that a high proportion of

drivers steered in crash-imminent situations, following a take-over, despite the fact

that previous studies have shown braking to be the more common response in manual

driving (Adams, 1994). Figure 9 shows that drivers who braked after the situation

criticality reached invTTC ≈ 0.3 s−1, were unable to avoid a collision, despite clearly

scaling the rate of their brake response to the higher criticality of the situation. This

is not surprising, as it is a well known aspect of road vehicle dynamics that steering

collision avoidance remains a feasible option for a longer time than braking avoidance,

during the run-up to a potential collision (Rice and Dell’Amico, 1974; Lechner and

Malaterre, 2015).

Figure 8: Combined frequency of drivers’ responses in CE1 and CE2.
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Figure 9: Dmax of response relative to invTTC at taction for the three response categories. Triangles

show collisions and circles show non-collisions. The blue lines are for illustration purposes only,

showing the outcome of robust linear regression.

In terms of actual number of collisions with the lead vehicle, Figure 10 shows

that all collisions occurred in Critical Event 1 (CE1). While there were five cases in

Critical Event 2 (CE2) where drivers responded after the criticality reached invTTC

≈ 0.3 s−1, it is likely that the previous exposure might have helped these drivers make

the correct decision to apply steering. In none of the cases that resulted in collisions,

did drivers resume control or initiate a response before the onset of the lead vehicle

braking, which could indicate increased decision-making time to take-over control.

However, in 14 of the 108 non-collision, drivers resumed control (13 cases) or initiated

a response (1 case) before the onset of the lead vehicle braking, which could indicate

more anticipatory responses. Finally, Figure 10 shows that regressions were similar

between the CE1 and CE2, which suggests that drivers’ motor-control was largely

unaffected by whether they had previously experienced a critical event.
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Figure 10: Dmax of response relative to invTTC at taction for Critical Event 1 and Critical Event 2.

Triangles show collisions and circles show non-collisions. The blue lines are for illustration purposes

only, showing the outcome of robust linear regression.

4. Conclusions

The analyses presented here builds on the work of Gold et al. (2013), Zeeb,

Buchner, and Schrauf (2016), and Petermeijer et al. (2015), by providing some

insights into the importance of visual information for drivers’ perceptual-motor

performance in critical situations during the resumption of control from automation.

Previously, we reported that the OoTL manipulations influenced the location of

drivers’ first eye-fixations after the manipulations ended, but that the effects resolved

within 2 s (Louw et al., 2016). However, it was not clear whether the effect of the

manipulations ended there or if they had an effect on drivers’ perceptual-motor

control. One important finding from the current analysis is that, despite there

being no differences regarding where drivers directed their visual attention, the less

visual information available to drivers during automation, the later they took over

control. We hypothesised that the more OoTL drivers were, the less consistent their

perceptual-motor performance. However, there was no difference between the OoTL

groups regarding how long it took drivers to begin a collision avoidance manoeuvre,

or, indeed, whether they would experience a crash.

In addition, our subsequent kinematic analysis showed that the degree of visual

information available to drivers pre-take-over did not influence whether and how

drivers scaled the rate of their response to the situation criticality, at least not in
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any way that could be detected with the present data and analyses. This suggests

that the level of drivers’ situation awareness during automation has an impact on

the timing of their take-over (t take−over), but not necessarily on when they began

a collision avoidance manoeuvre (taction) or the quality of their subsequent vehicle

control (Dmax). These results are in contrast to the findings of Zeeb, Buchner, and

Schrauf (2016), who found that engaging in various secondary tasks did not delay how

long it took drivers to return their hands to the steering wheel, following a take-over

request, but it did cause a small delay in how long it took them to intervene in vehicle

control.This brings into question the usefulness of take-over time as a measure of

’good’ performance in the take-over.

Another finding is that the majority of drivers responded below invTTC ≈ 0.3 s−1,

which was common for cases that avoided a collision, while all cases that resulted in

a collision shared the following characteristics: First, for all collisions, drivers began

their evasive manoeuvre when the situation criticality was above invTTC ≈ 0.3 s−1.

Second, drivers who crashed only braked instead of only steering, or braking then

steering. Third, all collisions occurred in the first critical event, which is in line with

previous findings that drivers’ familiarisation with the event and experience with the

system, results in fewer interaction errors, and safer outcomes (Engström et al., 2010;

Lee et al., 2002; Benderius et al., 2014).

Our results are generally in line with those of Gold et al. (2013) and others, who

have found that drivers who are given less time to respond to a take-over request

react faster but subsequent vehicle control results in higher accelerations. Gold et

al. (2013) argued that this indicated that lane changes were riskier and, therefore,

that take-over quality was worse. However, regarding defining drivers’ capabilities

and limitations in such scenarios, based on our analysis, we conclude that drivers’

responses following a take-over are generally appropriately scaled to the criticality of

the unfolding situation, even though highly critical situations may not be desirable

from a safety point of view. Therefore, we use take-over ’quality’ to refer to drivers’

performance in relation to the situation, rather than to the criticality of the situation

itself.

Taken together, our results suggest that it is important that, following a take-over,

drivers act on any threat as early as possible in the kinematic scenario. While in

the current study the usefulness of take-over time has been questioned, situations

giving rise to take-over event will likely vary widely, and what is important is that

drivers are able to respond to system feedback promptly. Therefore, the fact that

the OoTL manipulations influenced how quickly drivers disengaged the automated
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driving systems has important HMI design implications for automated vehicles. For

instance, HMIs that emphasise situation-relevant information before the take-over

may facilitate safer take-over situations.

With increasing situation criticality, drivers clearly attempted to adjust the

rate of their collision avoidance response. Despite this, in many cases, drivers were

unsuccessful at avoiding a collision. This indicates that, should a system-initiated take-

over be required, automated driving systems must support drivers during the transfer

of physical vehicle control, by providing either advanced warning or vehicle control

that reduces the situation criticality, via, for example, haptic shared control, Collision

Mitigation by Braking (CMbB) or Emergency Steer Assist (ESA). A supportive HMI

could also encourage drivers who respond late in the kinematic scenario to apply

steering avoidance (the situation permitting, such as the one under investigation

here).

There are a number of limitations in the present study. First, all drivers performed

a manual drive identical in design to the automated drive, where they experienced two

non-critical lead vehicle braking events. The order in which participants experienced

the manual and automated drives were counterbalanced, which means that half of the

participants would have experienced the manual drive first. This may have influenced

the timing and magnitude of drivers’ responses in the following automated drive,

which suggests that our results potentially underestimate the effect of automation

on performance. This is especially relevant when one considers that all collisions in

the automated drives occurred in Critical Event 1, and 75% of these were when the

automated drive was performed first. Second, though there was no direct instruction

for drivers to resume control, the additional warnings from the lead vehicle brake

light and the FCW alarm may have had some impact on when drivers responded.

Thus, the looming effect was not the only cue of criticality. Finally, the small sample

size in the present study meant that driver characteristics such as age, gender, and

experience, could not be considered in detail. However, the sample was selected to be

as representative of the general population as possible.

The current study sets out some avenues for future work. For example, the

scattered gaze-fixations of colliders (Louw et al., 2016), possibly contributed to their

braking response starting late in the situation kinematics, and further work is required

to ratify this link, which, if found to be true, strengthens the argument for an HMI

that is able to direct drivers’ attention to relevant information. Furthermore, what

constitutes ’quality ’ regarding driver performance in the transition will vary according

to the level of responsibility being transferred as well as the road traffic situation
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itself, which motivates the need to evaluate a range of real-world take-over scenarios.

Finally, it is important to understand further how automation impacts on the

kinematic-dependencies of driver responses to critical events, as recent work by

Blommer et al. (2017) has shown that avoidance responses come later after a

transition out of automated driving than in manual driving. It remains an open

question whether or not drivers’ scaling of avoidance responses to kinematics also

change between manual and automated modes of driving.
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