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Abstract 

This study investigated the complex settling behaviour of colloidal particles with varied 

surface charge and shape factors, of specific relevance to nuclear waste processing. Caesium 

phosphomolybdate (CPM), zirconium molybdate (ZM) and zirconium citromolybdate 

(ZMCA) were firstly synthesised, producing spheroidal, cubic and rectangular cuboidal 

morphologies respectively, and compared to agglomerated titania. While zeta-potential 

measurements indicated all simulant particles attained low isoelectric points, surface group 

leaching rendered suspensions very acidic, with CPM around its IEP, and ZM/ZMCA stable 

and positively charged. In sedimentation tests at various concentrations in water and 2 M 

HNO3, CPM and titania were found to settle with extremely high hindered settling exponents, 

consistent with aggregated structures. Exponents for ZM and ZMCA in water were both also 

well above values for spherical particles; however, this was assumed to be due to heightened 

drag effects from relative shape factors, rather than aggregation. ZMCA in particular showed 

a very high exponent of ~11.4, due to the propensity for the rod-like particles to settle in a flat 

conformation. For ZM in acid, double layer compression from the high electrolyte aggregated 

the dispersions, correlating to a significant increase in the settling exponent. An extended 

Stokes relationship was additionally used to understand theoretical limits of shape and 

aggregation on particle size prediction from hindered settling curves. Importantly, calculated 

sizes were consistent for the stable ZM and ZMCA in water, despite their non-sphericity and 

enhanced drag. The relationship failed however with agglomerated suspensions, highlighting 

its application as a general stability test for sedimenting dispersions.  

mailto:t.n.hunter@leeds.ac.uk
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1 Introduction 

Characterising the settling behaviour of particulate suspensions is a critical step in 

understanding the stability profiles of multiphase systems (both manufactured and natural), as 

well as optimising many solid-liquid separation operations [1]. For example, settling rate 

information is critical to quantifying the efficiency of gravity separators in water and minerals 

processing [2, 3], while analysing the long term sedimentation profiles of emulsions and 

dispersions in the pharmaceutical, personal care and foods industries, helps determine lifetime 

product changes [1, 4-6]. Significant fundamental knowledge of settling dynamics, fluid drag 

and particle-fluid interactions can be extrapolated from changes in measured settling velocities, 

for a wide variety of systems from dilute free settling to highly hindered sedimentation [7-9], 

in both Newtonian and non-Newtonian fluids (e.g. [10-12]). 

 

A key aspect of analysis for industrial systems, is how significantly the settling velocity reduces 

due to hindered fluid effects as particle concentration is increased. While a number of semi-

empirical relationships have been derived; such as the Vesilind exponential [13-16] or 

parameterised hindered settling models, [9, 17-19] perhaps the most widely used correlations 

are based on the Richardson and Zaki power-law relationship [20] (although a number of 

modern augmentations also exist, e.g. [15, 21]). Here, at its simplest, the reduced linear settling 

velocity of a suspension is related to the porosity (1- ɸ, the particle volume fraction) and a 

defined power-law number exponent ‘n’, which has dependency on the number of particle and 

fluid factors [8, 16].   

 

The role of particle shape on hindered settling exponents has been a focus of previous studies, 

where evidence would suggest that values increase as the particles become less spherical [22-

26] due to the enhanced drag. For particles with large aspect ratio, orientation may also be an 

important factor, where research has shown that rod-like particles in particular may naturally 

orientate towards a flat conformation of maximum resistance upon settling [11, 23, 27, 28]. 

Particle de-stabilisation and aggregation in colloidal and mineral systems also critically affects 

sedimentation dynamics (e.g. [15, 29-32]). In terms of the Richardson-Zaki exponent 

parameters, it has been shown in a number of investigations that aggregation can lead to values 
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orders of magnitude larger than observed for stable systems [15, 33-35] and it is empirically 

possible to link measured values to the size and structure of aggregates [15, 30, 36].   

 

There are a number of approaches to modelling these complex settling systems [1, 2, 7, 37]. 

Commonly, analytical and numerical methodologies extend Kynch theory [38], through 

inversion of settling rate-concentration constitutive relationships, which can predict depthwise 

suspension changes, assuming a series of defined iso-concentration rarefaction lines [2, 7, 39-

41]. However, these methods can be mathematically complex, and are difficult to interpret in 

size/shape polydisperse systems or in suspensions of varying aggregation state. Relatively 

simpler extended Stokes relationships also exist, which parameterises hindered settling effects 

on particle fall velocities as a function of particle concentration [30, 36, 42, 43]. While such 

relationships may be less fundamentally rigorous, ultimately they can derive important 

information on particle size and structure from the linear settling velocity at various particle 

volume fractions. 

 

It is clear that the influence of particle shape and aggregation are key determinants in dispersion 

settling dynamics, and understanding their combined role is critically important for many 

systems and yet relatively poorly understood. This paper seeks to de-convolute these effects 

through investigations on particles both academically interesting and industrially important. In 

particular, we utilize spheroidal, cubic and rectangular cuboidal colloids of caesium 

phosphomolybdate and zirconium molybdate, which have been previously synthesised [44], as 

non-active simulants of precipitates produced during the treatment of raffinate from nuclear 

fuel reprocessing [45-47]. While similar in their bulk chemistry, the distinct shape effects on 

their sedimentation behaviour were studied in batch settling trials at various concentrations, 

with results compared to Richardson-Zaki hindered settling fits and an extended Stokes 

terminal velocity model [42]. Experiments were conducted in both water and 2 M nitric acid 

(the latter of which mirrors conditions in nuclear operations [48]). Additionally, it is thought 

that the concentrated acid conditions may dramatically alter the stability of the particles, 

through changes to pH and the high effective electrolyte concentration.  
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2 Materials & Methods 

2.1 Materials 

This study focused on characterising the behaviour of crystalline caesium phosphomolybdate 

(herein labelled ‘CPM’ for concision) and zirconium molybdate (herein labelled ‘ZM’), which 

are known to be two of the most significant solids formed during processing of highly active 

raffinate, which precipitate when acid waste solutions containing certain levels of molybdenum 

are concentrated, following the removal of uranium and plutonium species [44-47]. Non-active, 

but chemically similar, CPM and ZM waste simulants, were manufactured according to a 

procedure outlined previously [44]. Briefly summarised, CPM was synthesised from an 

inorganic precipitation reaction of phosphomolybdic acid (80% solution, ACROS Chemicals) 

and caesium nitrate (99.8% purity, Alfer Aesar) dissolved in 2 M nitric acid (Fisher Scientific) 

maintained at 50 oC over 48 hr. Post reaction, solids were washed in acid to remove any 

unreacted reagents and dried.  

 

ZM is formed from a substitution conversion reaction from pre-made CPM. Here, synthesised 

CPM suspensions were mixed with zirconyl nitrate (Johnson-Matthey) dissolved in 6 M nitric 

acid at 90 oC over 2 weeks. Additionally, a modified ZM complex was also synthesised, 

zirconium citratomolybdate (herein labelled ‘ZMCA’), which was formed through addition of 

citric acid (Fisher Scientific) in the conversion reaction. It is assumed that the citric acid binds 

to specific surface sites, creating a citratomolybdate complex that alters the crystalline growth 

rates of certain planes, augmenting crystal morphology. It has been proven previously, that this 

process creates crystals that are chemically identical to ZM [44]. Both ZM and ZMCA were 

washed with 2 M nitric acid post-reaction to remove any non-reacted zirconium salt and were 

additionally washed with ammonium carbamate, to dissolve any non-reacted CPM and dried.  

 

Fumed 99.8% pure anatase type titanium dioxide, ‘titania’ (Degussa) was also studied, as a 

commercially available analogue to the synthesised simulant particles.   

 

2.2 Methods 

2.2.1 Particle characterisation 

Dry particle shape and size was characterised using a LEO/Zeiss 1530 scanning electron 

microscopy (SEM) (LEO Elektronmikroskope GmbH, Germany). Each sample was dried and 
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then coated with platinum before being imaged. Select images were digitised with Image J 

software to quantify size and shape characteristics. 

  

A Mastersizer 2000 (Malvern Instruments Ltd., UK) was also used to obtain particle size 

distribution information for liquid dispersions of the TiO2 and nuclear simulants. For each 

sample tested, particulate solids (at ~2 wt%) were well mixed in pH-neutral water for 30 min, 

and a few drops of the stock dispersions were added to a water-filled, stirred measuring cell 

mixed at 2000 rpm. Each sample was analysed over 10 s and 10 repeat measurements were 

carried; the average of these 10 measurements are presented in the paper. 

 

Particle zeta-potentials for all species were measured with a Nanosizer ZS (Malvern 

Instruments Ltd., UK). Dispersions at a concentration of 1000 ppm, were made for all species, 

and well mixed under sonication for 30 min. 10-4 M potassium nitrate (KNO3) was used as a 

background electrolyte in all cases. Zeta-potential averages from 10 measurements were taken 

at various dispersion pH, altered either using potassium hydroxide (KOH) or nitric acid 

(HNO3).   

 

Particle density was measured using an AccuPyc 1330 helium pycnometer (Micromeritics 

Instrument Corporation, US). The input weight of the solids were measured, and density is 

determined by the pressure change of helium in a calibrated volume. 

 

2.2.2 Settling studies 

The sedimentation rate as a function of volume fraction for all species, was determined using 

a Turbiscan® (Formulaction, Ramonville, France), as reported elsewhere [15, 48]. Here, 20 

mL of well mixed particle dispersions, were placed in a cylindrical glass measurement cell. 

Backscattered light intensity measurements (at 45o) were taken through its entire length, as a 

function of time, to establish sedimentation profile of the particles under gravity. In a typical 

experiment, samples were left to run for 3 hr 30 min, and data was collected every 2 min. The 

suspension sediment interface at each time interval was determined from a defined reduction 

in the threshold backscatter intensity. Particle fractions of 2 – 20 vol% were investigated.  
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3 Results & Discussion 

3.1 Particle characterisation 

Scanning Electron Microscopy (SEM) images highlighting the shape of the titania, CPM, ZM 

and ZMCA are shown in Fig. 1 (a-d). The CPM appear as ‘spheroidal’ particles (although not 

completely spherical) of a few hundred nanometres to micron in size. Previous investigation 

on their growth mechanism [44], indicated that they form from initial small nanometre 

crystallites that fuse together creating a slightly ‘raspberry type’ morphology. The ZM and 

ZMCA are individual crystals of approximately a few microns, with the ZM displaying clear 

cubic formation, while the ZMCA is an elongated rectangular cuboidal shape. The titania by 

contrast appears as highly agglomerated clusters of nanocrystals, and while the nature of the 

aggregates are difficult to interpret under SEM because of capillary drying effects, such 

complex structuring is commonly found in similar systems [6, 48, 49], from the high 

temperature sintering that occurs in production.   

 

The Mastersizer particle size distributions (PSDs) for all four particles are shown in Fig. 2. 

While sizes appear to compare relatively well with SEMs given in Fig. 1, it is emphasised that 

the distributions for ZM and ZMCA are only qualitative, due to the theoretical interpretation 

of spherical scattering by the instrument. Hence, to gain some more quantitative information 

on the ZM and ZMCA particles, size analysis was completed on a number of digitally 

processed SEM images using Image J software, using a minimum of 100 particle 

measurements. For ZM particles, the cubic length of the particles was measured and size 

interpreted as the volume equivalent sphere diameter (the diameter of a sphere with the same 

volume as each cube). As the thickness of the ZMCA were not clearly resolved in the SEM 

images (from a lack of z-plane resolution), volume equivalence could not be calculated for 

these particles. Hence, the maximum length was simply measured as a representative diameter. 

Non-normalised number PSDs for ZM and ZMCA from SEM analysis are shown in Fig. 3, 

with both volume equivalent and maximum length diameters shown for ZM in (a) and the 

maximum length diameter shown for ZMCA in (b).  

 

Both the ZM volume equivalent and maximum length diameters presented in Fig. 3 (a) appear 

internally consistent to the Mastersizer results shown in Fig. 2 (although the sub-micron finer 

particles were difficult to resolve with the SEM analysis). These results broadly highlight the 

geometric similarity between equivalent diameters of spheres and cubes, as in effect, the 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

Mastersizer also measures the sphere equivalent volume diameter. The maximum length 

diameters measured from ZMCA (Fig. 3 (b)) are larger than the Mastersizer averages, as would 

be expected [50], with peak averages of 4 – 5 µm. The aspect ratio was also measured for 

ZMCA from the SEM images to be ~6.  

 

The zeta potential was measured for CPM, ZM and ZMCA systems with results given in Fig. 

4. All species exhibit very low pH isoelectric points (IEPs), with the IEP for CPM in particular 

being only around pH ~1.5 (just outside of the maximum measureable range) while the IEPs 

for ZM and ZMCA are around pH 3 and 4, respectively. The slight differences between ZM 

and ZMCA are interesting, owing to the fact that they are chemically identical in the bulk [44, 

47]. The only modification comes from the surface adsorption of citric acid, which leads a 

complex formation on particular surfaces, retarding the growth of those planes, resulting in the 

rod like confirmation [44]. A secondary effect of the citric acid is that it appears to alter the 

surface chemistry of the crystals, perhaps lowering affinity for hydroxide bonding leading to a 

slightly higher IEP. 

 

While there is no previous literature on the zeta potentials of these species, similar large 

negative potentials across a broad pH range have been reported for SrMoO4 particles [51]. 

Also, there are correlations to very low IEPs measured with molybdenite (MoS2) a similar 

compound to the molybdate species, with sulphur in place of oxygen [52, 53]. In the case of 

molybdenite, surface groups can react with the water forming negative MnO4
2- ions that 

dominate the interaction potential. Alternatively, we believe the surface molybdate groups in 

the CPM, ZM and ZMCA complexes may partially dissociate to form hydrates in water, 

perhaps through their bound water groups (as ZM hydrates have been shown previously in 

literature [54]) which would lead to strong negative charges from OH- groups, and thus the 

observed highly negative potentials. If bound water groups were forming hydrate groups on 

particles, it would be expected that the dispersion would acidify from released H+ ions. 

Therefore, to test particles reactivity, the final pH of CPM, ZM and ZMCA dispersions made 

with particle concentrations from 2 – 8 vol% were tested 48 hr after preparation, and displayed 

in Fig. 5.  

 

Results suggest high levels of acidification are indeed occurring in all species, especially with 

CPM and ZM, both of which fall below a pH of 1.5 as particle concentration goes beyond 4 

vol%. Interestingly, the acid leaching infers some contrasting stability for these systems in 
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concentrations relevant to the settling studies. Despite the very low IEP of CPM, Fig. 5 

indicates that the dispersion pH may in fact be very close to this value for most particle 

concentrations, and thus some aggregation will likely occur. In contrast, acid leaching may lead 

to the ZM and ZMCA attaining stable positive charges, as the equilibrium pH is below their 

associated IEPs. It is also noted that no mass loss was observed in any of these systems over 

the same time scale, highlighting that while the pH changes, no measureable dissolution of the 

bulk particles is occurring. This result may further suggest that the pH changes are likely from 

hydration reactions with bound surface groups. 

 

The zeta potential of titania at various pH is shown in the Supplementary Materials, Fig. S1 in 

comparison to ZM. Unlike with the highly active simulant particles, the pH for settling TiO2 

systems was stable at around (neutral) pH 7. From Fig. S1, this value correlates approximately 

to the IEP, and is consistent with literature values [30, 55]. Hence, both the titania and CPM 

may similarly be presumed to be around their respective IEPs, although at very different 

equilibrium pH.  

 

3.2 Settling Studies 

To understand the expected differences in sedimentation between water and acid systems, the 

Stokes equation [5, 50, 56] was used to theoretically estimate the free settling velocities in 

dilute systems. The mean particle sizes measured from the Mastersizer (Fig. 2) were used in 

the calculation for all species. Particle densities were measured with the pycnometer to be 3.82, 

3.41 and 3.41 g/mL for CPM, ZM and ZMCA respectively, while the density of the anatase 

titania was taken to be 3.78 g/mL (as standard). Water density and viscosity were taken as for 

standard temperature and pressure, while fluid properties for the 2 M nitric acid solutions were 

taken from literature (giving an acid solution density of 1070 kg/m3 and viscosity of ~1.2 mPas 

[57, 58]). Estimated terminal settling velocities are compared for all systems in Fig. 6. 

  

The calculated rates in Fig. 6 indicate that all particles should have slightly lower settling rates 

in nitric acid (with a reduction of ~ 20%, from the increased density and viscosity of the fluid) 

and also, using the measured size means, settling rates are expected to be much lower for the 

titania and CPM, because of their much smaller sizes. It is appreciated however that 

comparisons are only qualitative, as the Stokes equation itself assumes a spherical particle 

shape for drag, which is clearly not the case for ZM and ZMCA. Indeed, it is generally known 
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that drag increases as shape becomes less spherical, especially for particles with high aspect 

ratio [23, 26, 59] and thus expected drag coefficients for ZM and ZMCA would be higher than 

for the spheroidal CPM, suggesting the Stokes equation may over estimate their respective 

settling velocities. For ZMCA in particular, drag may be significantly increased, especially if 

particles orientate towards a flat conformation of maximum drag resistance upon settling [11, 

27, 28]. 

 

The sedimentation behaviour was quantitatively compared through the Turbiscan 

measurements, where the interfacial linear settling rate was measured for all particle systems 

at concentrations of 2 to 20 vol%, and are shown in Fig. 7 (a) and (b) (in water and 2 M nitric 

acid respectively). Dotted lines represent exponential Richardson-Zaki power law fits for each 

species (to be discussed in relation to Figs. 8 and 9 following). The raw interface versus time 

plots (measured from the Turbiscan backscatter) are shown for all systems in the 

Supplementary Materials, Fig. S2 (water) and Fig. S3 (acid). It is also noted that because of a 

lack of synthesised ZMCA material, there was not adequate quantity to run settling tests for 

this particle type in acid, and only water results are reported. 

 

Data for the lowest particle concentrations of 2 vol% given in Fig. 7 may be related to the 

theoretical settling rate predictions in Fig. 6, as it is assumed concentration is low enough to, 

at least, approach a dilute environment. It is immediately obvious upon comparisons of Fig. 7 

(a) (water studies) that the settling rates of TiO2 and ZM in water at 2 vol%, are approximately 

an order of magnitude higher than estimated with the Stokes equation. This result suggests that 

extensive aggregation has occurred with TiO2 and CPM, likely due to both being near their 

respective IEPs. For the ZM and ZMCA in water, settling rates of the low 2 vol% dispersions 

are closer to predictions, given the significant limitations of the Stokes estimations from their 

non-sphericity. For settling in acid (Fig. (b)), it is clear that while sedimentation rates for the 2 

vol% TiO2 and CPM suspensions are slightly reduced, as expected, the rate for the 2 vol% ZM 

suspension is in fact higher than that in water. This behaviour suggests that aggregation may 

also be occurring for the ZM systems in acid, with increased settling rates to compensate for 

the increased fluid density and viscosity. 

  

To understand the role of particle aggregation on settling dynamics more quantitatively, settling 

data was analysed using the standard (non-modified) Richardson-Zaki (RZ) power-law 

hindered settling model [8, 20, 60]. Linearized fits are shown for the settling rate data for TiO2, 
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CPM, ZM and ZMCA in Fig. 8 (a)-(d) respectively, where the natural log of the measured 

settling rate (u) is plotted in terms of the natural log of porosity (ε). It is noted that these fits 

are also represented in Fig. 7 by the dotted lines. 

  

A number of important aspects on the influence of particle shape and aggregation state on 

suspension settling, can be ascertained from associated exponent values calculated from fit 

slopes in Fig. 8. The exponents for TiO2 and CPM (at 51.5 and 39 respectively) are an order of 

magnitude larger than the standard value of ~4.65, which is often quoted for non-aggregated 

spherical systems [8, 16, 20]. While these values are considerably above those found with 

stable dispersions, such large deviation is consistent with exponents reported for coagulated 

mineral systems [15, 33-35] and again infer a high degree of aggregation in both CPM and 

TiO2 dispersions. 

 

Fit values for ZM and ZMCA (with exponents of 9.8 and 13.6 respectively) are still 

substantially larger than expected for spherical particles. However, previous literature has 

shown distinct increases in exponent values even for well dispersed systems with non-spherical 

particles [22, 24] especially with higher aspect ratio [23, 25]; although, the measured values in 

this case are still above those generally reported. Nevertheless, given the indication of stability 

from size and zeta potential measurements, along with the qualitative correlation of settling 

rates to Stokes estimations, it is believed these values do represent those of stable dispersions 

with enhanced drag. The small size of these particles in relation to previous studies [22], with 

resulting high surface area to volume ratio and high number density, could further heighten the 

hindered settling effects in these systems. Indeed, it would be also expected that stable ZMCA 

particles would have a higher exponent as measured, due to the potential for them to orientate 

in a flat conformation, heightening the relative drag from their large aspect ratio, as discussed 

[11, 23, 27, 28].  

 

The settling rate data for TiO2, CPM and ZM in 2 M acid (shown in Fig. 7 (b)) were also 

converted to the linearized Richardson-Zaki fits, with results displayed in Fig. 9. The measured 

exponent for the TiO2 is similar to the water system (at ~49) inferring similar hindered settling 

behaviour, while the slope value for CPM at 53 is markedly higher than for water, indicating a 

higher degree of aggregation leading to enhanced hindered settling effects. For ZM, the 

increase in the exponent is proportionally even more significant (at ~25, more than double its 

value in water) which suggests that the ZM has gone from being a stable dispersion to 
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aggregated as acid is introduced. Importantly, the effect of the 2 M nitric acid will have two 

competing chemical effects on the suspensions (as well as the main physical change to fluid 

viscosity, which will also increase drag). Acid will, obviously, push the pH down to low levels 

(with measured pH values all around -1.2 to -1.3, consistent with the strong acid) where all 

particles are assumed to attain a positive surface potential, even for the CPM. Conversely, the 

acid counterions give an extremely high concentration of electrolyte, and thus the electrical 

double layer will be depressed. Results highlight the action of acid counterions in reducing the 

EDL, dominating the interaction potential of the particles and leading to high levels of 

aggregation in all systems.   

 

3.3 Validity assessment of an extended Stokes relationship 

There have been a number of previous research studies that have sought to characterise particle 

size or structural information from hindered settling curves (as recently reviewed by Piazza 

[1]). For highly aggregated systems, relationships such as suggested by Michaels & Bolger 

[36] and Valverde et al. [43] effectively consider that enhancement to the RZ hindered settling 

exponents (as qualitatively observed in relation to Figs. 8 and 9) are related to the number 

density of particles within an aggregate. Such methodologies have recently been reviewed and 

tested by Johnson and co-workers [15] in coagulated magnesium hydroxide systems. 

 

For non-aggregated systems, there is greater certainty in theoretical approaches that extend the 

Stokes equation allowing calculation of effective particle settling rates outside of the dilute 

regime [1, 42, 61, 62]. Such methodologies have the added value of extending gravimetric 

methods for size determination [4, 5]. As settling data in the current study consist of both well-

dispersed and aggregated dispersions, it was decided to assess the validity of an extended 

Stokes relationship in these complex systems. In particular, the derivation given by Mills and 

Snabre [42] was used as the basis to calculate the relative changes in estimated particle velocity 

due to hindered settling effects, and converted to equivalent diameter using the Stokes equation 

for spheres. The derived formula is given in Eq. 1, where, ds represents the calculated spherical 

Stokes diameter, µ  the fluid viscosity, (of water or 2 M acid respectively), us the measured 

settling rate in each system, (ρp - ρl) the difference in particle-fluid density, g the gravitation 

constant and Φ the particle concentration variable.  
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Importantly, we note that in Eq. 1, there is an additional constant of 4.6, which is used to alter 

the influence of the volume fraction. Mills and Snabre [42] originally gave this as an empirical 

constant, k, but matched it to the value of 4.6 by fitting with other reported experimental data. 

Interestingly, this value effectively approximates to the generally reported RZ exponent value 

for hard spheres of 4.65 [8]; although it is not derived identically. Indeed, Valverde and co-

workers [43], found fitted values closer to 6.557 in an extension to this equation for cohesive 

powders, inferring some influence of particle dispersion.  

 

Data was analysed, by taking the measured settling velocities for the systems studied at various 

concentrations given in Fig. 7, and calculating an estimated extended Stokes diameter for each 

concentration using Eq. 1. As all measured RZ exponents were much greater than the reported 

value for hard spheres, it was anticipated that results may lead to some internal dependence 

error in calculated diameters. However, it is emphasised that the sensitivity of this factor in the 

equation is relatively low, and because of the differences in derivation between a RZ power-

law fit and the given extended Stokes equation, there are questions as to correlation between 

these values. Nevertheless, this relationship was used to characterise any consistent differences 

between aggregated and non-aggregated systems, and so to better comprehend the limitation 

of this extended theory. Bar charts displaying the calculated diameters for TiO2, CPM and ZM 

with concentrations from 2 – 20 vol% in water and 2 M nitric acid are shown in Fig, 10 (a-c). 

Data for the ZMCA for concentrations of 2 – 14 vol% in water only is given in Fig. 10 (d).  

 

The calculated diameters given in Fig. 10 for TiO2 and CPM appear highly unstable and likely 

invalid (due to the clear dependency on particle concentration). While estimated sizes are 

generally larger in the 2 M nitric acid than water (perhaps as expected from a higher degree of 

aggregation) they are observed to considerably reduce as concentration is increased. This 

behaviour is likely a mathematical instability, caused by the inability for the given relationship 

to properly model the increased hindered settling effects from within the aggregation systems, 

and highlights an important limitation to the application of theoretical expressions for particle 

velocity estimation in hindered suspensions [15]. 

 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

Results for ZM and ZMCA alternatively establish a key level of insight in to the use of extended 

Stokes relationships to correlate dispersion aggregation. Estimated sizes for both ZM and 

ZMCA in water show high levels of stability (concentration independence) and give consistent 

sizes that are comparable to those measured (at least considering the aforementioned 

limitations because of their lack of sphericity). There is a slight drop in estimations for ZMCA 

at high concentrations, although this perhaps may be down to particle levels approaching the 

dispersion gel point in this system. Overall however, results show that Eq. 1 can give a robust 

estimation of particle size from sedimentation data, across a relatively broad concentration 

envelope. This consistency comes despite the fact that these particles have relatively high 

hindered settling exponent values for non-aggregated systems. 

 

Additionally, key information can be gained from the ZM data in nitric acid. Estimated size 

values in this system appear similar to TiO2 and CPM data (significantly reducing as particle 

concentration is increased). Such instability would again correlate with the evidence from the 

zeta-potential curves and dispersion equilibrium pH (Figs. 4 & 5) and the RZ linearized settling 

data (Figs.8 and 9) that while the ZM particles are a stable dispersion in water, they aggregate 

due to double layer compression in high acid environments. Hence, Eq. 1 could actually be 

used as a general test of dispersion aggregation, even in non-spherical systems with high 

hindered settling exponents, through observations to the concentration independence of 

calculated sizes.   

 

4 Conclusions 

This paper describes work into the characterisation of particulate properties and sedimentation 

behaviour of non-active nuclear waste simulants, which are precipitated products from nuclear 

fuel reprocessing, containing variable shape and dispersion properties. Colloidal suspensions 

of spheroidal CPM, cubic ZM and elongated cuboidal ZMCA, were tested along with 

commercial fumed anatase titania, in both water and 2 M nitric acid (the latter correlating to 

waste processing conditions). While all simulant particles had very low measured isoelectric 

points, surface acid group leaching, which was assumed to occur through partial dissociation 

of bound water groups, led to very low equilibrium pH in dispersions after 48 hr, significantly 

altering the associated stability of the simulant particles. 
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It was found that CPM and TiO2 systems settled as highly aggregated dispersions, in both water 

and acid conditions, with very high hindered settling exponents measured. In contrast, ZM and 

ZMCA systems appeared to settle as stable dispersions in water. While measured hindered 

settling parameters (at 9.8 and 13.6 respectively) are still above values generally reported for 

stable systems, the settling data combined with evidence from potential measurements, 

suggested these values are in fact due to enhancement of drag coefficient from shape effects. 

For ZM in acid, it appeared that double layer compression from the high electrolyte systems 

dominated inter-particle forces, aggregating the dispersions, which correlated to a significant 

increase in the hindered settling parameter.  

 

Additionally, an extended Stokes equation, as proposed by Mills and Snabre [38], was modified 

to allow the estimation of particle diameters from settling data with particle concentrations of 

2 – 20 vol%. Importantly, analysis revealed consistent calculated sizes for ZM and ZMCA in 

water, across their concentration range, providing strong evidence that the correlation 

sufficiently estimated hindered settling effects in these systems, despite the non-sphericity of 

these particles. However, for all aggregated particle systems tested, the model was un-stable 

(and did not provide concentration independence in calculated diameters) highlighting that the 

key limitation in the extended Stokes method is not particle shape, but aggregation state. This 

result also suggested that this method could be used as a specific test for dispersion conditions, 

and is a useful tool for extracting additional information from gravimetric methods for particle 

size determination.  
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Figure 1: Scanning electron micrographs (SEMs) of simulant particles at various 
magnifications; (A) TiO2 at 45k, (B) CPM at 29.32k, (C) ZM at 1.74k and (D) ZMCA at 6.74k. 

Annotated lines in ‘D’ represent length segments visualised with Image J. 
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Figure 2: Particle size distributions (volume weighted) for all simulant particles. 
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Figure 3: Particle size distributions from image analysis of SEMs (using a minimum of 100 
particles) showing (a) volume equivalent and maximum length equivalent diameters of 

synthesised ZM and (b) maximum length equivalent diameter of ZMCA particles. 
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Figure 4: Zeta-potentials of CPM, ZM and ZMCA particles at various pH. 

 

 

Figure 5: Equilibrium pH (after 48 hours) for CPM, ZM and ZMCA suspensions at various 
particle concentrations. 
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Figure 6: Estimated Stokes settling rates for the studied TiO2, CPM, ZM and ZMCA particles in 
water ad 2 M nitric acid. 
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Figure 7: Averaged linear settling rates for TiO2, CPM, ZM and ZMCA particles versus 
concentration in (a) water and (b) 2 M nitric acid (no ZMCA in this case). Dotted lines represent 

Richardson-Zaki power-law fits for each species. 
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Figure 8: Linearised Richardson-Zaki settling rate fits versus porosity (ε) for (a) TiO2, (b) CPM, 
(c) ZM and (d) ZMCA in water. 
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Figure 9: Linearised Richardson-Zaki settling rate fits versus porosity (ε) for (a) TiO2, (b) CPM 
and (c) ZM in 2 M nitric acid. 
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Figure 10: Calculated hydrodynamic diameter (using the modified Stokes equation presented 
in Eq. 1) at various particle volume fractions in water and 2 M nitric acid, for (a) TiO2, (b) CPM, 

(c) ZM and (d) ZMCA (water only). 
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Pow. Tech. – Paper Highlights 

 

 Sedimentation of Spheroidal, cubic and elongated cuboidal particle studied. 

 Stable cubic and cuboidal suspensions heightened hindered settling due to 

shape drag. 

 Aggregation of cubic particles evidenced in 2 M acid, enhancing hindered 

settling. 

 Extended Stokes model successful at estimating particle size in stable 

suspensions. 

 Extended Stokes model also a key method for determination of aggregation 

state. 


