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Abstract

A crucial issue in phase-field models for brittle fracture is whether the func-
tional that describes the distributed crack converges to the functional of the
discrete crack when the internal length scale introduced in the distribution
function goes to zero. Theoretical proofs exist for the original theory. How-
ever, for continuous media as well as for discretised media, significant errors
have been reported in numerical solutions regarding the approximated crack
surface, and hence for the dissipated energy. We show that for a practical
setting, where the internal length scale and the spacing of the discretisation
are small but finite, the observed discrepancy partially stems from the fact
that numerical studies consider specimens of a finite length, and partially re-
lates to the irreversibility introduced when casting the variational theory for
brittle fracture in a damage-like format. While some form of irreversibility
may be required in numerical implementations, the precise form significantly
influences the accuracy and convergence towards the discrete crack.
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1. Introduction

Discrete models, in which the original geometry is modified during the
computation to account for the propagation of a discontinuity are intu-
itive, and improvements such as remeshing (Wawrzynek and Ingraffea, 1987;
Camacho and Ortiz, 1996; Secchi et al., 2007) and extended finite element
methods (Belytschko and Black, 1999; Moës et al., 1999; Wells et al., 2002;
de Borst et al., 2006) have provided ways to decouple the path of a prop-
agating discontinuity from the original discretisation. Still, issues remain,
such as the proper modelling of curved interfaces in three dimensions, and
the robust implementation in three dimensions, which is a non-trivial task,
neither when using remeshing, nor when exploiting the partition of unity
concept as in extended finite elements. These drawbacks have promulgated
the development and use of distributed, or smeared approaches, where the
discontinuity is distributed over a finite width.

In this context, phase-field models have become increasingly popular for
simulating a host of physical phenomena which exhibit sharp interfaces. Ex-
amples are the modelling of solidification processes, spinodal decomposition,
coarsening of precipitate phases, shape memory effects, re-crystallisation, and
dislocation dynamics, see e.g., Chen (2002); Emmerich (2008); Moelans et al.
(2008); Steinbach (2009); Kästner et al. (2016) for overviews. The central
idea behind phase-field models is that a discontinuous interface – where a
Heaviside function placed at the interface models the jump in the primary
variable – is replaced by a smooth function with a steep slope locally. This
implies that in the gradients of the primary variable, the Dirac delta function
is replaced by a regularised Dirac function, Figure 1.

The application of phase-field models to fracture is particularly interest-
ing and challenging. Pioneering work has been done by Francfort and Marigo
(1998); Bourdin et al. (2008), who proposed a phase-field approximation of
the variational formulation for Griffith’s theory of brittle fracture based on
the Mumford-Shah potential (Mumford and Shah, 1989). A numerical im-
plementation and examples were provided in Bourdin et al. (2000); Bourdin
(2007). In this so-called variational approach to brittle fracture a sharp crack
is distributed over a small, but finite width, that is proportional to an inter-
nal length scale ℓ, Figure 1. Accordingly, the fracture energy, i.e. the energy
that is needed to create a unit area of fully developed crack, is distributed
over a finite zone. In this variational approach to brittle fracture, gradients
are included in the functional, similar to gradient-enhanced damage mod-
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els (de Borst et al., 1996; Frémond and Nedjar, 1996; Peerlings et al., 1996).
The point of departure of both models, however, is different. In gradient
damage models a mechanical approach is followed, and the damage model
is regularised by adding gradients to restore well-posedness of the boundary
value problem in the post-peak regime. The basic idea of phase-field mod-
els, on the other hand, is to replace the zero-width discontinuity by a small,
but finite zone with sharp spatial gradients in a mathematically consistent
manner.

More recently, Miehe and co-workers (Miehe et al., 2010a,b) have ex-
ploited the similarities between phase-field theories for brittle fracture and
gradient-enhanced damage models to cast phase-field models for brittle frac-
ture in a damage format by explicitly utilising notions like a degradation
function, and a damage loading function to set the irreversibility of dam-
age. Indeed, the phase-field variable was interpreted in a manner that is
synonymous to the damage variable in scalar-based damage models, start-
ing at zero for a virgin material, and monotonically increasing to one when
the material has lost all coherence. Recently, it has been shown that this
formulation of the phase-field model for brittle fracture can be made identi-
cal to gradient-based damage models for a particular choice of the damage
degradation function, the diffusion equation that governs the spread of the
damage, and the material functions (de Borst and Verhoosel, 2016). Phase-
field models have now been applied to a variety of fracture problems, in-
cluding dynamic fracture (Borden et al., 2012; Hofacker and Miehe, 2013),
cohesive fracture (Verhoosel and de Borst, 2013), and finite deformations
(Hesch et al., 2017).

A crucial issue in the phase-field approach to brittle fracture is the require-
ment that the functional Πℓ, which describes the distributed crack surface,
approaches the functional Π for the discrete crack for ℓ→ 0. When Πℓ → Π
for ℓ→ 0, the size Γℓ of the smeared crack converges to the size Γ of the dis-
crete crack. For a continuous medium such a proof exists (Chambolle, 2004),
and in Bellettini and Coscia (1994) this proof has been given for a discrete
medium, i.e. Πℓ,h converges to Π for ℓ → 0 under the condition that h ≪ ℓ,
where h is the mesh spacing. Doubt has been cast on whether Γ-convergence
can be achieved in actual computations, since, using the phase-field model
for brittle fracture as developed by Miehe et al. (2010a,b), Vignollet et al.
(2014) and May et al. (2015) have shown by numerical analyses of some sim-
ple boundary value problems that there exists a ratio ℓ/h for which the
difference |Γℓ − Γ| attains a minimum. Moreover, at this minimum the error
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Figure 1: (a) A sharp discontinuity, and (b) distributed discontinuity, smeared using the
length scale parameter ℓ.

can amount to values of 15− 20%, suggesting a significant error even for the
optimal discretisation.

Herein, we will show that this discrepancy is related to boundary effects,
i.e. the effect of a specimen of a finite size, and to the introduction of a
history variable that enforces irreversibility of the damage evolution. The
convergence proofs (Chambolle, 2004; Bellettini and Coscia, 1994) are for the
original variational formulation of Griffith’s theory (Francfort and Marigo,
1998), including its regularised form (Bourdin et al., 2000), where the phase-
field parameter merely serves as an order parameter, and is not given the
role of a history variable as in Miehe et al. (2010a,b).

To provide a proper setting we start by giving a brief outline of the phase-
field representation of a discontinuity, and the phase-field model for brittle
fracture. This is followed by an in-depth numerical analysis of a simple, but
illustrative one-dimensional problem, which provides detailed information
and serves to fully explain the observed discrepancy. Concluding remarks
complete the paper.

2. The phase-field approach to brittle fracture

2.1. Phase-field representation of a discontinuity

The basic idea of phase-field models is to approximate a discontinuity
Γ by a smeared surface Γℓ. In a one-dimensional setting the exponential
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function
d(x) = e−

|x|
2ℓ (1)

is used to approximate the discontinuous function of Figure 1(a), with ℓ
being the internal length scale parameter. The phase-field variable d ∈ [0, 1]
describes the phase-field such that d = 0 characterises the intact state of
the material, while d = 1 represents the fully broken material, similar to
the definition commonly adopted in damage mechanics. In one dimension,
Equation (1) is the solution to:

d− 4ℓ2d,xx = 0 , (2)

where a comma denotes differentiation. Equation (2) is subject to the bound-
ary conditions:

d(0) = 1 and d(±∞) = 0 . (3)

Using Euqation (2), the discontinuity Γ can be approximated by the func-
tional Γℓ

Γℓ =

∫

Ω

1

4ℓ

(
d2 + 4ℓ2d,x

2
)

︸ ︷︷ ︸

γℓ

dV , (4)

with γℓ being the crack surface density function, see Miehe et al. (2010b) for
details. In a one-dimensional setting the approximation is exact:

Γℓ =

+∞∫

−∞

1

4ℓ

(
d2 + 4ℓ2d,x

2
)
Adx = A = Γ , (5)

where A is the cross section of the bar. In a multi-dimensional setting Γℓ can
be expanded as follows:

Γℓ =

∫

Ω

1

4ℓ

(
d2 + 4ℓ2∇d · ∇d

)
dV . (6)

2.2. Application to brittle fracture

We next consider a volume Ω with an internal discontinuity boundary Γ.
As a starting point we consider the energy functional for brittle fracture in
a Griffith sense (Francfort and Marigo, 1998):

Π =

∫

Ω

ψe(ǫǫǫ) dV +

∫

Γ

Gc dA , (7)

5



where the elastic energy density ψe is a function of the infinitesimal strain
tensor ǫǫǫ: ψe = ψe(ǫǫǫ). The elastic energy density is expressed by Hooke’s law
for an isotropic linear elastic material as ψe(ǫǫǫ) = 1

2
λǫiiǫjj + µǫijǫij , with λ

and µ being the Lamé constants, and the summation convention applies. In
Equation (7) the fracture energy density is denoted by Gc. In the spirit of a
regularised crack topology, the work Wc required to create a cracked area Γ
is expressed as a volume integral which depends on the phase-field variable
d and the fracture energy density Gc:

Wc =

∫

Γ

Gc dA ≈

∫

Ω

Gcγℓ(d,∇d) dV . (8)

The next step is inspired by damage mechanics concepts and relies on the
assumption that the evolution of the phase-field is directly related to crack
growth. As such, it can be thought of as a way to model the loss of stiffness
of the bulk of the solid. For this purpose a degradation function g = g(d) is
introduced, which must meet the following requirements:







g : [0, 1] → [0, 1]

g(0) = 1, g(1) = 0

g′(d) < 0, d ∈ [0, 1[

g′(1) = 0 .

(9)

These properties ensure damage propagation and provide an upper bound to
the phase-field variable (Miehe et al., 2010a). A simple function that satisfies
the above conditions is the quadratic polynomial:

g(d) = (1− d)2 . (10)

It is emphasised that, while the crack has been distributed in Equation (8)
using mathematical arguments, the introduction of a degradation function
g(d) is heuristic, inspired by a phenomenological concept commonly used in
damage mechanics.

Damage evolution can occur under different straining modes (Amor et al.,
2009; Miehe et al., 2010b) and it is therefore assumed that the elastic energy
of the undamaged state can be decomposed into a damaged and an intact
part, such that the degradation function g(d) only acts on the damaged part:

ψe(ǫǫǫ, d) = g(d)ψd(ǫǫǫ) + ψi(ǫǫǫ) . (11)

6



Substitution of Equations (8) and (11) into Equation (7) yields the total
potential energy for distributed brittle fracture:

Πℓ =

∫

Ω

(
g(d)ψd(ǫǫǫ) + ψi(ǫǫǫ) + Gcγℓ(d,∇d)

)
dV . (12)

At this point, again borrowing a concept from damage mechanics, a his-
tory field H (commonly denoted by κ in damage mechanics) is introduced to
enforce irreversibility (Miehe et al., 2010a). Minimisation of Πℓ then leads
to the equilibrium equation:

divσσσ = 0 (13)

and to

g′(d)H+
Gc

2ℓ

(
d− 4ℓ2∇2d

)
= 0 , (14)

subject to the boundary conditions

n · σσσ = t̄, u = ū (15)

and
n · ∇d = 0, (16)

where t̄ and ū are the prescribed boundary tractions and displacements,
respectively. Alternatively, irreversibility can be enforced by setting d = 1
when d approaches one (Bourdin et al., 2000; Kuhn and Müller, 2010). The
Cauchy stress σσσ and the driving force F are derived according to standard
thermodynamic arguments:

σσσ =
∂ψe

∂ǫǫǫ
= g(d)

∂ψd

∂ǫǫǫ
+
∂ψi

∂ǫǫǫ
(17)

and

F = −
∂ψe

∂d
= −g′(d)H , (18)

with ψe as defined in Equation (11). The history field is defined as the
maximum damaged part of the energy density obtained in time history:

H = max
s∈[0;t]

ψd(ǫǫǫ, s) . (19)

For ψd = ψe and ψi = 0, Γ-convergence can be shown when the functional
Πℓ of the distributed crack converges to the discrete crack functional Π in
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Equation (7) for ℓ→ 0, i.e.

Πℓ

∣
∣
ℓ→0

=

(∫

Ω

g(d)ψe dV +

∫

Ω

Gcγℓ dV

) ∣
∣
∣
ℓ→0

=

∫

Ω

ψe dV +

∫

Γ

Gc dA = Π .

(20)
Chambolle (2004) and Bellettini and Coscia (1994) have proven this for con-
tinuous and discretised media, respectively. For a discrete medium, i.e. when
the solid is discretised into linear finite elements, Bourdin et al. (2008) have
argued that a correction factor must be applied that is approximately equal
to 1+ h

4ℓ
, so that the fracture energy density in Equation (12) is replaced by

the expression:

Gc →

(

1 +
h

4ℓ

)

Gc . (21)

This correction has been applied in the numerical studies of Borden et al.
(2014) and May et al. (2015).

3. Numerical assessment of crack nucleation for a one-dimensional

bar with a reduced cross section under tension

3.1. Previous findings

In Miehe et al. (2010b) a study has been carried out regarding the re-
quired fineness of the discretisation which is needed to properly capture a
phase-field representation. It is noted that, while the study was carried out
in the context of brittle crack propagation, the parametric study did not
involve a coupling to the mechanical field, and purely indicates the max-
imum element size permitted to accurately resolve the phase field. For a
two-dimensional square plate and using quadrilateral, four-noded elements it
was found that a reasonable approximation of Γ by Γℓ is obtained for:

h

ℓ
<

1

2
. (22)

While this value is indicative, the limitations of the study are recalled: (i) a
two-dimensional boundary value problem, (ii) simple, four-noded quadrilat-
eral elements, and most importantly, (iii) only the phase-field was considered,
not coupled to the mechanical problem of crack propagation. Likely, the cri-
terion of Equation (22) is an upper bound, and in analyses in which the
phase-field is coupled to the mechanical field, smaller values for h can be
expected to be necessary.
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Figure 2: Bar of length L with a reduced cross section of length Lr = L/3 in the centre

subject to a tensile load λf̂ .

A study in which a coupling with the mechanical field was maintained, can
be found in May et al. (2015), and Equation (22) was respected as a minimum
requirement. The simple, one-dimensional boundary value problem of Figure
2 was considered. The bar under uniaxial tension is composed of a linear-
elastic material, has a length L = 1 mm and a cross section A = 1 mm2.
Over Lr, the centre one-third of the bar, the cross section was reduced to
A/2. The history field H is related to the elastic energy density according
to Equation (19) and was used as the source term in Equation (14). For the
error in the smeared approximation of the sharp crack, the following measure
was taken:

E =
|Γℓ − Γ|

Γ
, (23)

where Γℓ is evaluated numerically at max (d) = dmax with dmax = 0.99 and
assuming that Γ = A/2 is the theoretical final crack surface. The bar was
composed of a linear-elastic material with Young’s modulus E = 10 MPa,
and a fracture energy density Gc = 0.1 Nmm−1, and was discretised using
one-dimensional elements.

Some remarkable observations were made:

• The error defined in Equation (23) exhibits a minimum, when plotted
as a function of the internal length scale ℓ, see also the curve marked
in Figure 3 by ’+’ symbols, which was obtained for 600 elements over
the bar. For the smallest internal length scale, ℓ/L = 0.005, this dis-
cretisation results in h/ℓ = 1/3, thus respecting Equation (22).

• The problem persists upon mesh refinement, which is illustrated by the
curved marked with ’x’ symbols in Figure 3. In fact, the minimum, or

9



Figure 3: Convergence study for the final crack surface Γℓ for a one-dimensional bar with
an imperfection of length Lr = L/3. The calculations have been carried out for a constant
element size (L/h = 600) and for refined meshes, with a constant ratio (h/ℓ = 1/32) using
the history field H = maxψd. In addition, the difference between the analytical solution
for an infinite bar and a bar of finite length L, Equation (27), has been plotted (blue line).

smallest error that could be obtained is virtually independent of the dis-
cretisation. It is noted that the mesh size has been taken proportional
to the internal length scale for this set of computations: h/ℓ = 1/32,
which leads to a mesh more than ten times as fine as the previous set
of calculations for the smallest length scale ℓ/L = 0.05.

From these computations it seems that convergence of the discretised, reg-
ularised solution is not necessarily attained, since the numerically obtained
final crack surface fails to converge towards the assumed value, i.e.

Γℓ

∣
∣
∣
l→0

6= Γ . (24)

3.2. Boundary effects

It is noted that the theoretical results on Γ-convergence have been ob-
tained under the assumption of an infinite medium, hence no boundary effects
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were considered, while the above calculations are for a (homogeneous) bar
of finite length L. To investigate the possible effects thereof, we reformulate
the one-dimensional boundary condition of the infinite bar, Equation (3), as

d(0) = 1 and d(±L/2) = 0 , (25)

which holds for a finite domain Ω = [−L/2;+L/2]. The analytical solution
of the differential equation, Equation (2), subject to the boundary conditions
of Equation (25), reads:

d(x) =
1

1− e−
L

2ℓ

(

e−
|x|
2ℓ − e−

L

2ℓ e
|x|
2ℓ

)

, (26)

and the functional for the distributed crack becomes:

Γℓ =

+L

2∫

−
L

2

1

4ℓ

(
d2 + 4ℓ2d,x

2
)
Adx = A

1− e−
L

ℓ

(

1− e−
L

2ℓ

)2 (27)

instead of Equation (5). Hence, the approximated crack surface depends on
the length of the bar L. Accordingly, for smaller values of L, or equivalently,
for larger values of ℓ/L, the increase in the error E is just a boundary effect.
Indeed, when plotting the solution of Equation (26) in Figure 3, it is observed
that the error does not increase, since the distance between this curve and the
numerical solutions marked with ’+’ and ’x’ symbols remains approximately
constant.

However, Γℓ as given by Equation (27) should converge to A/2 for ℓ/L→
0, which is clearly contradicted by the curves denoted by the ’+’ and ’x’
symbols in Figure 3.

3.3. Numerical setting

In the following we use the one-dimensional problem with a reduced cross
section over the centre of the bar, see Figure 2. The weak forms of the
coupled system of governing equations (13), (14) subject to the boundary
conditions (15), (16) are recast in matrix-vector form:

δuT

[
∫

Γ

N
T
u t̄dA

︸ ︷︷ ︸

f extu

−

∫

Ω

B
T
uC(d)BuudV

︸ ︷︷ ︸

f intu (u,d)

]

= 0 (28)
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and

δdT

[
∫

Ω

Gc

2ℓ

(

N
T
dNd + 4ℓ2BT

dBd

)

d+N
T
d

∂g

∂d
HdV

︸ ︷︷ ︸

f int
d

(d,u)

]

= 0 (29)

where Nu and Nd contain quadratic Lagrangian shape functions interpolat-
ing the displacement field u and the phase field d, Bu and Bd contain the
derivatives of the shape functions and C(d) is the material stiffness matrix.
The integrals are calculated numerically using a standard Gauss method with
five integration points. The bar of length L is discretised such that regions
of large gradients of d and u are meshed using the smallest element size h
while the mesh is coarsened towards both ends of the bar.

To prevent bifurcations1 that can occur for small internal length scales,
the loading of the bar is realised by setting u(x = −L/2) = 0 and f

ext
u = λf̂

and introducing an arc-length method that controls the load parameter λ
such that the phase-field variable at the centre of the bar d(x = 0) mono-
tonically increases at each load step2. Consequently, the following nonlinear
system of equations





f
int
u (u, d)− λf̂
f
int
d (d, u)
farc(d, λ)



 = 0, (30)

where farc(d, λ) denotes the arc-length function, is solved in a monolithic
scheme.

3.4. Irreversibility

We recall that, following concepts borrowed from damage mechanics,
Miehe et al. (2010b,a) have interpreted the phase-field variable in the varia-
tional theory of brittle fracture as a damage-like parameter, d, and have used
a history field

H = max
s∈[0;t]

ψd(ǫǫǫ, s) ,

1For a fully broken state (d(x) = 1) of a homogeneous bar of length L and a cross
section A the functional (5) results in Γℓ = AL

4ℓ
, which can be understood as a smeared

approximation of L

4ℓ
cracks. For a discussion of the uniqueness and the stability of the

homogeneous response see also (Pham et al., 2011; Pham and Marigo, 2013).
2For a sufficient large bar, this results in the localization of damage in one single zone

which corresponds to the lowest energy and is associated to a snap-back as shown by
(Pham and Marigo, 2013), which the authors interpret as the nucleation of a single crack.
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Figure 4: Convergence study for the final crack surface Γℓ for a one-dimensional bar with
an imperfection of length Lr = L/3. Two cases have been considered: (i) H = maxψd

and (ii) H = ψd. The calculations have been carried out for a constant element size
(L/h = 600) and for refined meshes, with a constant ratio (h/ℓ = 1/32).

cf. Equation (19), to enforce irreversibility of damage:

ḋ ≥ 0 . (31)

Now, we investigate numerically the consequences of the constraint of Equa-
tion (19), and do so by dropping the requirement of irreversibility, and just
assign the current value of ψd(ǫǫǫ) to the history field:

H = ψd(ǫǫǫ) . (32)

The results denoted by the curve with the stars in Figure 4 show that the
errors then virtually disappear. Evidently, the errors due to the boundary
effect for small values of L are still present, and on the other side, i.e. for small
ℓ/L, discretisation errors emerge when the heuristic limit for the element size
of Equation (22) is approached. In line with earlier comments, this indicates
that the condition of Equation (22) is to be conceived as an upper bound
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Figure 5: Crack surface Γℓ - displacement curves (dmax = 0.99, element size ℓ/h = 32,
length of imperfection Lr = L/3; dashed: H = maxψd, solid lines: H = ψd).

to the element size, and that in practice smaller values should be adopted.
When using a much finer mesh (h/ℓ = 1/32), the curve marked with squares
is obtained, which does not exhibit an increase in the error E for small values
of the internal length scale ℓ, and levels off, albeit at a very small non-zero
value.

In order to understand these differences, it is instructive to compare the
evolution of the numerically calculated crack surface Γℓ, Figure 5. Little
difference is observed until peak load, but thereafter a markedly different
behaviour is found. This is most pronounced for smaller values for the inter-
nal length scale, which yield narrow crack zones and very brittle behaviour.
For instance, for the smallest considered value of the dimensionless internal
length scale – ℓ/L = 0.00625 – the numerically evaluated crack surface Γℓ

exceeds the assumed value A/2 at peak load by approximately 50 % for both
expressions of the history field. But the evolution of the crack surface Γℓ

differs significantly after peak load. For H = maxψd, Γℓ cannot decrease.
On the contrary, it exhibits a further, monotonic increase even though at
peak load the assumed value had already been exceeded, yielding highly er-
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roneous results. On the other hand, not enforcing a non-decreasing value of
d, allows Γℓ to decrease. This indeed happens, and Γℓ ultimately converges
to approximately A/2:

Γℓ

∣
∣
∣
l→0

= A/2. (33)

Note that the although condition (31) is not enforced for H = ψd (solid
lines in Figure 5), there are some settings where (33) holds and the numeri-
cally calculated crack surface Γℓ monotonically increases, i.e.

Γ̇ℓ ≥ 0 (34)

for the whole loading process. Further note that (34) is an integral-type
condition for crack growth (Bourdin et al., 2000), while (31) locally ensures
the irreversibility of d as a damage-like parameter and thus enforces (34)
(Miehe et al., 2010a). However there is no apparent reason that either (31)
or (34) apply for the studied case of the nucleation of a single crack, while
(33) needs to be fulfilled.

The error in the approximated crack surface is directly related to the
distribution of the phase-field variable along the bar. At peak load the dis-
tribution is almost equal for both expressions of the history field, Figure
6. As expected, the phase-field variable d is smeared over the imperfection
for larger values of ℓ/L, whereas smaller values of ℓ/L result in a markedly
sharper profile. It is emphasised that Figure 6 clearly shows that a fully bro-
ken state, i.e. d = 1, is not obtained at peak load. Also, d 6= 0 for x = ±L/2,
even for large values of L, although d then becomes smaller at the ends of
the bar.

At continued loading, the distribution of the phase-field variable starts
to differ, depending on the expression for the history field. For H = maxψd

the phase-field variable cannot decrease which results in a profile that is
significantly broader than the profile which is obtained when H = ψd is
utilised, see Figure 7. Again, preventing d to decrease seems to prohibit the
formation of a sharp single crack in the sense of Equation (1) with d = 0 for
x = ±L/2 and d(0) = dmax.

These observations also hold for different imperfection lengths as long as
Lr/ℓ > 8 (approximately), see Figure 8. This corresponds to the discussion
of boundary effects, as the error for smaller values Lr/L < 8 is related to
Equation (27) for a finite domain Ω = [−Lr/2;+Lr/2].

The influence of the discretisation is shown in Figure 9, where the error E
is plotted as a function of the dimensionless size h/ℓ. For the ratio h/ℓ = 0.05
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Figure 6: Distribution of the phase-field parameter d along the bar at peak load (element
size h/ℓ = 32). The dashed lines are for H = maxψd, and the solid lines represent the
cases for which H = ψd.

the error converges to a small positive value, since the crack is smeared into
the region with the full cross section of A. On the contrary, a sharp profile
located almost completely inside the region with a reduced cross section of
A/2 evolves for small values of l/L (see Figure 7) and thus the error converges
to a very small negative value. Figure 10 shows that it is, in fact, the value of
dmax where Γℓ is evaluated, determines the exact value to which E converges.

Figure 11 shows that the load-displacement curves do not differ markedly
when either requiring H = maxψd, or using H = ψd until the peak load
has been reached. However, a much more brittle failure behaviour, with a
concomitant pronounced snap-back behaviour is observed for H = ψd, i.e.
when the largest attained value of ψd is not treated as a history variable.

4. Concluding remarks

Phase-field approaches for brittle fracture can be very powerful when
it comes to capturing complex two and three-dimensional crack patterns,
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Figure 7: Distribution of the phase-field parameter d along the bar at dmax = 0.99 (element
size h/ℓ = 32). The dashed lines are for H = maxψd, and the solid lines represent the
cases for which H = ψd.

including phenomena like crack branching and kinking.
A natural requirement is that the functional that describes the smeared

crack surface, converges to the original functional that describes the discrete
crack surface. While proofs for this so-called Γ-convergence have been given
(Bellettini and Coscia, 1994; Chambolle, 2004), doubt has arisen whether Γ-
convergence can actually be achieved in numerical computations where both
the internal length scale and the spacing of the discretisation are small, but
finite (Vignollet et al., 2014; May et al., 2015).

By taking the example of a simple, one-dimensional bar with an im-
perfection in the centre, we have shown that the discrepancies between the
theoretical proofs and actual computations stem from two different causes,
both leading to a distortion of the original exponential regularisation profile.

First, there is the effect of a finite specimen length in numerical compu-
tations. When a correction is made for the fact that specimens have a finite
length, and the appropriate boundary conditions are imposed, the numerical
solutions tend to replicate the analytical solution for specimens which are
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Figure 8: Error E for different imperfection lengths (dmax = 0.99, ℓ/L = 0.00625)

short relative to the value of the internal length scale.
A more fundamental problem resides in the damage-like formulation of

the variational theory of brittle fracture, which recently has become en vogue
(Miehe et al., 2010b,a). This damage-like format heuristically introduces
a degradation function, which it identifies with the phase-field parameter.
Moreover, to enforce irreversibility of this damage parameter, a history field
H is normally introduced, which equivalences the locally attained maximum
value of the damage parameter to the history parameter, thus preventing the
phase-field parameter from reducing. A monotonically increasing order pa-
rameter seems to prevent the construction of a proper functional, and would
therefore invalidate a basic assumption of the theory on which the conver-
gence proofs are based.

The numerical studies presented herein corroborate this reasoning. Af-
ter reaching the peak load the functional of the smeared crack decreases to
asymptotically reach the discrete value without the introduction of a con-
straint that prevents the phase-field variable from decreasing locally. On the
other hand, it cannot decrease, and actually continues to grow, when such a
constraint is introduced in the form of a history variable, leading to errors
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Figure 9: Influence of the mesh size on the error E for H = ψd.

that may amount up to 100 %, depending on the parameters chosen.
The question is whether phase-field approaches for brittle fracture should

be augmented such that irreversibility is ensured in some way. If so, then
an approach that pins the phase-field variable to a fixed value close to one
when a certain threshold value has been exceeded (Bourdin et al., 2000;
Kuhn and Müller, 2010) is to be preferred to a damage-like constraint in
the sense of Miehe et al. (2010b,a).
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Figure 10: Influence of dmax and the element length ratio h/ℓ on the error E for H = ψd.
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