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Quantum spin liquids (QSLs) are highly entangled states of quantum magnets which lie beyond the Landau
paradigm of classifying phases of matter via broken symmetries. A physical route to arriving at QSLs is via
frustration-induced quantum melting of ordered states such as valence bond crystals or magnetic orders. Here
we show, using extensive exact diagonalization (ED) and density-matrix renormalization group (DMRG) studies
of concrete SU (2) invariant spin models on honeycomb, triangular, and square lattices, that chiral spin liquids
(CSLs) emerge as descendants of triple-Q spin crystals with tetrahedral magnetic order and a large scalar spin
chirality. Such ordered-to-CSL melting transitions may yield lattice realizations of effective Chern-Simons-Higgs
field theories. Our work provides a distinct unifying perspective on the emergence of CSLs and suggests that
materials with certain noncoplanar magnetic orders might provide a good starting point to search for CSLs.
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Quantum spin liquids (QSLs) are phases of matter which
defy a classical Landau description in terms of broken sym-
metries and local order parameters [1,2]. Unlike magnetically
ordered phases, which can be described using simple mean
field wave functions with short-range entanglement, QSLs
are highly entangled and feature unusual excitations with
fractional quantum numbers. This leads to robust many-body
properties of QSLs which are of potential use in topological
quantum memories and quantum computation [3].

In this paper, we focus on two-dimensional (2D) chiral
spin liquids (CSLs), close cousins of the celebrated fractional
quantum Hall states. CSLs exhibit topological ground state
degeneracies, possess gapped anyonic excitations, and were
originally proposed by Kalmeyer and Laughlin in 1987 [4]
as candidate ground states of the spin-1/2 triangular lattice
Heisenberg antiferromagnet (although this model Hamiltonian
is now known to have long-ranged magnetic order). Specifi-
cally, viewing the spins as hard-core bosons, the Kalmeyer-
Laughlin state is equivalent to a ν =1/2 bosonic Laughlin
liquid with gapped semion excitations. This is the particular
CSL that we will focus on in the rest of this paper.

The surge of recent interest in such CSLs started with the
introduction of parent Hamiltonians or exactly solvable models
[5–8], as well as numerical studies of a variety of simple
frustrated spin models which yielded CSL ground states on
the kagome [9–18], square [19–21], honeycomb [22], and
triangular lattices [23,24]. CSLs have also been described
using variational Gutzwiller projected fermion or boson wave
functions, whose low energy properties are captured in terms
of spin-1/2 partons (spinons) coupled to emergent dynamical
gauge fields. From this perspective, we can obtain the CSL
ground state by starting with spin-1/2 fermions filling up
individual Chern bands with C = 1, leading to an integer
quantum Hall state with σ total

xy =2e2/h, and Gutzwiller pro-
jecting this state (which enforces the constraint of one fermion
per site) to yield a legitimate spin wave function [25–28], A
complementary picture is to view them as Gutzwiller projected
integer quantum Hall states of strongly interacting bosons

with σxy =2e2/h [29–35]. Gutzwiller projection promotes the
global U (1) symmetry of the fermions or bosons to a local
gauge invariance, leading to an emergent low energy U (1)2

Chern Simons theory.
A physically different way to think about QSLs is to

start from broken symmetry phases of SU (2) magnets and
introducing strong quantum fluctuations to melt the long-
range order. For instance, certain frustrated quantum magnets
support ordered crystals of valence bond singlets between
nearby spins. However, quantum fluctuations of such singlet
dimers can melt the crystalline order, resulting in a quantum
superposition of dimer configurations, which provides the
resonating valence bond description of gapped Z2 QSLs [36].
We can also arrive at such a QSL by quantum disordering a
coplanar spin spiral, without simultaneously proliferating Z2

vortices which are topological point defects in the magnetically
ordered phase [37].

Here, we focus on the question of how to realize CSLs from
quantum disordering magnetically ordered states. We consider
previously discovered SU (2) invariant CSLs on honeycomb,
triangular, and square lattices and use extensive numerical
exact diagonalization (ED) and density matrix renormalization
group (DMRG) calculations [38,39] to show that they descend
from parent noncoplanar magnetic orders with zero net magne-
tization and a nonzero scalar spin chirality. Such noncoplanar
magnetism arises, for instance, in skyrmion crystal phases.
Our work thus presents a distinct unifying perspective on
such chiral spin liquids and suggests that Mott insulators with
noncoplanar magnetic orders might be viable candidates for
realizing chiral spin liquids—by tuning exchange couplings
via physical pressure or chemical composition in order to melt
the magnetic order.

Our study relies crucially on the classification of so-called
“regular magnetic orders” (RMOs): magnetically ordered
states which preserve all lattice symmetries modulo global
spin rotations [40]. (We note that the original classification of
classical RMOs considered orders which preserved all lattice
symmetries up to global spin rotations and spin inversion
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S → −S. However, spin inversion is not a symmetry for
quantum spins or even a classical symmetry in the presence of
chiral interactions, so we drop spin inversion in our definition
of RMOs.) If we start from such a RMO, and introduce
strong quantum fluctuations and frustration, we might expect
to restore a fully symmetric liquid state of spins. This suggests
that RMOs with noncoplanar order, net zero magnetization,
and a large net scalar spin chirality are likely to be natural
candidates for parent states of singlet CSLs.

As an example, we have recently studied the phase diagram
of an extended Heisenberg model on the honeycomb lattice
with additional chiral spin interactions [22] and found that the
CSL emerges in proximity to a tetrahedral state, which is a
noncoplanar RMO. Similar results were subsequently found
in a triangular lattice spin model [24]. Here, we present careful
ED and DMRG calculations of the fidelity and energy in these
two models, which show that the tetrahedral state and the
CSL appear to be separated by a continuous rather than a
first-order transition. This signifies that the CSL may be viewed
as descending from the tetrahedral state on both lattices.
Interestingly, such tetrahedral orders and the possibility of
topological phases arising from them was pointed out in
previous work on itinerant fermion models [41–44].

We next turn to the square lattice, for which there are
no noncoplanar RMOs (as we define it). However, if we
allow for C4 symmetry breaking, it turns out there is a
noncoplanar RMO with net zero magnetization, which is a
distorted ‘tetrahedral umbrella’ state. We therefore focus here
on Hamiltonians on the square lattice which explicitly break
the C4 symmetry of the Hamiltonian, by including a staggered
chiral interaction. This does not impact the topological order
of the CSL, since it should survive even in the presence
of such symmetry breaking. However, the simplification is
that at the transition from the magnetically ordered state to
the CSL, we only need to restore spin rotation symmetry
while inducing topological order, similar to the triangular and
honeycomb lattice examples. Indeed, we find that in this case,
the combination of staggered chiral interaction and a further
neighbor Heisenberg coupling again drives what appears to be
a continuous quantum phase transition between a tetrahedral
umbrella state and a square lattice CSL.

We conjecture that the phases and the seemingly direct
phase transitions between them which we have uncovered in
our numerical studies may provide microscopic realizations
of Chern-Simons-Higgs field theories. In this scenario, the
CSL is the phase with gapped matter fields (bosonic spinons)
minimally coupled to a U (1)2 Chern Simons gauge theory
in its deconfined phase, while the ordered phase is a Higgs
condensate of spinons which leads to noncoplanar magnetic
order and a simultaneous loss of topological order.

I. MODEL HAMILTONIANS

The models we study in this paper are SU (2) invariant
spin Hamiltonians with extended Heisenberg interactions,
supplemented by a chiral three-spin interaction:

Hspin =
1

2

∑

i,j

Ji,j Si · Sj + Jχ

∑

i,j,k∈△

Si · (Sj × Sk). (1)

(a) (b) (c)

Jχ

J3

J1

J1

J1

J2

J3

Jχ

J2

Jχ

FIG. 1. Heisenberg exchange Jα and scalar spin chirality Jχ

interactions used in the text for the (a) honeycomb, (b) triangular,
and (c) square lattice.

Here, as indicated in Fig. 1, the extended Heisenberg interac-
tions include the first few neighbors, while

∑
△ in the chiral

interaction denotes a sum over the smallest triangular plaque-
ttes, with {i,j,k} taken anticlockwise around the triangle.

We emphasize that the chiral terms, which explicitly
break time-reversal symmetry, are not necessarily crucial for
realizing CSLs; indeed, it has been shown on the kagome
lattice that a CSL with spontaneous breaking of time-reversal
symmetry can be realized in an extended Heisenberg model
[13]. Nevertheless, we retain them since models including such
chiral terms have been shown to realize CSLs on most 2D
lattices—honeycomb, triangular, square, and kagome—and
our main aim here is to relate these CSLs to underlying parent
magnetic orders.

If we start from a Hubbard model (with hoppings ti,j and
local repulsion U ) and attempt to derive Hspin as an effective
spin Hamiltonian in the Mott limit, we find Ji,j = 4t2

ij/U ,
while the chiral interaction is Jχ = 24(t3/U 2) sin �△ if the
Hubbard model has nonzero orbital fluxes �△ penetrating the
triangular plaquettes. Such chiral terms have been suggested to
be relevant for understanding orbital magnetic field effects in
certain organic spin liquids [45] and for interacting ultracold
atomic systems with ‘artificial’ gauge fields (where models
such as the honeycomb lattice Haldane model of a quantum
anomalous Hall insulator have been experimentally realized
[46,47]). More recently, there has been a very interesting
suggestion to induce such chiral terms via circularly polarized
light rather than by an orbital magnetic field [48,49]. The
Hubbard model derivation suggests that the chiral terms will
greatly influence magnetism in the ‘weak’ Mott insulator
regime U � t . However, as U/t → ∞, i.e., deep in the Mott
insulator regime, the chiral terms will become less important
than two-spin interactions. In our study we will treat this
Hamiltonian Hspin simply as a spin model in its own right.

II. NUMERICAL SIGNATURES

Within an ED calculation, a CSL and a magnetically
ordered state can be distinguished by their low-lying en-
ergy spectrum and the static spin structure factor of their
ground state. In a magnetically ordered state, with net zero
magnetization, the first excited state should be a spin triplet
with momenta associated with the magnetic ordering wave
vectors. It forms part of the “Anderson tower of states” that
lead to a symmetry broken ground state in the N → ∞ limit
[50,51]. The static spin structure factor of the ground state,
S(q) = 1

N

∑
i,j 〈Si · Sj 〉 eiq·(ri−rj ), should display clear peaks
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at the expected ordering wave vectors. On the other hand, in
the CSL phase, both the ground state and the first excited
state should be spin singlet states with momentum k = (0,0)
on all of the lattices studied here (Lx × Ly lattices with both
Lx and Ly even, and periodic boundary conditions). The gap
between these two states should vanish in the N → ∞ limit
so that they form the degenerate ground state manifold (GSM)
of the topologically ordered CSL on the torus. The static spin
structure factor of the ground state should be featureless, with
no sharp peaks, indicative of a magnetically disordered state.

Our DMRG calculations are done in the infinite cylinder
limit [52,53] with varying circumferences Ly . Within such
DMRG calculations, one indicator that we are in a CSL
is that we are able to find multiple distinct ground states
associated with the topological order. By contrast, in regimes
where we expect magnetic order, we always find only a single
ground state. A more positive indicator is to calculate the
total quantum dimension which is encoded in the overlap of
a single ground state on a torus |�i〉 with its rotated version,
i.e., Rii =〈�i |Rπ/3 |�i〉. Here, Rπ/3 denotes π/3 rotation of
a state on a torus (the appropriate rotation for a lattice with C6

symmetry). In an Abelian topologically ordered phase with
total quantum dimension D, we expect |Rii | = 1/D, with
D =

√
2 for a CSL. In a topologically trivial state, however,

we expect |Rii | = 1. As a more complete characterization,
we can also study the S and T matrices of the anyons in
the topologically ordered state by constructing the matrix
Rij = 〈�i |Rπ/3 |�j 〉 of overlaps between all pairs of states in
the GSM [54]. However, this is not something that we can track
across the transition. Yet another distinction between the CSL
and magnetically ordered states lies in the edge entanglement
spectrum obtained by cutting the cylinder into two halves, with
the CSL showing a signature of a free chiral boson described
by an SU (2)1 Wess-Zumino-Witten (WZW) conformal field
theory [54].

To probe the nature of the transition between the CSL and
the magnetically ordered states, we calculate the ground state
energy per spin and the ground state fidelity, usually defined as
F (g)=|〈�(g)|�(g + δg)〉|, where the ground state |�(g)〉 is
parameterized by the tuning parameter g. The fidelity has been
shown to be an indicator of quantum phase transitions, both
symmetry-breaking transitions as well as certain topological
phase transitions [55,56]. A first order transition is signalled
by a sharp discontinuity in F , which jumps to zero at the
transition where there is a ground state level crossing. By
contrast, a continuous transition is signalled by a weak dip in
F at the transition, which results in a (more clearly visible)
peak in the fidelity susceptibility χF (g) = ∂2F (g)/∂g2. In the
case of topologically ordered states the ground state is not
unique so we instead define a GSM fidelity. If the states in
the GSM do not mix with one another and there are no exact
degeneracies (both of which are conditions satisfied in the
models and clusters studied here using ED), then we can define
the GSM fidelity for an n-fold degenerate GSM as

Fn(g) =
1

n

n∑

i=1

|〈�i(g)|�i(g + δg)〉|, (2)

where n = 2 for the CSL. Associated with this, we define the
fidelity susceptibility χF

n = ∂2Fn/∂g2, which we compute as

the numerical second derivative of the fidelity

χF
n =

Fn(g + δg) − 2Fn(g) + Fn(g − δg)

(δg)2
. (3)

In ED, we study F2 and χF
2 since we can track the two states

that make up the GSM in the CSL, GS1 and GS2, throughout
the phase diagram, i.e., we can adiabatically follow the two
CSL ground states even into the topologically trivial phase
(where the upper of the two states in the GSM levitates into
a genuine excited state). In the DMRG calculations, however,
we do not have access to this second state in the topologically
trivial phase. We thus compute the fidelity F of just a single
GS; in the CSL, this corresponds to tracking that ground state
which is adiabatically connected to the unique ground state we
find in the topologically trivial phase.

III. RESULTS

Below, we discuss the results we obtain from both ED
and DMRG studies for the honeycomb, triangular, and square
lattices. We defer a discussion of the kagome lattice CSL to
a future publication. The data presented is from the largest
system sizes studied. For ED this is N = 32 sites for the
honeycomb lattice and N = 36 sites for the triangular and
square lattices. In the DMRG simulations we studied infinite
cylinders of width up to six lattice unit cells for honeycomb
and triangular lattices. We keep at most χ = 2048 states in the
infinite DMRG algorithm, finding convergence in all quantities
of interest. χ is referred to as bond dimension throughout the
remaining part of the text. Results on smaller clusters are
consistent with the conclusions presented here.

A. Honeycomb lattice

For the honeycomb lattice, we keep Heisenberg terms,
J1,J2,J3 corresponding to first, second, and third nearest
neighbors, in addition to the chiral term Jχ , as shown in
Fig. 1(a). Our recent study of this model found a tetrahedral
phase in this model for J3 = 0 and a CSL phase for sufficiently
large J3 > 0. Here, we fix J1 = 1.0, J2 = 0.36, and Jχ = 0.31
and use ED and DMRG to investigate the nature of the
transition between the tetrahedral state and the CSL state upon
increasing J3.

In ED, for small J3 � 0, we find that the ground state
is a spin singlet, with large uniform ground state spin
chirality 〈Si · Sj × Sk〉 ∼ 0.16 on the small triangles of the
honeycomb lattice [shown in Fig. 1(a)] consistent with strong
noncoplanarity of the spins. The first excited state is a spin
triplet with momenta at the M points, the ordering wave vector
of the tetrahedral state, and the static spin structure factor,
shown in Fig. 2(a) for J3 = 0.04, also exhibits clear peaks
at the M points. The full spectrum, shown in our previous
study (see Supplemental Material of Ref. [22]), exhibits an
‘Anderson tower’ consistent with a noncoplanar ground state
having fully broken spin rotational symmetry. All these are
clear signatures of the triple-Q tetrahedral state.

By contrast, at J3 = 0.36, we find that the system is in
the CSL phase. At this point, ED shows that both the ground
state and the first excited state are spin singlet states with
momentum k= (0,0), and they are well separated by a gap
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FIG. 2. Phase diagram of the honeycomb lattice model for N =
36 sites as a function of J3 for fixed J1 = 1.0, J2 = 0.36, Jχ = 0.31.
The static spin structure factor, S(q), of the ED ground state for
N = 32 sites is shown for the (a) tetrahedral and (b) CSL phases.
S(q) exhibits sharp peaks at the M points of the (second) BZ in the
tetrahedral state but not in the CSL state.

from all other excitations [22]. The energy splitting between
these two lowest states decreases as system size increases,
being 0.16, 0.11, and 0.03 on 18, 24, and 32-site clusters,
respectively. This is consistent with a twofold topological
ground state degeneracy on the torus in the thermodynamic
limit, and we have confirmed this by computing the many-body
Chern number using flux threading [22]. In addition, the static
spin structure factor, shown in Fig. 2(b), exhibits no sharp
peaks, indicating short-ranged spin correlations.

As a further indication that there is a topological phase
transition, DMRG always finds two ground states at J3 = 0.36.
For either ground state |�i〉, the overlap | 〈�|Rπ/3 |�〉 | ≈
1/

√
2 for various bond dimensions as shown in Fig. 3(d).

This indicates that it is consistent with a topologically ordered
CSL having total quantum dimension D =

√
2. Figure 3(b)

shows the DMRG edge entanglement spectra in the CSL phase
(here, we have picked one of the two ground states), which
clearly resembles that of a free chiral boson. In our previous
study of this model, we have provided further evidence for the
CSL phase, including the full S and T matrices. We contrast
these observations with the results at J3 = 0.04. Here, we only
find a single ground state, with the overlap | 〈�|Rπ/3 |�〉 |
extrapolating to 1 with increasing bond dimension χ as shown
in Fig. 3(c), indicative of a topologically trivial phase. Upon
decreasing J3, and entering the tetrahedral state, we find many
additional low-lying states in the entanglement spectrum as
seen from Fig. 3(a), leading to a complete breakdown of the
free chiral boson description.

Taken together, these results provide clear evidence that,
somewhere between J3 = 0.04 and J3 = 0.36, there must be
a phase transition between a magnetically ordered tetrahedral
phase and the CSL. In order to study this transition, we have
computed the energy per site as well as the fidelity and fidelity
susceptibilities with varying J3. As shown in Fig. 4(a), the
energy shows no sharp kinks, suggesting that this transition is
not obviously first order. Similarly the fidelity of the ground
states from ED and DMRG shown in Fig. 4(b) are smooth,

FIG. 3. The edge entanglement spectrum obtained using DMRG
for the honeycomb model is shown in the (a) tetrahedral ground state
and (b) one of the two CSL ground states showing the free chiral
boson spectrum. The overlap |Rii |=| 〈�i |Rπ/3 |�i〉 | for various
bond dimensions χ is shown in (c) the tetrahedral phase, where it
extrapolates to |Rii | = 1, and (d) the CSL phase, where it extrapolates
to |Rii | = 1/

√
2 (the dashed blue line).

again suggesting a continuous transition. χF
2 , computed using

ED, has a clear peak at J3 = 0.18, which we take to be the
transition point for the N = 32 site system. In summary, our

(a)

(b)
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ED GS2

DMRG GS
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−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
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F

J3

2
F

0.10 0.15 0.20 0.25 0.30
0.90

0.92

0.94

0.96
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1.00

J

FIG. 4. (a) Energy per site for the honeycomb model of a single
ground state from DMRG and of the two states from ED that make up
the ground state manifold of the CSL. (b) Fidelity of a single ground
state from DMRG (dashed red line) and of the ground state manifold
from ED (solid red line). The decrease in the DMRG fidelity with
increasing J3 is due to the nearby CSL-Néel transition at even larger
J3. The fidelity susceptibility from ED (solid black line) shows a
clear peak at J3 = 0.18, signifying the transition from the tetrahedral
to CSL. The arrow indicates the position at which the first excited
state has a level crossing, switching from a triplet at the M point in
the tetrahedral phase to a singlet at the Ŵ point in the CSL.
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ED and DMRG results indicate that the tetrahedral state may
be viewed as a parent magnetically ordered state from which
the CSL descends via a seemingly continuous transition upon
increasing frustration through J3 > 0.

B. Triangular lattice

For the triangular lattice, we consider a model with
nearest and next-nearest neighbor Heisenberg terms J1,J2,
supplemented by a nonzero Jχ . For fixed J1 = 1.0, the phase
diagram of the model has already been determined using ED
(with up to 36 spins) over a range of couplings 0 � J2 � 0.3
and 0 � Jχ � 0.6. Among other phases, a CSL phase was
found bordering a magnetically ordered tetrahedral phase.
Here, we fix Jχ = 0.4 and vary J2 in order to investigate the
nature of the transition from the CSL to the tetrahedral.

At J2 = 0.15, the system is in a tetrahedral state. Our ED
results show that the ground state is a singlet while the first
excited state is a spin triplet with momentum at the M point.
The static spin structure factor of the ground state, shown in
Fig. 5(b), has clear peaks at the M points. At the same time,
DMRG finds a single ground state, indicative of a topologically
trivial phase.

At J2 = 0.0, the system is in the CSL phase. In ED,
both the ground state and the first excited state are spin
singlet states with momentum k = (0,0). The static spin
structure factor of the ground state, shown in Fig. 5(a),
has no sharp peaks. Furthermore, in DMRG we find two
distinct ground states indicative of topological order, and the
entanglement spectrum resembles that of a free chiral boson,
as shown in Fig. 5(c). Upon increasing J2, and entering the
tetrahedral state, we again find many additional low lying
states [highlighted in Fig. 5(d)], leading to strong deviations
from the free chiral boson description.
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FIG. 5. Phase diagram of the triangular lattice model for N = 36
sites as a function of J2 for fixed J1 = 1.0, Jχ = 0.4. The static spin
structure factor of the ED ground state for N = 36 spins is shown for
the (a) CSL and (b) tetrahedral phases. The DMRG edge entanglement
spectra in (c) the CSL phase, showing the free chiral boson spectrum
and (d) the tetrahedral phase, where the additional low-lying states
are highlighted.
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FIG. 6. (a) Energy per site for the triangular lattice model of a
single ground state from DMRG and the two states from ED that make
up the ground state manifold of the CSL. (b) Fidelity from DMRG
(dashed red line) and ED (solid red line) and fidelity susceptibility
from ED (solid black line). The transition is signified by a peak in the
fidelity susceptibility at J2 = 0.075. The arrow indicates the position
at which the first excited state has a level crossing, switching from a
singlet at the Ŵ point (CSL) to a triplet at the M point (tetrahedral).

Again these results indicate that there must be a phase
transition between the CSL and a magnetically ordered
tetrahedral phase between J2 = 0.0 and J2 = 0.15. However,
the energy of the ground states in ED and DMRG shown in
Fig. 6 show no sharp kinks and the fidelities are again smooth.
It is only the fidelity susceptibility that provides a signal of the
transition, with a broad peak centered at J2 = 0.075. We thus
again conclude that the CSL to tetrahedral transition is likely to
be continuous, as indicated by our ED and DMRG signatures.

We note that the signatures of the CSL, such as the structure
of the entanglement spectrum, are not quite as clean here as
in the honeycomb lattice case. This can be explained by the
fact that the correlation length ξTM, extracted from DMRG
[57], is shorter for the honeycomb lattice case. The correlation
length for the honeycomb lattice at J3 = 0.36 is ξTM = 0.88
whereas for the triangular case at J2 = 0.0 it is more than
double at ξTM = 1.89. Here, ξTM denotes the transfer matrix
correlation length defined as ξTM = −1/ log(λ2), where λ2

is the second largest eigenvalue of the transfer matrix. The
transfer matrix contains tensors associated to one column of
an infinite cylinder. ξTM is the upper bound for any correlation
length in the system. The above values for ξTM are extrapolated
in the bond dimension.

C. Square lattice

The square lattice J1,J2 model with a nonzero Jχ has
already been shown to realize a CSL phase [19]. Here, for

115115-5
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FIG. 7. (a) Phase diagram of the square lattice model for N = 36
sites as a function of J3 and J stag

χ for fixed J1 = Jχ = 1.0. The inset
shows the evolution of the structure factor peak at X = (π,0),(0,π )
along the dashed line. The static spin structure factor of the ED ground
state for N = 36 spins is shown for the (b) tetrahedral and (c) CSL
phases.

simplicity, we set J1 = Jχ = 1.0, and J2 = 0, which places
us in the CSL phase. On the square lattice, there are no
noncoplanar RMOs. However, allowing for the breaking of
C4 symmetry about a lattice site allows for a noncoplanar
RMO which is called the ‘tetrahedral umbrella’ state, depicted
schematically in Fig. 7(a). This state is a multimode spin
crystal formed by wave vectors at the K = (π,π ) and X =
(π,0),(0,π ) points of the BZ. In addition to breaking spin
rotational symmetry, the broken C4 rotational symmetry about
the square lattice sites leads to a staggered modulation of the
scalar spin chirality. In order to simply access this phase from
the CSL, we add a ferromagnetic third neighbor Heisenberg
term J3 < 0 as well as a staggered chiral term J

stag
χ that

explicitly breaks the square lattice C4 symmetry, giving a
total chiral interaction Jχ + J

stag
χ on half of the triangles and

Jχ − J
stag
χ on the other half. This leads to the phase diagram

depicted schematically in Fig. 7(a).
For J3 = J

stag
χ = 0 the system is in the CSL phase. As

before, the ED ground state and the first excited state are spin
singlet states with momentum k = (0,0), and they form the
GSM of the CSL, which are reasonably well separated from
all the other excited states (with the separation increasing with
increasing system size [19]). The static spin structure factor
of the ground state, shown in Fig. 7(c), is featureless. For
significant J3 < 0 and J

stag
χ , on the other hand, the system

resembles the tetrahedral umbrella state. In ED, the ground
state is a singlet while the first excited state is now a spin triplet
with momentum at the K = (π,π ) point, followed by slightly
higher energy triplet excitations at the X = (π,0),(0,π ) points.

(a)

(b)

−0.08−0.12−0.16−0.2
−2

0
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6

J3=Jstag

2
F
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0.94

0.96

0.98

1.00

J3=Jstag

F

ED GS1 ED GS2

−0.08−0.12−0.16−0.2
−0.82

−0.80

−0.78

−0.76

−0.74

J3=Jstag

E
/N

FIG. 8. (a) Energy of the two states from ED that make up the
ground state manifold of the CSL for the square lattice model. (b)
Fidelity (solid red line) and fidelity susceptibility (solid black line)
from ED with the peak in the fidelity susceptibility at J3 = −0.125
marking the transition from the CSL to the tetrahedral. The arrow
indicates the position at which the first excited state switches from a
singlet at the Ŵ point to a triplet at the K point.

The static spin structure factor of the ground state, shown in
Fig. 7(b), has a sharp peak at the K point and smaller peaks at
the X points. These suggest multimode order associated with
the tetrahedral umbrella state.

In Fig. 8, we plot the energy per site which is smooth and
the GSM fidelity from ED which has a weak dip indicating
the transition, with a clear peak in the fidelity susceptibility at
J3 = −0.125. Just as in the honeycomb and triangular lattice,
the CSL to tetrahedral transition does not show any signatures
of first order behavior, supporting the idea that it is again a
continuous transition.

IV. DISCUSSION

We have provided numerical evidence (using ED and
DMRG) that CSLs on the honeycomb, triangular, and square
lattices arise from melting ordered noncoplanar spin crystal
states via continuous transitions. This suggests that quantum
melting such noncoplanar states is likely to be a general
mechanism to obtain CSLs. In previous work, we have
conjectured a possible Chern-Simons-Higgs theory which
could possibly capture the tetrahedral-CSL transition on the
honeycomb lattice. Our work motivates a further study of this
exotic continuous transition, including a comparison with the
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gauge theory spectrum on the torus which has been studied
within a large-N approximation [58].

There are a number of interesting extensions of this work
to consider. In particular it is natural to ask whether this kind
of mechanism could be extended to 3D lattices. Can quantum
melting a 3D noncoplanar magnetic state lead to a stacked
chiral spin liquid state? This may be of relevance to the 3D
pyrochlores Pr2Ir2O7, which appears to exhibit an anomalous
Hall effect without long-range magnetic order, suggestive
perhaps of a spin liquid state with nonzero scalar spin
chirality [59], and Lu2Mo2O5N2, which has been theoretically
identified as a candidate for a molten version of a chiral
noncoplanar spiral state [60]. Another interesting direction
would be to explore higher spin systems. On the ordered
side, moving to higher spin allows for a richer set of order
parameters, such as quadrupolar order in the case of spin-1.
On the CSL side, higher spin CSLs can have non-Abelian
topological order and thus a more complex GSM structure
[7,61–64]. Is it possible to find an ordered “parent state” for
these higher spin non-Abelian CSLs?

Note added. Recently, we became aware of two preprints
[65,66] that also discuss the J1-J2-Jχ model on the triangular
lattice. Our results are consistent where there is overlap.
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