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Frontier Model with Application to Highway Maintenance Costsin England
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Abstract

In Stochastic Frontier Analysis the presence of outliers in the data, whidftearbe safely ignored
in other forms of linear modelling, has potentially serious consequences in thaly itead to
implausibly large variation in efficiency predictions when based on the coralittoean. This
motivates the development of alternative stochastic frontier specificatiool afe appropriate when
the two-sided error has heavy tails. Several existing proposals to tbit bffve proceeded by
specifying thick tailed distributions for both error components in daarrive at a closed form log-
likelihood. In contrast, we use simulation-based methods to pair the canonicaieneifidistributions
(in this example half-normal) with a logistically distributed noise t&km.apply this model to estimate
cost frontiers for highways authorities in England, and compare results obtaingtidroomventional
normal-half normal stochastic frontier model. We show that the conditional yredda less extreme

inefficiency predictions for large residuals relative to the use of the normal disinilbort noise.
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1. Introduction

The aim of frontier analysis is to estimate a frontier function basedficient, or at least best-practice
in sample, production and cost relationships against which the efficiencynsfdind other decision
making units (DMU) can be measured. A challenge for such analyses is dedtirijendtxistence of
noise, resulting from random shocks and measurement error in the dependent-vanatiie data. In
particular, in the presence of outliers, there can be a disproportionate implaetestitnated frontier
and on all predictions of efficiency relative to it. The Data Envelopment Asa(iziA) model
(Charnes et al., 1978) and related mathematical programming approaches are determihatanyn
noise present is attributed wholly to variation in efficiency, and arefthverparticularly sensitive. This
is also the case with some of the cruder econometric methods, such as Corrected Ordinagyaessst
(COLS). Here we focus instead on Stochastic Frontier Analysis (SFA) which should be metéaobu

noise given this is considered explicitly alongside inefficiency in the model formulation.

The specific motivation for this paper comes fronisate arising from the authors’ work studying cost
efficiency in a number of datasets. The example used in this paper is cosisanaliighways
maintenance operations of local government authorities in England, which utilsgeskdelata on
operating and capital expenditure provided by each authority. When we compute the starttaxd J

et al. (1982) predictor, an implausibly wide range of efficiency scores is found. TEdsssaused by
large estimated error variances; in particular, a |&#@R(u) will lead to a large spread of efficiency
scores, while a largéAR(v) will lead to a greater degree of shrinkage of efficiency predictions toward
the unconditional mean (Wang and Schmidt, 2009). Large error variances are iraset ciatsed by
the presence of a relatively large number of outliers in the data, due to a combinatiderefor over-

reporting, unobserved investment cycle effects, and extreme weather events.

In this paper we consider methods to better deal with noise data in the stoltbat@r setting. We
consider alternative methods which are better suited to handling outliers in the datayiee thiésain

the error. After consideration of possible existing approaches, this leads us to propose ah@esicsto
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frontier model with a logistic distribution for the noise error. This mislelasy to estimate and has

been programmed into a bespoke version of LIMDEP.

The structure of this paper is as follows: Sen 2 reviews the received mathddble to handle a

large number of outliers in frontier analysis, and reviews the relétenatlire and sectipr] 3 introduces

a logistic-half normal stochastic frontier (SF) models for dealirty tveavy-tailed noise. Sectiﬂ 4
applies these models to our data on highways maintenance costs in England and compares the resul
to those obtained from the standard normal-half normal SF model, and ﬁction 5 gisesmary

and conclusions.
2. Literature Review: Patential Approachesto Dealing with Outliers

2.1. Adopting alternative predictorsfor inefficiency

Before considering amendments to the standard stochastic frontier model, it is patigkaivhether
there are alternative predictors for inefficiency which yield more inadrgtributions for efficiency.
Given that in cross sectional models, point predictors are known to be incorfsisteetquantity of
interest; namely the firm specific realisation of a random variable (Whe&t €014), then several

point and interval predictors could be candidates.

One candidate is the conditional mode predictor (Jondrow et al., 1982) \idgriche normal-half

normal model, treats all observations with positive (negative) residuhlks production (cost) frontier

case as fully efficient; likewise in the normal-exponential model, all resigaatsa certain threshoeld

i.e. the inverse of the product of the squared rate parameter from the expawengahent and the
standard deviation of the normal componreate predicted to be fully efficient. The conditional mode
predictor therefore yields more intuitive efficiency predictions at the étgiive to the conditional

mean. This is because the conditional mean for all firms will allvaysss than one (for VAR(u)>0)

and, in the case of large VAR(v) i.e. data with many outliers, this differsriely to be non-trivial

even for the best performing DMU (due to substantial shrinkage to the unconditional mean (Wang and

Schmidt, 2009)). Furthermore, for all other observations the conditional mode predédtis a
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predicted efficiency score higher than that from the conditional mean prediedatter difference,
however, tends to be small in magnitude at the bottom, and its usefulness in remmedlaogibly low

efficiency scores is therefore limited.

Another approach is to calculate prediction intervals, which show the rarmgausible efficiency
predictions for a given observatiddince in the normal-half normal case the conditional distribution of
u is that ofatruncated normal random variable (Jondrow et al., 198@)race and Schmidt (1996)
propose simply using the quantile function for this distribution to compute the upper tioand
prediction interval, whiclis also derived by Bera and Sharma (1999). However, Wheat et al. (2014)
note that this method does not necessarily yield a minimum width interval, and derive mimidtim
intervals for the normal-half normal case, and discuss various methodsoah@eg for parameter
uncertainty in computing prediction intervals. The use of prediction intervalsean wdmere predicted
efficiency values are at the extremes could be useful in that they allow us fp guiafioint predictions

of efficiency by explicitly recognising that there are in fact a rangeadable values which efficiency
can take; however, this is not a solution to the underlying problem and of course, thef faogable

values will include values even more implausible than the point predictor.

Overall, while alternative predictors are useful in SFA in general,nthss of the conditional
distribution for the most efficient firm in our sample is still faom zero (even if the peak of the
distribution—i.e. the mode-is zero. Thus the question remains as to whether an alternative foomulati
of the stochastic frontier model could yield a more intuitive distributioefficiency predictions. In
particular a formulation which puts more weight on outlying observations lteéngesult of noise

rather than inefficiency seems to be appropriate. We now consider possible means to achieve this.

2.2. Heteroskedastic Stochastic Frontier Models

The basic SF model assumes that both error components are homoskedastic, i.e. that they have a
constant variance. Outliers in the data could result from heteroskedastiatye or both error
components, so that certain observations have a higher error variance than others. Distussion

heteroskedastic SF models have tended to focus on heteroskedasticity in the one-sided err
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Reifschneider and Stevenson (1991) propose a normal-half normal model in ayhiehg (U;),

gU;) € (0,00), Caudill and Ford (1993) propose a normal-half normal model in whjgh=

o, (U;)?8, and Caudill et al. (1995) propose a normal-half normal in whjghk= exp(U;y), where in

each casé#J; is a vector of explanatory variables including an intercept. Wang (2002) roeanttie
Battese and Coelli (1995) specification of the pre-truncation mean of a truncated ane-sided error

in which u; = Z; 8, whereZ; is again a vector of explanatory variables, with a slight variatiohein t
Caudill et al. (1995) specification of the one-sided error variance sezhatexp(U;y) into a single
model, which has the additional advantage of allowing for non-monotonic relationships rbetwee

inefficiency and explanatory variables.

In terms of handling outliers where these are assumed to reflect an unusually taigbeviar noise, it

is more useful to allow for heteroskedasticity in the two-sided errorevenyWarng and Schmidt
(2009) show for the normal-half normal model th#t:;|¢;) is a shrinkage of; towardsE (u;), and

that because of this, ag; — 0, E(y;|g;) = u;, while asa,; = o, E(u;lg;) = E(u;). Allowing for
heteroskedasticity iw therefore allows for varying levels of shrinkage. Hadri (1999) introduces a
doubly heteroskedastic SF model in which the variances of both error components atoma édinc
vectors of explanatory variabled; and V; —which need not be the samesuch thato,; =
exp(U;y), o, = exp(V;0). Finally, Kumbhakar and Sun (2013) introduce a normal-truncated normal
model which combines the Battese and Coelli (1995) and Hadri (1999) specificatioasmottel in
which the pre-truncation mean of the one-sided error, as well as the varitbbotsarror components

are functions of vectors of explanatory variables, soithat Z; 8, a,,; = exp(U;y), o,; = exp(V;0).

Allowing for greater levels of variance in outlying observations is effelgtianother method of
allowing for a heavy tailed distribution. The problem with adopting thiscamh using existing
heteroskedastic SF models is that an appropriate variable is needed for iniclugienvariance
function. A dummy variable identifying outlying observations could be used, forpeahowever the

identification of such outlying observations would either have to be done on an ex-pasbibaith
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reference to some arbitrary partial metric, and of course there is an addeel oegrbitrariness in

defining the cut-off point beyond which an observation is deemed to be outlying.

2.3. Thick Frontier Analysis

Berger and Humphrey (1991; 1992) introduced Thick Frontier Analysis (TFA), which igateatiby
the observation of heavy-tailed errors in cost studigsecifically, in the banking secteibut in
contrast to the present study assumes that this reflects a wide spreadesfoidficirather than outliers
in the data. In TFA, DMUs are sorted into quantiles based on some partial measuret eogt,smd
separate regressions are run for the top and bottom quantiles. DMUs in the loweshesidunig cost
guantiles are implicitly judged to be equally efficient, with their redgdiedlecting only error and luck.
The difference in predicted unit costs for different size classes is then piesmoninto exogenous
market factors, i.e. that explained by differences in output mix, input pricesamdcthe remainder,

which is regarded as inefficiency.

TFA has a number of disadvantages, such as the implicit assumption of egiet@ffamong DMUs
in the same quantile, and the implicit need for rather large sample sizessanipkes can be sensibly
divided in this way. Also problematic is the arbitrariness of both the pae@dune according to which
DMUs are placed into quantiles, and the number of quantiles specified; Wagenvoort and1289)re
provide a solution to the latter problem, using a recursive algorithm by whidimgstaith OLS on the
full sample of observations, the sample is divided into successively largeersiof quantiles until
the Lagrange multiplier test proposed by Breusch and Pagan (1980) failsttooejeality of the error
term. However, the successive increases in the number of quantiles will reqgretad larger sample
sizes, and will tend to increase the distortionary effect of outlying oditgamg on the estimated quantile

regression lines, and hence on efficiency predictions.

The impact of outliers on efficiency scores in TFA is somewhat ambiguous. On one hanghaitie im
of outliers on efficiency scores will tend to be muted by the atidbwf the residuals from the quantile
regressions to noise, and by construction the DMUs in the top quantile will be judgeefffaient,

while on the other hand the quantile regressions themselves will besemwi@ve to outliers, which
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could lead to an exaggerated gap between the quartile regression lines, arahlexacgyerated range
of inefficiency scores. This in fact reflects the different motivatarsassumptions behind TFA, since
as stated above, the underlying assumption behind TFA is that heavy tailedeflgots wide spread
of inefficiency, i.e. a heavy tailed distribution of inefficiency, rathanth heavy tailed distribution of
noise, making TFA inappropriate for the purpose of the current study; we thereforeptosuet TFA

any further.

2.4. Non-Gaussian Stochastic Frontier Mode's

Another possible method of dealing with the impact of outliers in the dagdficiency scores is to
directly alter the distributional assumptions of the basic SF model su¢hdhaiise component of the
composed error, rather than being normally distributed, follows an alternativeetryendistribution

with heavier tails.

One candidatdor this is the Student’s t distribution, a heavy-tailed distribution which approximates
normality for finite sample sizes. Tancredi (2002) proposes a model in whitlhaksided error is t
distributed and the one-sided error follows a half t distributithhus generalising the original normal-
half normal of Aigner et al. (1977) to allow for heavier tails in lmatimponents of the composed error
and shows that as the residual approaches infinity, the conditional distributive @fie-sided error
(conditional on the composed error realisation) is concentrated around zero in thehaifmormal
model, and is completely flat in the t-half t model; thus in the former case, anailtsewith a large
positive residual is judged to be close to the frontier with high probabilitie i the latter case it is
judged to be basically uninformative, making the model better at handling suchso@tiplying both
models to the Christensen and Greene (1976) dataset on US electric utiliteghtreshows that the
t-half t performs better than the normal-half normal, and that allowindpdavy tails in this way
increases the evidence for inefficiency in the model and overturns thedRit&@imar (1994) finding

that the basic SF model does not fit the data significantly better than OLS.

Nguyen (2010) introduces three additional non-Gaussian SF models, having two-sided siddddne-

errors that respectively follow Laplace and exponential, Cauchy and half CauwnchyCauchy and
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truncated Cauchy distributions. These models are considered in a cross-section comp|iaation

to the Christensen and Greene (1976) dataset, and Cauchy-half Cauchy balanced and unbalanced panel
data models with time invariant inefficiency are also introduced, agfilication to the US banking

dataset and to the WHO health sector dataset used in Greene (2004). The ssefidos® of the
aforementioned models is limited by the unjustifiable assumptions made in orsiempldy their
derivation: the Laplace-exponential model assumes the variances of the twamemponents to be the

same, as does the Cauchy-half Cauchy model for balanced panel data with respedcrtarnte of

the two-sided error and the (pre-truncation) variance of the one-sided errlattéhenodel further

assumes only two time periods. Nevertheless, both the cross-section and unbalancaugagdialf

Cauchy models appear acceptable, and results from the latter are presentedabgn@ugguyen

(2010).

Horrace and Parmeter (forthcoming) discuss SFA with a Laplace-distributesid®eberror generally,

and introduce a Laplace-truncated Laplace model; this is shown to reduce to a Laplace-eékponenti
model when the pre-truncation mean of the one-sided error is less than zewadrehst Absolute
Deviations (LAD) regression when the variance of the inefficiency termre # is also shown that

the conditional distribution of inefficiency is constant when the residuatis go that all observations

with positive residuals are given an identical efficiency score; astith-half t, the model therefore
treats outlying observations as less informative. Results from Monte Cadiattms suggest that the
Laplace-exponential model performs better than the normal-exponential model when the error is miss-
specified, and that it is more likely to produce non-zero estimates of thecain inefficiency when

OLS residuals display the wrong skew. The Laplace-truncated Laplace model is appliadate esti

cost frontier using the US airline data used in Greene (2012).

An analogous Bayesian approach to non-Gaussian SFA exists; Tchumtchoua and Dey (2007), estimate
a t-half t Bayesian SFA model, and Griffin and Steel (2007) brieflguds how to estimate t-half

normal, t-exponential, and t-gamma Bayesian SF models using the WinBUGS software package.
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To summarize, the non-Gaussian SF models are a potential way of dealing with theofropéirs

on the spread of efficiency predictions in SFA, given the different way tiielsitreat outliers; they
also have the advantage of being less arbitrary than simply excluding observatibas, the other
methods discussed. A drawback of the existing models, however, is that in @imetat closed form
expressions for their log-likelihoods, they also adopted alternatiee thick tailed—distributions for

u, which limits both the effectiveness of the models in reducing the impact @frswth the range of
efficiency predictions, and comparability with conventional SF models; we therefore prefer aimodel

which onlyv is drawn from a thick tailed distribution.

3. ThelLogistic-Half Normal Stochastic Frontier M odel

3.1. Formulation and estimation

In this paper, our motivation is to amend the conventional stochastic frontier tocmlommodate
data with large reporting errors. The work on nagSian SF models discussed above motivates us to
propose a further model which departs from the previous literature ihdh@tnds the noise error term
only and retains all of the conventional SF assumptions on the inefficiencyarddhe relationship
between error components and regressors. This allows us to understand the extent toewtatkealt

assumptions on the noise error term influence the efficiency predictions all ottysr ehjual.

In SFA, we have a composed erearonsisting of a symmetric noise componeind an inefficiency

component: which is drawn from some one-sided distribution, such that

E=v—Ssu (1)

Wheres takes on a value of one for a production frontier and minus one for a costrfriontier case,
we assume that is drawn from a logistic distribution, and thais from a half-normal distribution,

such that
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v (2)
f)=—— (“”)v :
Oy [1 + exp (U_u)]
fw) = ;"’(;) su>0 )
0, suz<0

Whereg, andg,, are scale parameters. The joint density ahdu is given by

( €+ su (4)
B . N DY R
e 0,,[1+exp(<€ a:u)] u u
LO, sus0

And the marginal density efis given by the convolution

o exp (8 -;:u) 2 y (5)
re= fo o 1+ exp (EE5)[ o <a_u> du
v o,

Which is an integral with no closed form. It is therefore not possible &agivanalytic expression for

the log-likelihood function, and to proceed with maximum likelihood estimation. lh aucase,
maximum simulated likelihood techniquesee Train (2009) for an introduction to simulation-based
methods—allow us to overcome this obstacle and estimate our model. The method followed here was

first outlined in the context of the normal-gam8f@amodel by Greene (2003). We begin by noting that

the integral in( 5 )| is simply the expectation ¢f(v) given thatu is drawn from a half normal

distribution

h(w) =E[fW)lu=0],  u~N[y 0] (6)

And thus we can form a simulated probability density functiom foy averaging ove draws from a
half normal distribution. The usual method of taking draws from a non-uniforribdigin is to note
that the cumulative density function of a random variable follows a uniformibdisbn, and thus by

inverting the cumulative density function we can have the value of tidl®mavariable in terms of a
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uniformly distributed random variable; this inverse cumulative densityibtmctan therefore be used
to transform draws from a uniform distribution into draws from any given disiburhus to generate
draw numbep from the half normal distribution of our inefficiency tetnwe have

1 EK q) (7)

Uy =0, @71 (E + >

WhereF, is draw numbeg from a uniform distribution. This leads us to the simulated probability

density function foe

&+ su
exp( q)

Q
(&) = >, % :
fe)= Q £+ sug\|? (8)
q=1 [1 + exp( )]
Oy
And, introducing subscripts for observatigihe simulated log-likelihood functiaa
+
N Q exp (ﬂ)
InSL=—-NInQ — N1 Zl 2
n nQ —Nlng, + n PINTIE (9)
=1 q=1 [1 + exp (—)]
Oy

Which may be maximised like any conventional log-likelihood function, providedawe dur draws
from the uniform distribution forming the,;s.
3.2. Efficiency Predictions

The conditional density af giveng, is the ratio of the joint distribution af andu and the density of

&

F@)f W (10)

fule) ==

Which, in the logistic-half normal case, gives
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exp (s+su)/[1+exp (s+su)]2%¢(aiu)/(av) (11)

Uv Uv
&+ su) ! su>0

flule) =5 i 2 (Mg
fo oy [1+exp(5';%)]20u (Uu) v

\0, su<0

The Jondrow et al. (1982) and Battese and Coelli (1988) point predictors foeref§i are
exp[E (—ule)] andE [exp(—ule)], respectively; these are derived by solving the integrals

(0.0)

E(ule) =fuf(u|s)du (12)

0
0

Efexp(—w)]e] = j exp(—u) f (ule) du (13)

0

Which, in the logistic-half normal case, gives

j— 1 *
E(ule) _f(E)fo UV[ (14)

Elen(—)le] 1 foo exp(—u) exp (5 -;vsu) , ¢(u)d
exp(—u)le] = —¢(—)du 15
R O Y e A2 )

Both of which, again, contain integrals with no closed form solutions. Simulation éfdireerequired
to generate these point predictions: we substjf@d for f(¢), and the remaining integrals are the
expectation oft andexp(—u) respectively multiplied by the probability density functionvofgiven

thatu is drawn from a half-normal distribution; this leads us to the simulated expectations

i {1 R U, exp (e +Gsur)
E(ule) = ==3 : 6
ul&e f(f)Rr=1gv [1 + exp (5_;%)]2 ( 1 )
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e+ (s+ a,,)ur]

3 1 1x eXp[ v
Elexp(—w)le] = f(5)§r=10v [1 + exp (S-l_o'%)]

5 (17)

Which we use to generate our point predictions of cost efficiency. Note that ficawthe uniform
distribution are also therefore needed to generate efficiency predictionsirigllegtimation of the
model. In the notation above we distinguish between draws to approxfifegtaisingq and the
additional draws required to compute the further integral in ( 16 ) &nd ¢sing-. This is to minimise

any simulation bias.

4. Application to Highways M aintenance Costsin England

In this section, we apply the logistic-half normal SF model to a unigtaset on highway maintenance
costs in England. Responsibility for maintaining roads in England is divided letdigbways
England—until 2015 the Highways Ageneya government-owned company responsible for
maintenance of the trunk road network, and the county councils and unitary authdritbsare
responsible for maintenance of the non-trunk roads in their respective areaserihyears, local
authorities have been under increasing pressure to demonstrate efficient practitieiency
improvements in areas such as highway maintenance, e.g. by undertaking benchmardisesaxién
peers. This study uses data from the CQC Efficiency Netwarkich is used to analyse the cost

efficiency of local authorities’ highway maintenance activities.

Previous econometric studies of road maintenance costs have tended to focus of theofjoestipmal
costs of usage, and what these imply for road pricing, rather than orstingeredst efficiency of local
authorities. Previous studies estimate cost functions using data on renewalsraadaneé costs for
motorways and canton roads in Switzerland (Schreyer et al., 2002), Austrian met(@edlacek and
Herry, 2002), nationati.e. trunk—roads in Poland (Bak et al., 2006 ; Bak and Borkowski, 2009), roads

in Sweden (Haraldsson, 2006 ; Jonsson and Haraldsson, 2008), and German motorways (Link, 2006 ;

1 Seg¢http://www.nhtnetwork.org/cqc-efficiency-network/horhe/
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Link, 2009) and federal roads (Link, 2014). Much of this work is summarized by Link (2014), who
estimates two cost models: one in which, as the author argues should be tHecze,df the road
network maintained is used as the scale variable, and a second in which passeradfic eadtgoods
vehicle traffic are used as scale variables can be derived; the author apparently coesigcet using

both network size and traffic as outputs in a single model. The only study to lefilcigincy in the
context of highway maintenance is that of Fallah-Fini et al. (2009), which usessappglA to data for
eight counties from the US state of Virginia, using road area and a sefitf oigasures as outputs,
and maintenance expenditure, traffic and equivalent single axle loads as inputs, anddirsateof

factors as non-discretionary variables.

We use an unbalanced panel consisting of data on the 70 local authorities from Hmaiamelré
members of the CQC efficiency network during 2014-15 and supplied cost data fot ahéeasthe

five years from 2009-10 to that year; this gives us a total of 327 observafiost data were supplied

to the network by each authority individually according to definitions decidedviyrking group of
network members, relating to operating expenditure and capital expenditotte divided into direct

and indirect categorieson carriageway maintenance only, i.e. excluding related activities such as
winter service and footway maintenance, on the basis that they should be understamdigixdéd
consistent submissions; we use the sum of these, total expenditure, as our dependémt variab
Nevertheless, preliminary analysis of the data reveals large differeng@sdnsts with a large number

of extreme outliers in both direction, which are clearly subject to samdedk reporting error. As a
result, standard SF models, as discussed in segtion 1, yields a wide rangeeofcgfiicedictions,

motivating the development of the model presented here.

In line with the previous literature, we use road length and traffic as outfaiblesr road lengths are
included as our measure of scale, while traffic terms of passenger kilometresve divide by road
length and include as a density variable. Detailed breakdowns of overall né&ngttk into urban and
rural roads and also by classification, the different classifications,beiagler of importance, A roads
B roads, classified unnumbered roads, and unclassified roads; we refer to the laterGvemd U

roads, respectively. B, C and U roads are always maintained by local authorities, while A roads can be
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either trunk, and therefore the responsibility of Highways England, or non trunkamai by local
authorities. The road length data we use include B, C, U and non trunk A roads; motdemaysd
by the letter M, and trunk A roads, are not included. Likewise, we use traffic data sujnelaky oy

the Department for Transport (DfT) which relate only to local-authority maintagaets r

We separate overall network length into urban and rural road lengths, and iwcthée the lengths
relating to each classification as proportions of the overall networkhlelde also include road
condition indicators for each road classificatiealso from DfT sources-and as input prices we
include a measure of median hourly wages in civil engineering for each NUT&4A fregn the Annual
Survey of Hours and Earnings (ASHE) published by the Office for National B®&{§&INS) anch
national index of materials prices in road construction from the DepartmeBtsaress, Innovation

and Skills (BIS).

We employ a modified Cobb-Douglas functional form, in which we include secdedterms relating

to urban and rural road length. The cost frontier we estimate is

InTOTEX =By + B InURL + B, In RRL + B3 In URL? + B, In RRL? + B In URL In RRL
+ B¢ InTRAFFIC + ,RDCA + BgRDCBC + BoRDCU + 10PROPy,
+ B11PROPyg + B1,PROPy¢ + B13PROPyy + B14PROPR, (18)
+ B1sPROPgg + B16PROPxc + B17YEAR + B1gIn WAGE

+ B1oINROCOSM + ¢

WhereTOTEX is total expenditure on carriageway maintenabigd, andRRL are the lengths of an
authority’s urban and rural road networks, respectively, TRAFFIC is a traffic density measurei.e.
traffic count divided by total road network lengtandRDCA, RDCBC andRDCU are the proportions

of A roads, B and C roads, and unclassified roads where maintenance should be considéted, weig
by the shares of their respective road classifications in the total road néwngitk. PRO P4 through

to PROPg are urban A roads, urban B roads, etc. as proportions of the total n&ngitk with the
proportion of rural unclassified roads omitted to avoid perfect multiealtity. Finally, we include a

time trend,YEAR, and two input pricedVAGE, a measure of regional gross hourly wages in civil
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engineering, anB0COSM, a national index of materials prices for road construction. All vasatrke
mean-centred, and linear homogeneity in input prices is imposed by dividingostuand wage

variables by our materials price index, which drops out of the model.

Table 1 shows the parameter estimates and associated standard errors and sigaifedarfoen the

logistic-half normal model, and for comparison, the normal-half normal model, bothatsdi in
LIMDEP. Following Greene (2003), we use Halton draws rather than pseudorandom nendratay
to obtain our draws from the uniform distribution; we use 1,000 draws, and find that fadteases

or small reductions in the number of draws do not significantly affect our results.

Table 1: Outputs from the logistic-half normal and normal-half normal models

Logistic-Half Normal Normal-Half Normal
Estimate s.e. Sig | Estimate s.e. Sig
Bo 16.0631 | 0.0956 | *** | 16.0350 | 0.14502 | ***
B1 (InURL) 0.13443 | 0.11162 0.12738 | 0.17112
B2 (In RRL) 0.90841 | 0.11836 | *** | 0.91675 | 0.17943 | ***
B3 (In URL?) 0.23534 | 0.04447 | *** | 0.24091 | 0.06291 | ***
B4 (In RRL?) 0.08315 | 0.01057 | *** | 0.08503 | 0.01586 | ***
Bs (InURLIn RRL) -0.07189 | 0.02944 | ** | -0.08083| 0.04421 | *
Be INTRAFFIC) 0.37956 | 0.10259 | *** | 0.41532 | 0.15442 | ***
B7 (RDCA) 0.44014 | 0.09675 | *** | 0.46356 | 0.14373 | ***
Bs (RDCBC) -0.07142 | 0.02682 | *** | -0.07057| 0.03909 | *
By (RDCU) -0.00397 | 0.00324 -0.00519| 0.00529
B1o (PROPy,) 8.28742 1.9879 | *** | 7.80954 | 3.24067 | **
B11 (PROPyE) 1.982 2.27009 0.66161 | 3.86852
B12 (PROPy() 0.62504 | 1.21835 0.44784 | 2.05441
B13 (PROPyy) 1.10074 | 0.56802 | * 1.09028 | 0.83493
B14 (PROPg,) 2.57286 | 1.08575 | ** 2.1196 | 1.57145
B1s (PROPgp) 2.40330 | 1.10305 | ** 2.67772 | 1.5444 *
B1e (PROPg() 1.11517 | 0.67064 | * 0.98277 | 0.98812
B17 (YEAR) 0.04055 | 0.01105 | *** | 0.04457 | 0.01661 | ***
Big InWAGE) 0.82267 | 0.23264 | *** | 0.89086 | 0.34002 | ***
(1 — pB1g) InROCOSM)* | 0.17733 - - 0.10914 - -
oy 54321 0.02541 | *** | 0.56798 | 0.01482 | ***
oy, .16005 0.00745 | *** | 0.27642 | 0.03015 | ***
Log Likelihood -188.52 -189.14

Statistical significance at the: * 10% level, ** 5% level, *** 1% level
Notes: 1) Parameter is equivalenite ;5 due to the imposition of linear homogeneity in input prices.
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We can see that both models yield similar estimates for each parameter, amasthzftour variables
are found to be statistically significant at the 10%, 5%, or 1% levels. Terlumedthe similarities
between the two models, we note that the correlation between the predicted residuals from each model
is 0.9994 (rank correlation 0.9993). The log likelihood for the logistic-half normal rizokiigher than

the corresponding value for the normal-half normal model indicating a superior fit.

The parameter estimates indicate constant to decreasing returns to stwleaatple average (the p-
value for the null hypothesis of constant returns to scale is 0.2396, ad twe'dject it), with increasing
returns to scale for smaller authorities, and increasing returns to traffitydtns also noticeable that
the significance associated with each of the frontier parameters increasebeisggstic-half normal
model relative to the normal-half normal model. This is unsurprising, sinagséhef a thick-tailed

noise distribution increases the robustness of our parameter estimates to outliers.

Also of interest here are the estimated error variances, and how these diffsgrbéte two models.

The variance oft is given in both cases by

m—2
VAR(u) =

ol (19)

While the variances af in the logistic-half normal and normal-half normal models, respectively, are

given by

7'[2
VAR(v) = T o2 (20)

VAR(v) = o (21)

Table 2 show¥AR(u) andVAR(v) for both the logistic-half normal and normal-half normal models,

along with total error varianc&/AR(e). We can see that neither the overall error variance, nor its

individual components, differ substantially between the two models.
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Table 2: Estimated error variances

Logistic-Half Normal Normal-half normal
VAR(u) 0.107225 0.117227
VAR(v) 0.084279 0.07641
VAR(¢) 0.191504 0.193637

In spite of their similar error variances, however, we expect thabth&tit-half normal model will

result in a significantly narrower distribution of predicted efficienayrssg, given the very different

way that the two models handle outliers, as discussed in Sectjon 3.2. Cost@ffigiedictions from

both models are generated using the Jondrow et al. (1982) conditional mean predictor, which is shown

in[( 16 )|for the logistic-half normal case.

Table 3: Summary of efficiency scores

Logistic-Half Normal Normal-half nhormal
Minimum 0.408882 0.225086
Mean 0.708911 0.659549
Median 0.724585 0.682412
Maximum 0.879474 0.918035
Range 0.470592 0.692949

Table 3 shows some summary statistics relating to the resulting efficieadictipms from both

models. The correlation between the two sets of efficiency predictions is higl99at However,
comparing the ranges of the two sets of predictions, we can see thateated, the logistic-half normal
model results in a far narrower distribution of efficiency préaiat. This is due mostly to a very marked
difference in the minimum predicted efficiency score, which is far high&eitogistic-normal model,
from which the mean and the median predictions are also higher, though thendéfer progressively
smaller in each case. The maximum prediction, however, is smaller in theclbgisthormal model

than in the normal-half normal model due to the way the model handles outliithar direction,

though as discussed in section|2.1, the maximum prediction from both models woulddramechié

we had used the conditional mode predictor.
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Figure 1 gives a more detailed comparison, showing kernel density estimates fotdotle#ieiency

scores. In this, we can see a greater number of observations with low predictencgfscores from
the normal-half normal model generally, and higher efficiency predictions gena@akycommon in
the logistic-half normal model; the latter being in spite of the fatt due to the milel’s handling of
outlying observations, the highest several efficiency scores are somewhat lower tharothabe f
normal-half normal model. Our model therefore seems to result in an overalhtodtree distribution
of efficiency predictions, with far fewer at the bottom of the range with @ relatively small impact

on predictions at the top.
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Density

15
1.0
0.5
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Figure 1: Kernel densities of cost efficiency scores
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Figure 2: Cost efficiency scores against residuals

Figure 2 shows the relationship between efficiency predictions and corresponding regidgils i

models. Given the similarity of the estimated frontier parameters, the ranges ofdbelsestross the
two models are very similar, as are the estimated error variances, but tlenshlptibbetween the
residuals and the efficiency predictions are significantly diffeferttie normal-half normal model, the
slope of the function diminishes for large positive or negative residuals, butlogistic-half normal
model, in addition to the slope being gentler overall, this is much more pronounced, withctienf
becoming almost flat— i.e. there being very little change in efficiency predictionst either endfo
the range. This suggests that, in line with our discussion of the wathéhatodel treats outlying

observations, efficiency predictions do not approach zero or one for extreme values of the residuals.

5. Summary and Conclusions

This paper considers the issue of outliers and their impact on efficiency analysesee\Adi®img how
these issues have been handled in the existing literature, we have motivdtechatated a stochastic

frontier (SF) model with a thick-tailed noise component. In contrast to previous models, in which both
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the noise and inefficiency terms have been drawn from a thick-tailed distribaonse maximum
simulated likelihood to estimate a model which combines a thick-tailed noisdbudist—i.e. a
logistic distribution—with a half normal inefficiency distribution. This model is easy to estimate and
has been programmed into a bespoke version of LIMDEP. We show that the model handlesroutlier
both directions in a way that can produce a much narreaed in the presence of outliers, more

intuitive—range of efficiency predictions than standard SF models.

We apply our model to a unique dataset on highways maintenance costs in England, and hempare t
results to those from the normal-half normal SF model. The estimated frontimepersand variances

are found to be very similar to those from the normal-half normal model, budrtherfwith greater
significance due to the increased robustness of the model to outlying observatioms nd, as
expected, that the model results in a narrower range of efficiencytmadicThe model is therefore
effective in reducing the extent to which outlying observations are treated as édverge efficiency

values.

Further development could consider alternative distributionsufoisuch as truncated normal,
exponential, or gamma, which would be easy to implement using our estimation apphmaidsue of
testing between our model and the standard SF model could also be explored. Therauthoesrdly
developing an alternative model in whiehfollows a Student’s t distribution, which has the normal
distribution as a limiting case, meaning that the model nests the standard SFAnfiodkér advantage

of the Student’s t is that the thickness of the tails can be varied with its dsgrefreedom parameter,
making the model more general; @adent’s t distribution with seven degrees of freedom is also a good

approximation of the logistic distribution used in this study.
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