
This is a repository copy of Fractured Basement – An Overlooked Play Type with Strong 
Indications of Significant Potential from a Global Seismic Database.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/121048/

Version: Accepted Version

Article:

Rodriquez, K, Intawong, A, Hodgson, N et al. (2 more authors) (2017) Fractured Basement
– An Overlooked Play Type with Strong Indications of Significant Potential from a Global 
Seismic Database. First Break, 35 (7). pp. 77-82. ISSN 1365-2397 

© 2017 EAGE Publications. This is an author produced version of a paper published in 
First Break. Uploaded in accordance with the publisher's self-archiving policy. 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Fractured Basement ʹ An Overlooked Play Type with Strong Indications of 

Significant Potential from a Global Seismic Database 

 

Introduction 

Fractured basement reservoirs are most commonly defined as metamorphic and igneous rocks 

unconformably overlain by a sedimentary sequence, where faulting has led to the creation of a natural 

fracture network where hydrocarbons can accumulate. Here, we also consider basement rocks to 

include those of sedimentary origin with little or no matrix porosity (North, 1990), such as the Cambro-

Ordovician quartzitic sandstones of the Table Mountain Group in South Africa. Fractured quartzites 

and granites are generally considered to be the optimum reservoirs (Koning, 2013). 

Basement reservoirs have been recognized for decades but are still often disregarded, with wells 

barely penetrating them, as many oil companies stop drilling as soon as basement rocks are 

intersected. Where basement has been penetrated to a sufficient depth (approximately 300 m), 

significant volumes of undiscovered hydrocarbons may still have been missed by a failure to intersect 

the fracture systems (Aguilera, 1996).   

Despite inadequate exploration, fractured basement rocks are important oil and gas reservoirs around 

the globe (Figure 1). Though many were originally found by chance, the large discoveries made in 

Vietnam and more recently in the UK are now paving the way for an intentional and adequate 

exploration strategy of this unconventional highly prospective play type.  

 

Figure 1: Fractured basement reservoirs around the globe and Spectrum seismic database. Red circle 

highlights seismic data example showing the fractured basement plays in this article.  

 

Major fractured basement discoveries 



The best known basement reservoir is in the Bach Ho oil field discovered in 1975 by Mobil Oil Co. in 

the Cuu Long Basin offshore Vietnam. The basin is a rift basin developed during the Eocene to Early 

Miocene (Cuong and Warren, 2009). The Bach Ho field contains major reserves accommodated within 

highly fractured Late Triassic to Late Cretaceous granitic and granodiorites basement rocks (Cuong and 

Warren, 2009). It is estimated that two billion barrels of oil (Keggin and Alaaraji , 2017), sourced from 

directly overlying Oligocene lacustrine shales (Hung and Le, 2004), will be produced from the fractured 

granitic basement.  

Other significant discoveries have been made in the Yemen East Shabwa Development Area and in 

Argentina at the Cuyo and Neuquen Fields (Gutmanis, 2010), both producing from fractured volcanics.  

More recently, Hurricane Energy have had great success on the UK Continental shelf West of 

Shetlands, at the Lancaster and Whirlwind fields, with best estimate recoverable volumes of 523 

Mmboe (Hurricane Energy, 2017) and an upside potential of 3 billion barrels just in the Lancaster field 

alone. The play concept is similar to the Cuu Long Basin but with Pre-Cambrian gneiss granodiorites 

basement rock, formed 2.5 billion years ago and charged by the world class source rock Jurassic 

Kimmeridge clay in syn-rift half-grabens (Figure 2; Trice, 2014). The Lancaster structural closure was 

originally drilled by Shell (205/21-1a well) in 1974 and encountered oil and fractures in basement core. 

It was not until 2009 that Hurricane Energy drilled a deviated well on the same structural closure to 

test their fractured basement model and found oil outside the closure.  

The main characteristics of the Lancaster discovery can be observed in 2006 long offset 2D seismic 

data (Figure 2). The basement structure is clearly seen on sections in both dip and strike direction. 

Although faulting patterns are more difficult to image, the fractured basement play fairway can be 

generated from the existing 2D seismic grid, identifying undrilled analogues in open acreage along the 

Rona Ridge.  

https://en.wikipedia.org/wiki/Rift
https://en.wikipedia.org/wiki/Miocene


 

Figure 2: 2D seismic dip section demonstrates the Lancaster fractured basemen play West of 

Shetlands. Regional cross-section across the Rona Ridge shows the structural disposition of the 

Lancaster field and its relationship to the hydrocarbon kitchen of the Foula sub-basin and East Solan 

Basin (After Trice, 2014).  

Faults and fractures with an associated damaged zone create an enhanced secondary porosity system 

within the basement rock (Cuong and Warren, 2009; Trice, 2014). In fractured basement reservoirs, 

additional hydrocarbon potential can be found outside of structural closure as oil backfills down 

through the highly permeable fracture network, a highly attractive characteristic proven by Hurricane 

Energy. A simplified schematic fracture basement reservoir modelled by Hurricane Energy showing 

how hydrocarbon gets charged into the basement is illustrated in Figure 3. 

 



 

Figure 3: HƵƌƌŝĐĂŶĞ͛Ɛ ĨƌĂĐƚƵƌĞĚ basement play concept and reservoir model in the West of Shetland 

(Taken from Hurricane Energy website, 2017).  

UK onshore analogue for Vietnam offshore granitic basement 

TŚĞ BĂĐŚ HŽ ŽŝůĨŝĞůĚ ŝŶ VŝĞƚŶĂŵ͛Ɛ CƵƵ LŽŶŐ BĂƐŝŶ ĐŽŶƚĂŝŶƐ Ă ϭ,000m oil column in a fractured and 

hydrothermally altered Cretaceous granitic pluton, sourced from overlying Oligocene organic 

mudstones (Cuong and Warren, 2009). When Enterprise Oil was exploring for basement plays in the 

Cuu Long Basin, it built a model of hydrothermal porosity generation based on similar Cornubian 

granites emplaced in south-west England during the Hercynian Orogeny.   

Despite differences in age between Cornish granites and those from offshore southern Vietnam, there 

existed several important similarities.  Both represented composite S-Type granites formed in the core 

complex of an orogenic belt, and both were intruded to shallow crustal levels then rapidly uplifted 

and unroofed, during which they intersected the water table and underwent hydrothermal alteration 

and porosity creation.   

Hydrothermal porosity formation within large granitic plutons is considered to commence early in the 

cooling history of the pluton, when super-critical acidic solutions are expelled into cooling and stress 

relief fractures within the solidified granitic skin.  It results in sub-parallel veins separated by highly 

ƉŽƌŽƵƐ ĚŝƐƐŽůƵƚŝŽŶ ǌŽŶĞƐ ŽĨ ƋƵĂƌƚǌ ĂŶĚ ǁŚŝƚĞ ŵŝĐĂ͘  TŚĞ ƌĞƐƵůƚĂŶƚ ͞ƐƚƌĂƚŝĨŝĞĚ͟ greisen porosity layers 

ŽĨƚĞŶ ĨŽůůŽǁ ƚŚĞ ƉůƵƚŽŶ͛Ɛ ƚŽƉŽŐƌĂƉŚǇ͕ ĂŶĚ ĐĂŶ ďĞ ůŽǁ ĂŶŐůĞ ǁŚĞƌĞ ƚŚĞǇ ƉĂƌĂůůĞů ƚŚĞ ƌŽŽĨ ǌŽŶĞ͘ Iƚ ŝƐ 
believed that such greisenisation can result in up to 5% net effective porosity within the granite. 

Another important porosity production (and destruction) process is kaolinisation, a later pervasive 

process that begins as soon as erosional unroofing causes the granite to intersect the water table, and 

can last for over 100 my.  The process involves enormous volumes of meteoric water and an effective 

porosity system through which the water can circulate. Both the Cornubian and Vietnamese granites 

are recognized to contain areas of both constructive and destructive kaolinisation. 



Cooling, stress release, and tectonic fracturing were recognized as providing important permeability 

conduits within the granites at both locations, with the fractures being subsequently chemically 

eroded and enlarged by hydrothermal processes.   

The granite basement porosity model generated from outcrops of Cornubian granite was used to build 

a prospect-scale porosity model for further exploration within the Cuu Long Basin.  As a result, 

Enterprise Oil drilled and discovered oil in granite basement of the Vai Thieu prospect within Vietnam 

Block 17.  

Similar S-Type granite core complexes emplaced during the Eo-Cambrian orogenic event have been 

subsequently compressionally uplifted within the late Palaeozoic Cape Thrust-Belt of South Africa.  

During the Jurassic and early Cretaceous, the southern offshore part of this foreland fold and thrust 

belt appeared to undergo extensional gravity collapse to form the various sub-basins comprising the 

offshore Outeniqua Basin. Many of the unroofed Eo-Cambrian granites were overlain by organically 

rich Neocomian marine shales, which can have acted as both source rocks and seals to potentially 

hydrothermally enhanced fractured granites. 

 

 

 

Lessons from the onshore Cape Fold Belt  

Onshore southern South Africa represents over a billion years of geological history that encompass a 

complex series of tectonic events, of which the most important are the Saldanian Orogeny (~550 Ma) 

and the Gondwana Orogeny (~300 Ma).  

The Saldanian Orogeny was a consequence of the closure of the Adamstor Ocean between the Parana 

and Kalahari Cratons and resulted in the emplacement of a suite of generally S-type granites into the 

accretionary melange. These are collectively referred to as the Cape Granite Suite and predominantly 

consist of metaluminous to peraluminous granites with occasional mafic and intermediate bodies. The 

resulting granitoid batholiths form a series of inliers within the Phanerozoic sequence (Figure 5) and 

in outcrop, at least, are broadly located close to the present day coastline in both the southern margin 

and the Cape area. As is evident from potential field data, this trend is likely to extend offshore into 

Figure 4: Residual oil staining (appears brown and is indicated by red 

arrow) in hydrothermally enhanced fracture porosity within Bach Ho 

Well 504 (After Cuong and Warren, 2009). Scale bar is 5 cm long. 



the southern Orange Basin, although the overall geometry of the Saldanian Orogeny is poorly 

understood.  

 

Figure 5: Field example of the erosional truncation of Table Mountain Group on the south coast and 

the onlap of subsequent stratigraphy. Also note the fracturing that is present within the TMG.  

In contrast, the geometry of the onshore Gondwana Orogeny is well understood as it resulted in the 

Cape Fold Belt that dominates both the topography and structural configuration of southern South 

Africa (Figure 7). This orogen resulted in the compression of the passive margin that was present to 

the south of the present day margin and resulted in a north verging intra-continental foldbelt. Of 

particular importance for fractured basement is the oldest sequence of the passive margin, the Table 

Mountain Group (TMG), consisting predominantly of super-mature, medium to coarse grained, cross-

bedded quartzitic sandstones that have undergone low-temperature and low-pressure 

metamorphism resulting in an indurated quartzite. As is evident from field observations, secondary 

porosity is present within the TMG[DP1], generated as a consequence of the Gondwanan Orogeny. This 

compressional event inverted the Ordovician-Silurian passive margin resulting in a series of elongated 

anticlinal box folds that form the topography relief along present day southern South Africa (Paton et 

al., 2006) as well as significant fracturing the Table Mountain (e.g. Figure 6).   

The final stage of tectonic activity was the super-imposition of Mesozoic extension onto the Cape Fold 

Belt that resulted in the negative structural reactivation that is present both onshore, e.g. Oudtshoorn 

Basin, and the suite of offshore extensional sedimentary basins (Figure 6). This rift event, and 

subsequent passive margin subsidence, led to the deposition of various syn-rift and early post-rift 

source which have been proven in the offshore basins. The onshore geology, therefore leads us to 

speculate that given the correct juxtaposition of Mesozoic source rocks on top of the erosional top 

basement contact, then there is the potential for a hydrocarbon charge to migrate up dip into the 

fractured basement (Cape Granite or TMG) with the Hauterivian shales acting as a top seal (Figure 6).  



 

Figure 6: Play concept for fractured Cape Granites and Cape Fold Belt basement with Hauterivian and 

Jurassic-Early Cretaceous organic intervals source rocks providing charge. 

Cape Fold Belt fractured basement offshore potential 

The Ga-A-1 was the first well drilled in the Pletmos sub-basin in 1968 in the south coast of South Africa 

and encountered gas in fractured and sub-aerial quartzite of the Table Mountain Formation. The well 

was drilled vertically to test a structural closure of syn-rift draped sand and basement plays. The 

reservoir intervals are charged by a Jurassic lacustrine source from the Southern Pletmos sub-basin 

and Superior Graben (Figure 7). The well produced gas at rates 22 mcf/d from syn-rift shallow marine 

sandstone and fractured quartzite basement of Ordovician to Devonian age (TMG) (Roux and Davids, 

2009). IHS has estimated 8.33 mmboe recoverable reserves within the fractured quartzite reservoir, 

and 77 mmboe within the syn-rift shallow marine sandstone draped over the basement high (Figure 

7 (a)). The discovery remains un-appraised. This basement structural closure can provide an upside 

reserves potential, both by drilling a deviated well to intersect the fractures and by oil outside 

structural closure similar to HƵƌƌŝĐĂŶĞ͛Ɛ model (Figure 3). 

 



Figure 7: 2D seismic section over the Ga-A gas field in the Pletmos sub-basin, offshore South Africa. 

Schematic geological cross section across the Pletmos sub-basin illustrating structural style and source 

kitchens charging the fractured quarzitic basement of the Table Mountain Formation (Roux and 

Davids, 2009). Basin location and chronostratigraphic diagram of the Pletmos sub-basin is illustrated 

in Figure (d) and (b) (After Roux and Davids, 2009).  

2D seismic reprocessed in 2016 was integrated with a gravity anomaly map, to identify similar 

basement highs (Figure 8) and to map the fractured quartzite basement play fairway in the Pletmos 

and other sub-basins (Bredasdorp, Gamtoo, Algoa and Soputhern Outeniqua) within the Outeniqua 

Basin. The Outeniqua basin is bound to the south by the northeast-southwest trending Agulhas-

Falkland Fracture Zone (AFFZ) which developed during the Jurassic to Early Cretaceous South Atlantic 

break-up. There are three proven source rock intervals encountered within this basin; a syn-rift Late 

Jurassic lacustrine mudstone, a Hauterivian-Barremain restricted marine mudstone and an Early 

Aptian anoxic restricted marine mudstone. 

 

Figure 8: Undrilled basement highs identified on 2D seismic sections in the Pletmos and Southern 

Outeniqua sub-basins. The line location is indicated in figure (c). Interpreted basement highs within 

the Cape Fold Belt based on gravity anomaly.  

Continuation of the Cape Fold Belt offshore 

The occurrence of fractured basement potential within the CFB leads to the intriguing question of 

whether both the Table Mountain Formation and Pre Cape Gneiss plays are present along the entirety 

of the fold belt. Using the recently acquired reflection data illustrated previously, Paton et al. (2017) 

proposed a revised plate reconstruction for the region in which, for the first time, they identified the 

direct continuation of the CFB offshore into the southern portion of the Orange Basin. Using the 

correlation from onshore regional tectonics this reveals that the inboard portion of the Orange basin 



is likely to have the Table Mountain Formation sub-cropping the break-up unconformity and the 

folding imaged in the reflection data reflects the deformation observed in the onshore (Figure 9). 

 

Figure 9: Cape Fold Belt fabric continues into the inboard portion of the  Orange Basin in the west 

coast South Africa. Depth seismic line location is shown in Figure 8 (c).  

The outboard portion of the base resembles the southern coast and the presence of both gravity and 

magnetic anomalies represent the Cape Granite Suite and therefore the sub-crop in the outer basin. 

The restoration presented by Paton et al. (2017) suggests the continuation of the CFB towards the 

west is into the Argentinian Colorado Basin. This would provide the potential for both fractured 

basement plays being a new play concept being feasible in the Argentinian margin (Figure 10).  

 



Figure 10:  Reconstruction of the southern South Atlantic at 140 Ma. This reveals the continuity of the 

Cape Fold Belt (blue) in South African into the Colorado Basin in Argentina and predicts the potential 

for fractured basement plays in both the Orange and Colorado Basins (After Paton et al., 2017). 

Conclusions 

The fractured basement play is an overlooked play proven on a global scale. It can be associated with 

large reserves and significant upside potential. Basement reservoirs require hydrocarbon source rocks 

below, adjacent or above them. Tectonic activity plays a key role in creating and enhancing the 

fractures in the basements and this requires a good regional geological understanding of the region 

which can be gained by integrating all available data from onshore geology, information from wells, 

regional 2D seismic and potential field data. Such work has resulted in the identification of the 

continuation of the pre-Atlantic opening Cape Fold Belt deformation and the potential fractured 

basement play fairway in the Outeniqua Basin into the Orange Basin of South Africa and its conjugate 

margin the Colorado Basin of Argentina.  

Regional seismic data is an essential tool for the initial identification of the potential of this highly 

attractive play. Long offset and reprocessed 2D seismic datasets have been successfully used in the 

West of Shetlands and in the Outeniqua Basin to map fractured basement play fairways. Other areas 

where potential fractured basement plays have been identified using seismic data include the Orange 

and Durban Basins offshore South Africa.  

Initial identification of potential fractured basement play fairways can encourage oil companies to 

change their drilling practice and target, rather than avoid, basement objectives which, when  drilled 

highly by deviated rather than vertical in order to optimally intersect the dominant fracture systems, 

can yield significant volumes of hydrocarbon which have been mostly overlooked. 
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