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Model and Experiments to Determine Lubricant Film Formation and 

Frictional Torque in Aircraft Landing Gear Pin Joints 

J. Zhu, S. Pugh, R.S. Dwyer-Joyce 

Leonardo Centre for Tribology, Department of Mechanical Engineering, the University of Sheffield, 

Mappin Street, Sheffield, S1 3JD 

Abstract 

Pin joints are found in many large articulating structures. They tend to be under high 

load and articulate slowly, so the joints typically operate in the boundary or mixed 

lubrication regimes. This means that the operating torque depends on the respective 

proportions of liquid and solid contact between the joint mating faces. In this paper, a 

mixed lubrication model of a grease lubricated landing gear joint is established to 

determine a theoretical Stribeck curve, frictional torque and lubricant film thickness 

under different loads. Parameters describing pin joint working conditions, geometry, 

lubricant properties and pin/bush texture are used. The model can also predict the 

proportion of the load that is supported by contacting asperities and lubricant film. 

The changing proportions of these two parts indicate transformations between 

different lubrication regimes. Experiments on an instrumented pin joint have been 

carried out to compare with the predicted friction and torque performance. Theoretical 

calculation results show good consistency with experimental plots at high load. But 

under low load the real friction between pin and bush is significantly lower than 

theoretical predictions. 

Keywords: landing gear pin joint, mixed lubrication model, friction coefficient, 

frictional torque, film thickness 

1. Introduction 

Pin joints allow mechanical articulation between two or more members in a structure. 

They are widely used in many kinds of engineering machinery, from heavy mining 

equipment to the latest evolution of the space shuttle. They play a key role in the 

operation and durability of articulating mechanisms.  

A typical example is that of aircraft landing gear (see Figure 1). Articulation in 

landing gear systems is achieved by using of many pin joints, which help to complete 

the extending and retracting movement. The joints consist of a hollow steel pin that is 
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free to reciprocate inside aluminium bronze bushes. The bushes are press fitted into 

the landing gear members. The joints are lubricated by grease which is replenished 

manually at regular maintenance intervals. The lubricant film formed separates the 

surfaces of the pin and bush and reduces metallic contact and wear. Ideally this 

lubricant film should be as thick as possible to minimise solid contact and therefore 

friction. Lower friction force ultimately means that smaller actuators are possible, 

therefore saving weight.  

 

Figure 1 Sketch of landing gear and typical pin joint 

The landing gear joints oscillate under low-speed and heavy-load conditions. The pin 

joints are therefore operating in boundary or mixed lubrication regime. Much 

experimental work on bearing material selection and wear for these kinds of joints has 

been done [1, 2]. The results show bearing performance effectively and give some 

beneficial instructions for bearing design. But there are still no theories available to 

predict friction coefficient accurately for low-velocity, high-load and articulating 

bearings.  

In this paper, a mixed lubrication model of a grease lubricated pin joint is used to 

predict lubrication regimes and joint friction coefficient. A test rig has been used to 

articulate a sample pin joint with full instrumentation. The torque required is then 

compared with theoretical results.  

2. Model Formulation  

This model follows a similar approach to Lu etc al [3] where friction coefficient is 

predicted as the sum of the friction at the dry asperity contacts and viscous friction 

from the fluid film parts. An equation for asperity contact is based on the Greenwood 
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& Williamson [4] model; while another equation for the fluid film determined by the 

Moes’s method [5]. 

2.1 Friction coefficient in mixed lubrication 

In the mixed lubrication model of Johnson et al [6] the total normal load 
T
P  is shared 

by the hydrodynamic lifting force 
H
P  and the asperity contact force 

C
P .  

 
T H C
P P P= +  (1) 

Correspondingly the friction force 
T
Q is composed of two parts, one is hydrodynamic 

friction force 
H
Q  that mostly relies on lubricant viscosity and the other is asperity 

interacting shear stress,
C
Q  , which is influenced mainly by the morphology of the 

mating surfaces. Figure 2 shows the load distribution in mixed lubrication regime. 

 
T H C
Q Q Q= +  (2) 

 

Figure 2 Schematic diagram of pin joint and load distribution in the mixed lubrication contact 

 The frictional force caused by the hydrodynamic fluid film,
H
Q , is derived from Bair-

Winer model [7] 
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u
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η

ττ
− 
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 (3) 

where 
L
τ is the limiting shear stress, ! is lubricant viscosity which is assumed to obey 

the Roelands’ equation[8], ! is the effective velocity of contacting surfaces, !! is the 

central film thickness, ! is the half width of Hertzian contact, B is the bush length of 
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the pin joint. Both the parameters !! and ! are functions of the pressure in the contact, 

!!, according to: 

 
0 0L L m

pτ τ β= +  (4) 

 ( ) ( )1 1 /

0 0
/

Z

m pp c
η η η η

 − +  
∞=  (5) 

with !!! is the limiting shear stress at ambient pressure, !! is the slope of the limiting 

shear stress-pressure relation, !! is the lubricant viscosity at inlet temperature, !! and 

!! are constants, ! is the Roelands’ pressure-viscosity index. 

To simplify the model in this work the contact between the pin and bush is assumed to 

follow Hertz elastic contact analysis. Strictly this kind of contact violates the Hertz 

principle because the contact area is not small compared with the radius of the 

contacting bodies. However, an experimental analysis [9] shows that the 

approximation is not too severe. The mean and peak contact pressures and half 

contact width are then given by: 

 
' '

0

8
, ,

2 2 ' '

T T T

m

P P E P R
p p a

aB BR E Bπ π
= = =  (6) 

where !! is the reduced radius 

'

1 1 1

b
R R R
= −  

Where ! and !! are the outer radius of pin and inner radius of bush respectively, 

and !! is the effective modulus 

2 2

'

11 1 1

2

b

b
E E E

ν ν − −
= − 

 
 

The friction caused by the asperity contacts, !! , is expressed by [3]: 

 
1

i N

C Ci Ci CiQ p dAµ
=

=∑  (7) 

with !!∀, !!∀, ��!∀ refer to the friction coefficient, mean contact pressure, and area of 

contact at a pair of contacting asperities, i. N is the total number of asperity contact 

points. If the friction coefficient,!!!  is assumed to be constant over all asperity 

contacts, then 
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1

i N

C C Ci Ci

C C C

Q p dA

Q P

µ

µ

=

=

=

∑
 (8) 

!! and !! were introduced in Johnson’s model [6] to represent the proportions of 

hydrodynamic lifting force and surface asperity contacting pressure. They are 

written as !!!! ! !!, !!!! ! !!. Together with equation(1), then: 

 
1 2

1 1
1

γ γ
+ =  (9) 

The friction coefficient for pin / bush contact is obtained from: 

 H C

T

Q Q

P
µ

+
=  (10) 

The frictional torque to rotate the pin joint is then: 

 
T

T RPµ=  (11) 

Note that equation (11) in fact represents an approximation for the torque from the 

pressure distribution. Ref [9, 10] describe in detail how the tangential pressure 

components reduce this torque. However, the effect is relatively small (leading to a 

reduction of less than 10%) and so for simplicity is neglected here. 

In order to determine the friction coefficient using equation (10) the film thickness 

and proportions of liquid and solid contact are needed. One approach of doing this has 

been developed by Lu et al [3] and Gelinck & Schipper [11], who set up a mixed 

lubrication model to calculate Stribeck curves for line contacts. In this paper, this 

model was chosen to establish a friction and lubrication model for the pin joint. As in 

the mixed lubrication regime both elastohydrodynamic lubrication (EHL) and asperity 

contact exist to support the total load. So in this lubrication model the 

elastohydrodynamic lubrication theory and rough surface contact theory are needed. 

The following part explains this mixed lubrication model. 

2.2 Elastohydrodynamic lubrication component 

The approach [3, 11] assumes the formation of the oil film is unaffected by the 

presence of the roughness. Then a conventional smooth surface EHL solution is used 

to determine the load supported by the hydrodynamic film. 
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In the present case, the Moes [5] equation was used to predict the central film 

thickness in the line contact: 

 ( ) ( )
1

3 2
7 7 7 77 7
3 3 2 2

s s s

C RI EI RP EP
H H H H H

−− − 
= + + + 
 

 (12) 

where the dimensionless parameters are defined as follows: 
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where !! is the separation in the center of the contact, !!  are dimensionless film 

thicknesses, !!  is the dimensionless viscosity, !  and !  are dimensionless load 

parameters, ! and ! are material parameters, ! is the pressure-viscosity coefficient. 

According to Gelink and Schipper [11] the hydrodynamic part of the mixed 

lubrication is considered in equation (12) by replacing !! with !!!!! and !!  with 

!!!!!. So the film thickness equation (12) can be rewritten by: 

 ( ) ( )( ) ( ) ( ) ( )

1
3 2

7 7 7 71 14 17 7
3 32 2 22 15 2 2

Σ 1 1 1 1

'

s s s
s s

c

RI EI RP EP

h
U H H H H

R
γ γ γ γ

−−−− − − 
= + + + 
 

(13) 

with s is expressed as: 
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 (14) 

2.3 Asperity contact component 

The rough surface contacting model of Greenwood and Williamson [4] is used to 

determine the load supported by the asperity contact part. The pressure generated by 

the asperity contact is given by, 
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3
2

2 ( )
'

3
s

s

h x
p x n E Fβ σ

σ

 
=  

 
 (15) 

where h is the separation between the two contacting surfaces, n is the density of the 

asperities, ! is the average radius of the asperities, !! is the standard deviation of the 

height distribution of the summits. !! !

!!!!

!!

 is expressed as, 

 
2

3/2

2
3
2

( )/

( ) 1 ( )

2
s

t

s sh x

h x h x
F t e dt

σσ σπ

∞
−   

= −   
   

∫  (16) 

So the central contact pressure can be expressed by: 

 1/2 3/2

3
2

2
'

3

c d
c s

s

h d
p n E Fβ σ

σ

 −
=  

 
 (17) 

where !! is the distance between the mean plane through the summits and the mean 

plane through the surface heights. According to Whitehouse and Archard [12] !! is 

approximately 1.15!!. The expression for the statistical function !! ! depends on the 

distribution of asperity heights !!!! [4], which is usually modeled as Gaussian 

distribution.  

Gelinck and Schipper [11] fitted the following expression for the central pressure, 

 
4 4

2
3 3 2 32 2
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3
/22
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a
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p p a n R Wβ σ

− −
  

= +  
  

 (18) 

with !! ! !!558, !! ! !!0337,!!! ! !!!442, !! ! !!!!, !! is the maximum 

Hertzian pressure determined from an elastic smooth line contact, which is given by 

equation (6). 

Combining equation (17) and (18), substituting !!!!! for !!, !!!!! for !!, and !!! 

for !, gives the relationship between the surface roughness parameters, the geometry 

of the pin joint contact, the applied load and the separating film thickness: 
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3 Numerical simulation for a pin-joint 

3.1 Input parameters 

The set of equations (9), (13), and (19) have three unknown parameters: !!, !! and !! 

which define the relative proportions of liquid and solid contact. A MathCAD 

program was written to solve this set of simultaneous equations for given input 

conditions. Once the film thickness and load sharing are known, the friction 

coefficient can be solved from equations(3), (8) and(10). Equation (11) is then used to 

calculate frictional toque. 

The pin being modelled is a high strength corrosive resistant steel (300M) while the 

four bushes are made of aluminium bronze. They are machined with high-quality 

ground surface finish. Characteristics and operating conditions of the pin joint are 

shown in Table 1. 

Table 1 Characteristics and operating conditions of pin joint 

Symbol Parameter Value 

! elastic modulus of pin 205GPa 

!! elastic modulus of bush 117GPa 

! Poisson’s ratio of pin 0.28 

!! Poisson’s ratio of bush 0.34 

! radius of pin 28mm 

!! radius of bush 28.025mm 

! length of bush 59.4mm 

!!  total normal load 5,10,20,40,60 kN 

! radial clearance 25µm 

! rotation frequency of pin 0.03Hz, 0.3Hz, 1Hz 

The surface roughness parameters for the pin and bush contact faces were measured 

using a stylus profilometer. Sample length of 4mm along axial direction for pin and 

bush were measured. Each measurement was carried out three times and the mean 

value was adopted. All the parameters are shown in Table 2. For !, ! and !!, the 
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combined values for the two surfaces are used. They are expressed as the average of 

pin and bush.  

Table 2 Surface parameters of pin joint 

Symbol Parameter Value 

! density of asperities 7.15×10
9
 m

-2 

! average asperity radius 3.4 µm 

!! standard deviation of asperity height 1.09 µm  

! root mean square roughness of pin 0.83 µm 

!! root mean square roughness of bush 1.35 µm  

!!  
distance between the mean plane through the summits 

and the mean plane through the surface heights 
1.25 µm  

In this paper Aeroshell 33 was used to lubricate pin joint. The relevant properties in 

this lubrication model are shown in Table 3. 

Table 3 Parameters of lubricant 

Symbol Parameter Value 

!! slope of the limiting shear stress-pressure relation[13] 0.047 

!!! limiting shear stress at ambient pressure[13] 2.28×106 Pa 

!! lubricant viscosity at inlet temperature 12.45×10
-3

 Pa·s 

!! constant in Roelands’s formula[8] 6.31×10
-5 

Pa·s 

!! constant in Roelands’s formula[8] 1.96×10
8
 Pa 

! Roelands’ pressure-viscosity index[8] 0.63 

! pressure-viscosity coefficient 16.9 GPa
-1

 

A critical unknown in this model is the “dry” friction coefficient, !! , that exists 

between the two solid surfaces at the asperity contact points. This parameter is very 

difficult to predict and can only be determined by experiment. In the absence of any 

data for this parameter, a value of 0.12 has been used in this work. The selection of 

this value is somewhat arbitrary. It is difficult to know exactly the nature of the 

conditions are at the asperity to asperity contacts. A surface coated with anti-wear or 
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extreme pressure additive would have a friction coefficient in this area [14]. Other 

authors [11] use a similar value. 

3.2 Theoretical prediction of friction coefficient and film thickness 

Under varying pin joint operating conditions, numerical solutions for friction 

coefficient, film thickness, lambda ratio and the scaling factors have been obtained.  

Figure 3 shows the predicted scaling factors and friction coefficient variation with the 

pin joint operating conditions. The pin joint duty is expressed in terms of the 

Sommerfeld number defined as [15]: 

 

2

2
L

R
S

P c

ηω

π
 

=  
 

 (20) 

As the Sommerfeld number increases (by the joint articulation velocity increasing) 

more lubricant is dragged into pin joint contact to maintain the pressure field. This 

causes the increasing film thickness and can be seen in Figure 3 as !!!! becomes 

greater. This process agrees with the theory that pressure magnitudes are proportional 

to the square of the reciprocal of film thickness [16]. When the lubricant film supports 

most of the load, contact between asperities declines. The composite result is that 

friction coefficient of pin/bush contacting decreases with Sommerfeld number.  

 

Figure 3 Friction coefficient, scaling factors and film thickness parameter plotted against 

Sommerfeld number for a pin joint load of 20kN 

Also shown on Figure 3 is the lambda ratio, λ, where: 
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 2 2

min
/

b
hλ σ σ= +  (21) 

In the simulation work carried out in this study, the pin joint speed has been set in the 

range 1 to 800 rpm under pressures from 7 to 23MPa. This results in Sommerfeld 

number in the range 0 to 0.15. For the load of 20 kN (13MPa), This range is marked 

in figure 3 clearly shows that the dominant mechanism is one of solid contact and 

hydrodynamic film formation plays little part in influencing friction.  

Figure 4 shows maps of the friction coefficient and lambda ratio determined from the 

model for various pin joint loads and speeds. Again the operating region for the pin 

joint is shown. The data indicates that friction coefficients do not fall below 0.11 as 

lambda ratios stay below 2. Clearly in this region of operation the prediction friction 

coefficient is highly depends on the value selected for the dry friction coefficient, !! . 

This is in common with many other models of mixed lubrication, is a limitation of the 

approach. 

(a)   (b)  

Figure 4 Maps of pin joint operation (a)lambda ratio, (b)friction coefficient 

4. Experimental Apparatus 

4.1 Pin joint function tester 

A double fork arrangement is used to load and support the pin within the test bushes 

(see Figure 5). The inner fork has four bushes press fitted. The outer fork has two 

rolling bearings as shown. A low height hydraulic cylinder is then used to load the 

two forks apart. This double arrangement is geometrically similar to the pin joint 

arrangement found on the landing gear upper to lower side-stay pin. This housing was 

then mounted on a torsional servo-hydraulic actuator. Four slots shown by a sketch in 

Figure 6 and the photo in Figure 5 were wire cut at one end, which enabled a direct 
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line axial coupling via a splined interface to the torsion drive shaft. The right photo of 

Figure 5 shows the double forks head assembled onto the torsional actuator. 

  

Figure 5 Sketch and photograph of pin joint test apparatus 

4.2 Pin and Bush Specimens 

A pin and four bushes were obtained from an actual upper to lower side-stay pin joint 

and were used as the test specimens, shown in Figure 6. The single pin, OD 56mm, 

ID42±0.2mm, length 200.5±0.1mm mated with four bushes with the radial clearance 

of 25µm. The four aluminium bronze bushes have an inner diameter ID of 56mm. 

Aeroshell 33 was applied and operated with two axial lubrication grooves in the bush. 

The grease was fed to the contact by means of channels and grease nipples, shown in 

Figure 5.  

 

Figure 6 Photograph of the pin and bush system 

4.3 Instrumentation 

The servo-hydraulic torsional actuator was fitted with both an angular position sensor 

and a strain gauge based internal torque sensor. The tension hydraulic actuator could 



 

13 

 

be driven in both torque and angular displacement control. For all work in this paper 

only displacement control was used via angular control from a function generator. 

The reacted torque was then recorded during the cycle.  

The torque transducer will also measure the torque in the two support rolling bearings. 

However this torque is low compared with the torque from the pin joints. The torque 

in the ball bearings was measured when unloaded (i.e. the pin not in place) and found 

to be within the noise range of the transducer. 

The overall monitoring, recording and control of the rig was via a PC using a software 

program written in Labtech Notebook. During testing the duration of each test, the 

angular position of pin relative to the start position and the frictional torque were 

recorded. Figure 7 (a) shows the response of the angular displacement sensor for one 

complete cycle. The rotation is a smooth and continuous sine wave. Recording 

position data are then inputted in MathCAD to deduce the velocity characteristic 

curve which is an important parameter in determining friction coefficient. This is 

shown in Figure 7 (b). The frictional torque was also recorded throughout the cycle. 

Figure 7 (c) and (d) show this plotted against time and articulation angle respectively.  

(a)        (b)  

          (c)  (d)    

Figure 7 Typical data recorded by the pin joint apparatus 
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(a)the angular displacement, (b)the rotational speed, (c)the torque plotted against time, and 

(d)the torque plotted against rotational angle 

At the start and stop points, where the speed is zero, the recorded torque is slightly 

higher. The torque drops then during the articulation, reaches a minimum at around 

zero degree, and rises again towards the next peak. This demonstrates that the torque 

reduces as the pin joint speed increases. The sliding motion between pin and bush 

entrains some grease and generates a thin lubrication film, which leads to the torque 

reduction. 

Thermocouples were imbedded in the housing close to the location of the bushes. 

Temperature was monitored throughout testing. However, the tests presented here 

were short duration (a few cycles) and so significant heating above room temperature 

did not occur. 

4.4 Operating Conditions 

The tests were carried out fully greased with a range of radial load, (from 5 to 60 kN). 

The torsional actuator had a maximum capacity of 200 Nm. The maximum radial load 

achievable on the pin is therefore a function of the friction coefficient between the pin 

and bush. The typical rotational speed of pin joint is 0.033 Hz, (12 deg/s; equalled to 

the actual main lock stay articulation speed). In this research, experiments at different 

frequencies of 0.03 Hz, 0.3 Hz and 1 Hz were done with pin angular displacement of 

±40°.  

5. Comparison of Simulation and Experiment 

The average torque during each complete articulation was used for calculating the 

friction coefficient from equation(11). The friction coefficient was then plotted 

against Sommerfeld number, rotation speed and load respectively shown by Figure 8 

to Figure 10. Comparing with simulation results it is apparent that pin joint is working 

in boundary lubrication regime on most occasions. The higher load cases show close 

agreement between model and experiment. The friction coefficient for low speed 

when there is negligible hydrodynamic lift is 0.117 which is close to the value of 

!! ! !!12 that was assumed in the modeling. However at lower load the agreement is 

not so good. The onset of fluid film formation appears to be occurring at lower speed. 

It is possible that at these lower loads the grease is not being squeezed out of the 
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contact as effectively as at the higher loads. And also grease thickeners improve the 

friction property of pin joint because of the formation of films on the surface of the 

metal. This may result in improved film formation. 

 

Figure 8 Friction coefficient vs Sommerfeld number with varying load 

The influence of pressure and velocity on friction is expressed in Figure 9 and Figure 

10. Model predictions and experimental results show acceptable agreement. However 

the comparison indicated by Figure 9 demonstrates that the effect of load is more 

pronounced that would be expressed by the theory. The simulation assumes the 

contact is fully flooded. In reality the joint articulating and the high load squeezes 

grease out of the contact. The greater the load & the lower reciprocation frequency the 

harder it is for the grease to flow back. This may be the reason why the higher loads 

show a higher friction coefficient. 
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(a)     (b)  

Figure 9 Friction coefficient against sliding speed (a) simulation, (b) experiment 

(a)      (b)  

Figure 10 Friction coefficient against load (a) simulation, (b) experiment 

Figure 11(a), Figure 12(a) and Figure 13(a) show the predicted torque cycle from the 

model for a full articulation of the pin joint. Figure 11(b), Figure 12(b) and Figure 

13(b) show the experiment measurement of the same cycle. The cycles have similar 

form and magnitude. At higher speed there is some oscillation in the recorded torque. 

This is believed to be an effect of the hydraulic contact cannot respond quickly 

enough to the command signal. 

As the lower speeds the torque during rotation remains virtually constant (another 

indication that hydrodynamic is negligible). At the higher speeds there is a reduction 

in torque as the joint articulates at its maximum velocity. 
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(a)     (b)  

Figure 11 Frictional torque varying with time at f =0.03Hz (1.8rpm)  

(a) simulation, (b) experiment 

(a)     (b)  

Figure 12 Frictional torque varying with time at f =0.3Hz (18rpm) 

(a) simulation, (b) experiment 

(a)    (b)  

Figure 13 Frictional torque variation with time at f =1Hz (60rpm) 

(a) simulation, (b) experiment 

Conclusions 

Pin joints, such as those in aircraft landing gear, are subjected to high load and slow 

speed. These conditions are not conducive to the formation of a separating lubricant 
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film and the joint operates with significant metallic contact. A mixed lubrication 

model of the pin and bush contact has been built to determine the torque during 

articulation in order to assist in the joint design and actuator sizing. Experiments were 

also performed on a purpose built apparatus to measure the torque during articulations 

of a pin and bush assembly under a range of load and speed condition. 

Both the model and experiments demonstrate that for all practical purposes the pin 

joint operates in a boundary regime with hydrodynamic lift having little effect on the 

overall friction. Whilst the agreement between model and experiment is good, the 

model relies on prior knowledge of the ‘dry’ friction coefficient between asperities in 

contact. This parameter, and indeed the concept behind what actually is dry contact 

between asperities in a lubricated contact are difficult to determine.  
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Nomenclature 

a half width of Hertzian contact 

A contact area 

B length of contact 

c radial clearance 

!! constant in Roelands’s formula 

!! distance between mean line of asperities and mean line of surface 

E elastic modulus of pin 

!! elastic modulus of bush 

!! reduced elastic modulus 

f rotation frequency of pin 

h film thicknes 

n density of asperities 

p contact pressure 

P load 
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Q friction force 

! radius of pin 

!! radius of bush 

!! feduced radius 

S Sommerfeld number 

T friction torque 

! velocity of contacting surfaces 

! Roelands’ pressure-viscosity index 

! pressure-viscosity coefficient 

! average asperity radius 

!! slope of the limiting shear stress-pressure relation 

1
γ  proportion of load supported by fluid film 

2
γ  proportion of load supported by asperity contact 

λ  film thickness parameter 

! dynamic viscosity 

!! lubricant viscosity at inlet temperature 

!! constant in Roelands’s formula 

! friction coefficient 

ν  Poissons ratio of pin 

b
ν  Poissons ratio of bush 

! root mean square roughness of pin 

!! root mean square roughness of bush 

!! standard deviation of asperity summit heights 

!! limiting shear stress 

!!! limiting shear stress at ambient pressure 

! rotation velocity of pin 
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