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Abstract

Various methods have been employed to study the efficacy of multipurpose penetrating oils
but these techniques do not investigate the rate which these oils penetrate surfaces. This
paper outlines a novel, non-invasive ultrasonic method that provides a direct means of
mapping fluid penetration in threaded systems.

An apparatus with piezoelectric elements was developed to pulse ultrasonic waves into a
nut specimen where the waves reflected from the threaded interface. The reflected signal
amplitude shifted as fluid penetrated the thread, allowing the fluid to be mapped to provide
a measure of ingress rate. The results for three fluid samples are presented. Measurements
suggest the fluid tracks helically down the unloaded side of the thread and radially into the
loaded thread surfaces.
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bulk modulus, Pa

film thickness, m

spring stiffness, Nm™

pressure, Pa

reflection coefficient

displacement, m
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1.0 Introduction

Multi-Purpose penetrating oils are low viscosity fluids used to lubricate machine parts and
provide resistance to corrosion. These oils move through small spaces, around particulates
and dissolve residue between surfaces that may otherwise inhibit shearing of the contact.
Frequently dispensed as an aerosol, these oils can be applied to otherwise difficult to reach
places such as threaded fasteners. Desirable properties, such as low viscosity, low surface
tension and high wettability, allow the fluid to penetrate into narrow spaces and provide
lubrication where more traditional lubricants are precluded.

Numerous experiments have investigated the loosening of fasteners including the influence
of lubricants but a robust method to measure ingress of these lubricants has not yet been
developed [1-8]. Current industry standards include the nail climb test and contact angle
measurements. A comparative method where multiple fluids are tested in parallel, the nail
climb test measures the distance a given fluid sample travels up the surface of a vertical nail
within a specified time period. Contact angle measurements can be used indirectly to
determine penetration; lower angles indicate low surface tension and high surface energy
which are drivers for penetration. These techniques do not offer direct measurements of
the penetration rate in traditional applications such as bolted joints.

Ultrasonic inspection has been used to measure the contact pressure of bolted joints [9,10].
It has proven to be a valuable method in detecting thin films of lubricant embedded
between machined parts. Sound is transmitted through the machine element and reflected
from the oil film. By analysing the reflected signal characteristics (such as film thickness) of
the film can be determined [11]. Previously, the thickness of oil films present in
components such as bearings, face seals and piston rings have been measured using
ultrasound [12-15]. Other fluid film techniques, including capacitance, laser induced
fluorescence and optical interferometry, are invasive or difficult to apply to bolted joints
[16-19]. Itis hypothesized that ultrasonic inspection can be used to observe fluid
penetration by detecting its presence as it flows into a threaded fastener.

2.0 Theoretical

When an ultrasonic wave strikes a boundary between two different materials, part of its
energy is transmitted into the second material whilst the remainder is reflected back into
the first material. If mode changes are neglected and the incident wave is normal to a
perfectly bonded boundary, the relative amplitude of the ultrasonic wave that is reflected is
described by
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R=: [1]

where z; and z; are the acoustic impedance of the materials either side of the boundary and
R is relative amplitude of the reflection (termed the reflection coefficient). The relative
amplitude is obtained by normalising the measured reflection with that from a reference
interface (generally an air interfacial condition). In the case of real mechanical interfaces,
such a perfect bond does not exist. Instead, solid-solid contact is limited to positions where
adjacent asperities touch and it is at these positions where ultrasonic energy is transmitted.



For a dry contact, the pockets of air around the asperities act as acoustic reflectors, as
depicted in Fig.1(b).
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Figure 1: Schematic representation showing how different contact conditions affect
ultrasound transmission

When loaded, the asperities deform and cause the true area of contact to increase, enabling
a greater proportion of the ultrasound to be transmitted through to the adjacent
component. If the amplitude of the surface roughness (R,) is much smaller than the
wavelength of ultrasound (propagating normal to the surface), then the interfacial condition
can be modeled as a surface distributed spring system [20]. Interaction by an incident
ultrasonic wave results in a reflection coefficient governed by
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where K is the equivalent spring stiffness and w is the angular frequency of the ultrasonic
wave. For a dry contact, K is governed by the normal stiffness asperities alone, Ks, as given in
Eq.(3) [21]:

K =— @Ppom [3]

s du

If a fluid is then introduced around the asperities, a further liquid stiffness component, K;
acts in parallel to Ks and is governed by the bulk modulus (B) of the fluid and its thickness (h)
as shown in Eq. (4)[22].
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For the case of the static lubricated contact, the total distributed stiffness is provided by the
sum of the solid and liquid components, i.e. both the metal-to-metal asperity contact and
the thin fluid film each transmit a proportion of the incident ultrasonic energy.



2.1 Ultrasound and bolt geometry

When loaded, the two mating components each have one thread surface in contact and one
which forms the edges of a helical void. The pitching elements were positioned such that
the ultrasound was projected toward the thread at an angle of 60 degrees to the axis of the
fastener. The reflected wave-front was captured on an opposing element, as shown in Fig.3.
In this setup the ultrasound underwent two reflections before reaching the sensing
element: one from the contacting surfaces of the thread and one from the void surface. As a
result, the path length is equal for the entire wave-front, retaining its pulse structure.
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Figure 2: Schematic diagram showing ultrasound path for thread geometry.

When the bolt is loaded, the free bolt and nut thread surfaces form the boundaries of a
helical void such that when a liquid penetrant is introduced, capillary action draws it around
the threads. As the fluid tracks down the thread, the same forces draw the fluid into the
contacting surfaces, causing an increase in contact stiffness. This results in a reduction in the
intensity of the reflection and consequently, the signal received by the catching
piezoelectric element.

If the ultrasonic wave-front is considered to be projected along a radial path, it will perceive
the thread as a discrete set of contacts, spaced by the pitch of the thread. As the penetrant
travels helically into the threaded contact, it will pass the ultrasonically irradiated 'slice’ at
discrete intervals, separated by the time taken for it to perform one full rotation of the
thread. Once a particular thread depth has been reached, it remains full of fluid. This
configuration therefore causes a step-wise reduction in the amplitude of the reflected wave.
By knowing the depth of the irradiated threads, the penetration rate of the fluid can be
determined.



3.0 Materials and Methods
3.1 Apparatus

Six plain-wave piezoelectric transducers (10x1mm cut down from larger elements) having a
center frequency of 10MHz and bandwidth of 3MHz were used in this study. They were
positioned circumferentially around a collet based apparatus designed for metric 10mm
bolts, shown in Figure 4. Standard untreated silver steel cylinders with a threaded interior
were used for the female specimens. The male specimens were manufactured from re-
machined M14 bolts, turned using a CNC lathe in order to increase geometric tolerances
and provide uniformity not offered in off the shelf threaded fasteners. The apparatus is
designed such that the male and female specimens can be cleaned and reused or replaced
easily, without affecting the ultrasonic carrier. A brass spacer is used to space the mating
specimens. This contained a hole to the start of the threads to enable injection of the test
fluids. This was required to eliminate effect of the bolt head which would otherwise have
restricted flow to the threads.

M10 Bolt

Brass spacer

Fluid injection
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compression
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Figure 3: Sectioned schematic of test apparatus.

Each piezoelectric transducer consisted of a separate pitching and catching element and are
operated using a PC mounted ultrasonic pulser receiver (UPR) as shown in Fig. 5. The
resultant reflections were digitised at 100MSamples/s and each transducer was pulsed
simultaneously at rates of between 100 and 500Pulse/s. The digitised reflected waveforms



were streamed to hard disc for post processing. Though the resulting incident angle (to the
thread surfaces) was at 30°, the relative effect of three different stiffness conditions on the
reflected waveform was maintained.
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Figure 4: Acquisition equipment schematic.

Each of the piezoelectric elements had an active area of 10x1mm resulting in an ultrasonic
wave-front projected over distance of 7 threads (i.e. 7 rotations of the thread helix), starting
at a depth of 4 threads.

3.2 Procedure

To validate the method and compare the penetration rates of different products, two
commercially available penetrating fluids and one solvent were tested. The penetrating
fluids will be referred to as Fluids A and B, while the solvent is referred to as Fluid C. The
kinematic viscosities of all fluids at 25°C are between two to three centistokes.

Prior to each test, the specimens were ultrasonically cleaned in an acetone bath for 10
minutes and then oven dried at 50°C for 10 minutes. Each test was performed at room
temperature. The cleaned specimen was tightened to a torque of 40 Nm and mounted into
the ultrasonic collet and clamped. In order to ensure adequate acoustic coupling between
the collet and specimen, a commercial coupling gel was used. A reflection under the
reference condition was captured using the acquisition system. It should be noted that this
reference corresponded to the dry, loaded condition rather than an air interface. A clean
pipette was used to inject 100uL of sample fluid into the application hole, at which point
data collection initiated. Repeated loading and unloading of the bolt specimens at this low
loading torque was found not to have a significant effect on penetration rates over
successive tests and consequently each fluid was tested five times using the same bolt/hole
pair.

3.3 Analysis

The reference and test signals reflected from the thread contact interface were isolated and
enveloped using the Hilbert transform. The resulting signal envelope peak amplitudes were
considered. The drop in envelope peak amplitude over the course of a test was used to
normalise each measurement to account for local differences in thread loading and sensor
response (Fig. 6). To demonstrate the analysis procedure, a non-penetrating oil was used to



obtain Fig.7. The slower ingression provided greater data clarity to identify thread
advancement. 7a demonstrates the reduction in envelope amplitude for a given sensor as
the fluid is introduced into the thread, as well as the smoothed result after low pass
filtering. Subtraction of the smoothed result from the fluid data provided a signal form to
which peak detection was applied (Fig.7(b)), corresponding to when a particular thread had
been flooded with fluid.
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Figure 6: Data obtained using a non-penetrating oil. (a) Time domain signal response for
unloaded, dry loaded and wet loaded cases, (b) Signal after filtering and normalisation.
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Figure 7: Data using a non-penetrating oil. (a) Normalised reduction in signal amplitude, (b)
Leveled data using filtered signal.

Fig.8(a) shows the response for a penetrating fluid sample plotted as an intensity map
produced from the equivalent data to that shown in figure 7a. The time at which the
penetrant reaches a new thread can be seen as a sudden jump in intensity. Such plots
provide a useful method to quickly compare the response of different fluids and are
obtained during acquisition. The circumferential spacing of the sensors and helical geometry



of the thread causes the oblique patterning of the intensity steps, while the gradual
decrease in gradient indicates that the penetration rate slows with time. To quantify
penetration rate, the response of each sensor was processed using a peak finding algorithm,
as shown in Fig.8(b). The results from all six sensors can be then compiled into Fig.8(c).
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Figure 8: Analysis steps, (a) Intensity map, (b) peak detection and (c) fluid penetration
mapping.

To quantify flow rate, a parameter, 1, was defined to represent the time required for the
fluid to penetrate from thread six to thread nine. It was assumed that within this thread
region, the flow was fully developed and effects from the initial injection velocity minimised.
This parameter was then used to verify sensor performance for each test, as well as to



compare the penetration rates of the different fluids. Each of the three fluids was tested
five times in order to provide an indication of repeatability.

4.0 Results

Mean values of t values measured at each sensor during the five tests for Fluid A, are shown
in Table 1. The relatively small standard deviations (~4% of the total travel time) for five of
the six sensors, provides confidence in the uniformity of the flow structure. The larger
variation associated with sensor 5 was the result of lower signal fidelity due to poorer
thread mating, introducing ambiguity in identifying when the threads had completely filled
with fluid.

Table 1: Mean penetration rates for fluid A.

sensor average T (s) | rate (thread/s)
0 37.68+1.77 7.9x1074
1 37.87+1.53 7.9x1072
2 41.05+1.15 7.3x1072
3 44.30+1.62 6.7x1072
4 38.47+1.29 7.8x1072
5 44.24+3 .63 6.8x1072

The overall mean t values for each fluid, compiled from every sensor over all five tests, are
shown in Table 2. Fluid C, a solvent, is simpler in formulation and as a result, was expected
to be more repeatable than A and B, which had higher deviations.

Table 2: Mean specimen fluid penetration rates.

lubricant average T (s) | rate (thread/s)
A 40.8124.00 7.4x1072
B 54.15+6.00 5.5x1072
C 43.81£2.78 6.8x1072

5.0 Discussion

When a penetrant fluid is introduced to the thread, it is drawn into the helical capillary
created by the clearance surfaces. The mating surfaces of the thread are analogous to a
crack running the length of the capillary. As the fluid travels down the capillary, it is drawn
into the contacting surfaces, providing the measurable signal. In very simple terms, the flow
into the bolt system consists of a helical flow into the clearance capillary and a radial flow
into the mating surfaces of the thread.



Circumferential variation in thread loading affects the rate of the fluid ingress along the bolt.
This is caused by local surface waviness of the thread surfaces and gives rise to a variable
thread surface separation down the length of the helix. Washburn found that the rate of
ingress of a fluid is proportionally dependent on the radius of a capillary [23]; for regions
under higher load, the clearance between surfaces will be reduced and produce a slower
local rate of fluid ingress. An example of this can be seen as the fluid travels along thread
nine and is detected by the sensors at 180° and 240° (Fig. 8(c)). Though the fluid moves
helically down the capillary tube with a uniform flow, the rate at which it radially enters the
contacting surfaces is sensitive to the local contact pressure shown schematically in Fig.9.
The instrumentation detects the presence of the fluid within the contacting surfaces and not
the capillary tube, resulting in the observed time lag is the result of the variable radial flow
rate.
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Figure 9: (a) Schematic representation of fluid flow and (b) effect of localised regions of high
contact pressure.

The work carried out for this paper utilised initially clean thread surfaces, representing ideal
conditions. Contaminants such as surface oxide or residual oils will affect the mechanisms
by which the fluid is drawn into the system. These contaminants are typically present when
penetrating oils are used and this experimental method has the potential to investigate such
conditions.

6.0 Conclusions

A novel, non-invasive method to directly measure the rate of penetration of fluids into a
threaded fastener using ultrasound has been presented using a customized apparatus.
Three fluids have been tested using M10 specimens in which the region between threads 6
and 9 has been analysed. Penetration times have been quantified and the relative standard



deviation between tests is typically between 6 and 10% which is suggested to be down to
subtle loading variations affecting the contact conditions and the presence of bubbles at the
time of injection.
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