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Abstract: The productive exploration of chemical space is
an enduring challenge in chemical biology and medicinal

chemistry. Natural products are biologically relevant, and

their frameworks have facilitated chemical tool and drug dis-
covery. A “top-down” synthetic approach is described that
enabled a range of complex bridged intermediates to be
converted with high step efficiency into 26 diverse sp3-rich

scaffolds. The scaffolds have local natural product-like fea-
tures, but are only distantly related to specific natural prod-

uct frameworks. To assess biological relevance, a set of 52
fragments was prepared, and screened by high-throughput

crystallography against three targets from two protein fami-

lies (ATAD2, BRD1 and JMJD2D). In each case, 3D fragment
hits were identified that would serve as distinctive starting

points for ligand discovery. This demonstrates that frame-
works that are distantly related to natural products can facili-

tate discovery of new biologically relevant regions within
chemical space.

Introduction

Small molecules continue to dominate Man’s ability to treat
disease, and can transform our understanding of fundamental
biology. Yet historically, the exploration of chemical space has

been highly uneven,[1, 2] in part because a narrow toolkit of reli-
able reactions has underpinned molecular discovery.[3] Natural

products can facilitate the identification of biologically relevant
chemical space[4] since they have arisen through the function-
driven evolution of biosynthetic pathways.[5] Indeed, around a

third of recent small molecule drugs have been inspired by
natural products.[6] In biology-oriented synthesis,[7] natural

product frameworks[4] inform the design of productive small
molecule screening collections and fragment sets that can be
exploited in the discovery of ligands for unrelated protein tar-
gets.[8, 9] In addition, synthetic approaches have been devel-

oped to convert specific natural products into alternative com-
plex frameworks.[10] Natural product-inspired compounds can
provide highly distinctive starting points for discovery that
contrast starkly with most synthetic screening compounds:[11]

in particular, the typically high fraction of sp3-hybridised car-

bons (Fsp3) is attractive since it correlates with the successful
translation of clinical candidates.[12]

We envisaged a “top-down” synthetic approach in which al-
ternative complex, yet readily accessible, intermediates would
be converted into many natural product-like scaffolds

(Scheme 1). Initially, bridged scaffolds of general structure 2
would be prepared using intramolecular [5++2] cycloaddition

reactions[13, 14] (e.g. 1!2): ring cleavage (red; for example, 2!
3), ring expansion (magenta; for example, 2!4), annulation

(blue; for example, 2!5), or functional group modification

(green; for example, 2!6) would then yield diverse scaffolds.
The approach contrasts with diversity-oriented strategies[15, 16]

in which building blocks are prepared (“built”) and linked
(“coupled”) to yield intermediates which are then cyclised

(“paired”) to yield alternative scaffolds. Although diversity-ori-
ented approaches to sp3-rich fragments have been devel-
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oped,[17] their biological relevance has only rarely[17b] been
demonstrated. To undertake a preliminary assessment of bio-

logical relevance, we have therefore prepared and screened a
fragment set that is based on many of the scaffolds that are

accessible using our synthetic approach.

Results and Discussion

Synthesis of natural product-like scaffolds

The bridged scaffolds 2 a–f were prepared using intramolecular

[5++2] cycloaddition chemistry (Scheme 2). The oxygen-bridged
cycloadducts were prepared by silyl transfer-induced [5++2] cy-

cloaddition of 3-tert-butyldimethylsilyloxy 4H-pyran-4-ones (!

2 a–c).[14] In a similar vein, the nitrogen-bridged cycloadducts
were prepared by intramolecular cycloaddition of 3-oxidopyri-

dinium ylides (!2 d–f).[18]

The complex bridged intermediates 2 were transformed into

diverse molecular scaffolds (Scheme 3 and Supporting Informa-
tion). Cleavage of specific bonds enabled scaffold simplifica-

tion. Specifically, we exploited 1,2-diol cleavage (e.g.!the
fused bicyclic scaffold 7) ; alkene ozonolysis (e.g.!the spiro-

fused scaffold 3 ; and reductive allylic ether cleavage (!the

fused bicyclic scaffold 12). Interception of dialdehydes formed
by 1,2-diol cleavage enabled overall ring expansion. Thus,

cleavage of the regioisomeric 1,2-diols formed from 2 a and
2 c, followed by cyclative double reductive amination, yielded

the tricyclic scaffolds 4 and 15, respectively.
Annulation enabled more complex scaffolds to be prepared.

For example, fusion of alternative heterocycles was possible

either by condensation–aromatisation of the masked diketone
of 2 a, 2 b or 2 c (e.g. ! the pyrazine 9, the quinoxalines 10
and 14 or the imidazole 11) ; or regioselective [3++2] annulation
to the enone 2 d (!the pyrrole 17). Alternatively, treatment of

the regioisomeric intermediates 2 a and 2 c with MeLi effected
1,2-addition; reductive amination and oxazolidinone formation

then gave the regioisomeric tetracycles 8 and 16. Furthermore,

intramolecular reductive Heck reaction[19] of 2 e gave the com-
plex tetracycle 19. Finally, substituted analogues were pre-

pared in which the framework of the initial cycloadduct had
been retained (e.g. 13). Overall, the 26 scaffolds[20] were pre-

pared from commercially available starting materials in a total
of just 64 steps (processes conducted in a single reaction

vessel).

An hierarchical tree was constructed to capture the relation-
ship between the scaffolds (Figure 1). Here, scaffolds were sys-

tematically simplified using an established protocol by removal
of rings until a parent monocyclic ring system was ultimately

obtained.[21] Twenty two different graph-node-bond frame-
works (capturing atom and bond type) were represented,
which were then simplified to give nine parent monocycles.

The scaffolds are based on a wide range of parent ring systems
and there is thus significant diversity at each level of hierarchy
of the scaffold tree. The exploitation of several different com-
plex intermediates 2 was critical to the diversity that was possi-

ble, for example by enabling variation of regiochemistry (e.g.
4/15, 8/16 and 10/14) and heteroatom position and identity

(e.g. 11/17). Such an approach would unlikely be possible by

modification of natural products, since several related starting
materials would be required in multi-gram quantities.

To compare with other screening sets, we determined natu-
ral product likeness scores[11] for the deprotected scaffolds, a

natural product screening library (4,460 compounds) and a
commercial screening collection (278,365 largely synthetic

compounds) (Figure 2, Panel A). The distribution of the scores

for the scaffolds was broadly similar to that of the natural
product screening library but highly distinctive from that of

the large screening collection. The local structural features of
our scaffolds are thus reminiscent of those found in natural

products. Despite the high natural product likeness, however,
only one of the 22 graph-node-bond frameworks is actually a

Scheme 1. Overview of our unified approach to diverse natural product-like
scaffolds. Intramolecular [5++2] cycloaddition would yield alternative com-
plex intermediates (e.g. 2) that would be converted into diverse scaffolds by
ring cleavage (red; for example, !3), ring expansion (magenta; for example,
!4), annulation (blue; for example, !5) or addition/modification (green;
for example, !6).

Scheme 2. Synthesis of complex intermediate cycloadducts.

Chem. Eur. J. 2017, 23, 15227 – 15232 www.chemeurj.org T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim15228

Full Paper

http://www.chemeurj.org


substructure in the roughly 281,000 compounds in the Diction-

ary of Natural Products[22] (Figure 1 and Supporting Informa-
tion). Indeed, significant simplification to mono- or bicyclic

frameworks is required before sub-structures of natural prod-
ucts are found. Our scaffolds thus have high natural product

likeness, but their frameworks lie in branches that augment

the scaffold trees of natural product frameworks.

Synthesis of a fragment set and high-throughput crystallo-
graphic screens

To enable preliminary assessment of biological relevance, we

prepared 52 racemic fragments based on 23 of the scaffolds.
Here, a fragment-based approach was exploited to enable effi-
cient exploration of chemical space accessible using our syn-
thetic approach. The set was designed to have high shape di-
versity, and to comprise fragments with controlled[23] size (13

to 19 heavy atoms) and lipophilicity (@1.5< clogP<3) (Sup-
porting Information). The fragment set was significantly more

three-dimensional (Supporting Information),[24] and more natu-

ral product-like (Figure 2, Panel B), than commercially available
fragments with the same heavy atom range.

The fragment set was screened against three protein targets
from two different mechanistic classes involved in epigenetic

biology: the ATAD2 and BRD1 (also known as BRPF2) bromo-
domains, and the histone demethylase JMJD2D (also known as

KDM4D). Here, the objective was to perform a preliminary as-

sessment of biological relevance rather than to provide specific
starting points for discovery. High expression levels of

ATAD2[25] and JMJD2 family members[26] correlate with poor
outcomes in several cancers, whilst BRD1 is a member of the
BRPF family of scaffolding proteins whose role in acute mye-

loid leukemia is now emerging.[27] The two bromodomains are
contrasting targets: ATAD2 has a shallow N-acetyl lysine
binding site and has been suggested to have particularly low
druggability.[28]

The three target proteins were all amenable to high-
throughput protein crystallography. Protein crystals were

soaked with the 52 individual racemic fragments,[29] picked and
then subjected to automated X-ray diffraction. Fragment hits
were identified through detection of additional electron densi-

ty,[30] and inspection for polar interactions with the protein.
Fragment hits were successfully identified for each of the

target proteins: two hits for JMJD2D, eight hits for the BRD1
bromodomain and seven hits for the ATAD2 bromodomain

(Figure 3 and Supporting Information).

The fragment screen against JMJD2D revealed two hits,
both of which targeted a peripheral binding site (Panel B1,

Figure 3 and Supporting Information). The hits complement
those found in previous fragment screens against JMJD2D:[26, 31]

specifically, X-ray crystallography had revealed 23 fragments all
target the enzyme active site. The functional importance of

Scheme 3. Representative syntheses of natural product-like scaffolds. Scaffolds were prepared from cycloadducts by ring cleavage (red), ring expansion (ma-
genta), ring formation (blue) or substitution (green). Typical conditions (see Supporting Information for full details): (a) NaBH4 then CSA (from 2 a : 77 %; from
2 c : 34 %); (b) NaIO4 then NaBH4, 44 %; (c) NaIO4 then BnNH2, NaBH(OAc)3, 32 %; (d) MeLi (from 2 a : 91 %; from 2 c : 53 %); (e) NH3, Ti(OiPr)4, NaBH4, 77 %;
(f) MeOCOCl, Et3N, 63 %; (g) TBAF then NaH, 29 %; (h) ethylene diamine, AcOH, mW, 180 8C, 40 %; (i) 1,2-diaminobenzene, AcOH, heat (from 2 b : 21 %; from 2 c :
32 %); (j) NH4OAc, paraformaldehyde, 60 8C, 38 %; (k) NaBH4 then 2,2-dimethoxypropane, p-TsOH, 60 8C, 71 %; (l) O3 then Me2S then NaBH4, 44 %; (m) LiAlH4,
THF, D, 75 %; (n) NH3, Ti(OiPr)4, NaBH4, 22 %; (o) NaIO4 then DMBNH2, NaBH(OAc)3, 30 %; (p) MeOCOCl, Et3N then TBAF then NaH, 34 %; (q) EtNO2, PhNCO, NEt3

thenq DDQ, (from 2 d : 37 %; from 2 f : 26 %); (r) NaBH4, CeCl3·7 H2O, @78 8C, 87 %; (s) H2, Pd(OH)2/C, HCl, 89 %; (t) 20 mol % Pd(OAc)2, 40 mol % PPh3, NEt3, 11 %;
(u) PhB(OH)2, NEt3, 1 mol % [Rh(cod)Cl)]2 then H2, Pd(OH)2/C, HCl, 46 %; (v) NaBH4, 19 % (plus 19 % epimer).
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this peripheral binding site could now be investigated, for ex-
ample to reveal opportunities for allosteric modulation of the

enzyme.
For the BRD1 bromodomain, the eight fragment hits target-

ed the N-acetyl lysine binding site (Panel B2, Figure 3 and Sup-

porting Information; see Ref. [27] and references therein for
known ligands). The fragment hits contained several different

N-acetyl mimetics that interacted with both N110 and, either
directly or via a bridging water, Y67.

For the ATAD2 bromodomain, the fragment screen yielded
seven hits (based on six distinct frameworks) that targeted the

N-acetyl lysine binding site (Panel B3, Figure 3 and Supporting

Information). Six of the hits mirrored the binding mode of the
N-acetyl lysine side chain,[28a] interacting directly with N1064

and, via a bridging water, with Y1021. Four hits were in
common with BRD1 although, in three cases, the interaction
networks were more extensive: for example ent-23 made

water-mediated interactions with V1008 and D1014 (Panel B3,
top, Figure 3) and ent-25 interacted directly with E1017
(Figure 4).

To compare directly with a more conventional fragment set,

we also screened 700 commercially available fragments against
ATAD2 by high-throughput crystallography and identified nine

hits that targeted N-acetyl lysine binding site (Figure 4 and

Supporting Information). As a group, the interactions of these
fragments parallel those of other sp2-rich fragments : they inter-

act directly with N1064 and/or, via a bridging water, with
Y1021 but make few additional polar contacts.[25, 28, 32] For

screens against many targets, flatter fragments have been ob-
served to have higher hit rates.[33] With ATAD2, however, a sig-

nificantly higher hit rate was observed with our shape-diverse

natural product-like fragments (7/52) than with more conven-
tional[34] flatter fragment sets (9/700). This outcome is consis-

tent with the low hit rate observed in a previous fragment
screen by NMR (65/13800, subsequently triaged to yield 12

hits with Kd<1 mm).[28b]

Figure 1. Hierarchical scaffold tree. The circles represent frameworks at the graph-node-bond level (22 frameworks represented in the 26 scaffolds prepared,
outer ring and boxed; simplified frameworks, other circles). The 22 frameworks are related to nine parent (monocyclic) frameworks (identified using an estab-
lished protocol, ref. 21). At each level of hierarchy, occurrence as substructures of natural products is indicated (green, not found; orange, found in <1 % of
natural products ; red, found in >1 % of natural products).

Figure 2. Natural product likeness of scaffolds and fragments. Panel A: Natu-
ral product-likeness scores for the 26 scaffolds (black), 4,460 natural products
(green) and a commercial screening collection (278,365 largely synthetic
compounds, grey). Panel B: Natural product likeness scores for the 52 frag-
ments prepared (black), 1,236 commercially-available fragments (grey) and
128 natural product-inspired fragments (green). Compounds are binned into
0.5 unit bins.
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Conclusion

We have developed a “top-down” synthetic approach in which
alternative complex, yet readily accessible, intermediates were

converted into many diverse scaffolds. These scaffolds have
local natural product-like features, but are only distantly relat-
ed to specific natural product frameworks. A set of 52
fragments based on 23 of the scaffolds was screened against

three epigenetic targets from two distinct protein families. In
each case, hits were obtained that may provide distinctive op-

portunities for subsequent fragment growth. We have there-
fore demonstrated that frameworks that are distantly related
to natural products can facilitate identification of novel regions

of biologically relevant chemical space. Synthetic approaches
to such frameworks may thus help identify fertile chemical

space for bioactive small molecule discovery that is inaccessi-
ble to existing compound collections and biosynthetic path-

ways.
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