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Abstract. In this paper, we extend the Rayleigh distribution to create a gen-
eralised Rayleigh distribution which is more flexible than the standard. The

general properties of the new distribution are derived and investigated, with

properties of more standard distributions, such as the exponential, standard
Rayleigh and the Weibull, appearing as special cases. Further, we consider

maximum likelihood estimation and Bayesian inference under the assump-

tions of gamma prior distributions on model parameters. Point estimates
and confidence intervals based on maximum likelihood estimation are com-

puted. The main challenge, however, is that the Bayesian estimators cannot

easily be found and hence, Markov chain Monte Carlo (MCMC) techniques
are proposed to generate samples from the posterior distributions leading to

approximate posterior inference. The approximate Bayes estimators are com-
pared with the maximum likelihood estimators using simulated data showing

dramatic superiority of the Bayesian approach.

1. Introduction

The standard Rayleigh distribution (SRay) is useful in life testing experiments,
as its failure rate is a linear function of time. This distribution was originally
introduced by Lord Rayleigh [21, 22] in connection with a problem in the field of
acoustics. [18] derived the SRay distribution as the probability distribution of the
distance from the origin to a point (X1, X2, . . . , Xn) in n-dimensional Euclidean
space, where the Xi’s are independent and identically distributed N(0, θ) random
variables. [6] demonstrated the importance of this distribution in communication
engineering and [19] noted that some types of electro-vacuum devices have the fea-
ture that their rate of ageing changes with time. [12] presented a brief account of
the history and properties of this distribution, with other aspects of this distribu-
tion discussed in [17]. [14] computed the modified maximum likelihood estimator
for the scale parameter of the SRay distribution from doubly censored samples and
[5] calculated the maximum likelihood estimator for the one parameter standard
Rayleigh distribution based on Type-II censoring. [25] wrote the posterior den-
sity of the hazard function and also developed Bayesian interval estimates for the
one parameter of the standard Rayleigh distribution. [3] obtained the maximum
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likelihood and the modified moment estimators for the two parameter standard
Rayleigh distribution.

Record values and associated statistics are of great importance in several real
life problems, such as the analysis of patterns in weather, economics and sports as
well as to data relating to the usual physical survival times. Record values appear
in many statistical applications and are widely used in statistical modelling and
inference where the model can be described as random variables in ascending order
of magnitude. Considering models of ordered random variables leads to several
models of record values. Motivated by extreme weather conditions, record values
can be explained as a model for successive extremes in a sequence of independent
and identically distributed random variables. Record values had been extensively
examined and many useful properties are known, along with many useful applica-
tions.

Suppose that X1, X2, . . . is a sequence of independent and identically dis-
tributed random variables with cumulative distribution function F (x). Let Yn =
max(or min){X1, . . . , Xn} for n ≥ 1. We say Xj is an upper (or lower) record
value of {Xn, n ≥ 1}, if Yj > (or <)Yj−1, j > 1. By definition X1 is an up-
per as well a lower record value. One can transform the upper record by re-
placing the original sequence of {Xj} by {−Xj , j ≥ 1} or (if p(Xi > 0) = 1
for all i) by {1/Xi, i ≥ 1}, then the lower record values of this sequence will
correspond to the upper record values of the original sequence. The indices at
which the upper record values occur are given by the record times {U(n)}, n > 0,
where U(n) = min{j|j > U(n − 1), Xj > XU(n−1), n > 1} and U(1) = 1. The
record times of the sequence {Xn, n ≥ 1} are the same as those for the sequence
{F (Xn), n ≥ 1}. Since, F (X) has a uniform distribution, it follows that the
distribution of U(n), n ≥ 1 does not depend on F .

The rest of the paper is organized as follows. Section 2 introduces our general-
ized Rayleigh distribution and gives many statistical properties of the distribution.
Section 3 presents recurrence relations for single and product moments as well as
single and product moment generating functions of upper record values from the
generalized Rayleigh distribution. In Section 4 we derive the maximum likelihood
estimators and the Fisher information matrix, and consider asymptotic properties.
Section 5 considers Bayesian estimation and the construction of credible intervals.
This estimation makes use of the Metropolis-Hastings method which is described
in Section 6. Section 7 contains a simulation study in order to give assessment of
our proposed methods. Some final comments are given in Section 8.

2. Generalized Rayleigh distribution (GRay)

2.1. Distributional results. Let X be a random variable having distribution
with parameters γ, κ and λ which we will denote as GRay(γ, κ, λ), then its proba-
bility distribution function (PDF) is given by

f(x) = λκx(x2 − γ)κ−1 exp

{
− λ(x2 − γ)κ

2

}
, x >

√
γ, (2.1)
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Figure 1. Plots of the GRay(γ = 0.1, κ, λ = 1) for different
values of κ: (a) PDF, (b) CDF, (c) reliability function and (d)
failure rate function.

where γ > 0, κ > 0 and λ > 0. From Equation (2.1) it is easy to show that the
cumulative distribution function (CDF) is given by

F (x) = 1− exp

{
− λ(x2 − γ)κ

2

}
, x >

√
γ, (2.2)

the reliability, or survivor, function by

R(x) = 1− F (x) = exp

{
− λ(x2 − γ)κ

2

}
, x >

√
γ, (2.3)

and the failure rate function by

r(x) =
f(x)

R(x)
= λκx(x2 − γ)κ−1, x >

√
γ. (2.4)

The behaviour of the density function, cumulative distribution function, failure
rate function and the reliability function is shown in Figure (3). These functions
shift left and right as γ changes, and there is a scale change in the x-direction as
λ changes, but there are more profound changes with κ. Here, these figures have
fixed γ = 0.1 and λ = 1.0, but κ is selected to illustrate different shapes.

Note that the derivative of the failure rate function, in Equation (2.4), is

∂r(x)

∂x
= λκ(x2 − γ)κ−2[(2κ− 1)x2 − γ], x >

√
γ. (2.5)

51



4 R.G. AYKROYD, M.A.W. MAHMOUD, AND H.M. ALJOHANI

This derivative depends on all three parameters λ, γ and κ, but the shape only
changes as κ changes. For κ ≥ 1, one can show that (2κ − 1)x2 − γ > 0 for all
values of x, and this shows that r(x) is an increasing function. For 0 < κ ≤ 0.5,
then (2κ− 1)x2−γ < 0 and this shows that r(x) is a decreasing function. Finally,
for 0.5 < κ < 1, then (2κ− 1)x2 − γ < 0 or (2κ− 1)x2 − γ > 0 based on the value
of x, so r(x) has a bathtub shape. The examples in Figure 3 cover these types.

Also, the quantile function, Q(q), can be found by solving F (Q) = q, that is

1− exp

{
− λ(Q2 − γ)κ

2

}
= q

which leads to the result

Q(q) =

√(
2

λ
ln

(
1

1− q

))1/κ

+ γ, 0 ≤ q ≤ 1. (2.6)

Finally, note that values from the GRay distribution can be simulated using the
probability integral transformation approach, using Equation (2.6), to give

x =

√(
2

λ
ln

(
1

1− U

))1/κ

+ γ, where U ∼ Uniform(0, 1). (2.7)

2.2. Summary measures. The statistical properties play an important role in
the characterization of any distribution. Now some statistical properties of the
GRay(γ, κ, λ) are considered.
Mean: To derive the mean of the GRay(γ, κ, λ), consider the definition

µ = E(X) = [−xR(x)]
∞√
γ +

∫ ∞
√
γ

R(x)dx. (2.8)

After making the substitution y = (x2 − γ)k, then Equation (2.8) becomes

µ =
√
γ +

1

2κ
Γ

(
1

2κ

)(
2

λ

) 1
2κ

+
1

2κ

∞∑
i=1

(
− 1

2

i

)
γiη, (2.9)

where η = Γ

(
1
2κ −

i
κ

)(
2
λ

) 1
2κ−

i
κ

.

Variance: Similarly, to find the variance, we have

E(X2) = γ + 2

∫ ∞
√
γ

x exp

{
− λ(x2 − γ)κ

2

}
dx, (2.10)

which, using the substitution y = (x2 − γ)κ, can be put in the form

E(X2) = γ +
1

κ

∫ ∞
0

y
1
κ−1 exp

{
− λ

2
y

}
dy,= γ +

1

κ
Γ

(
1

κ

)(
2

λ

) 1
κ

. (2.11)

From Equations (2.8) and (2.11), the variance of GRay(γ, κ, λ) is given by

Var(X) = γ +
1

κ
Γ

(
1

κ

)(
2

λ

) 1
κ

−
(
√
γ +

1

2κ
Γ

(
1

2κ

)(
2

λ

) 1
2κ

+
1

2κ

∞∑
i=1

(
− 1

2

i

)
γiη

)2

,

(2.12)
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where, as above, η = Γ

(
1
2κ −

i
κ

)(
2
λ

) 1
2κ−

i
κ

.

Mode: The mode, for κ ≥ 1, is found by equating ∂
∂x ln f(x) to zero. This leads to

the mode being the solution of the following non-linear equation

1

x
+

κ− 1

x2 − γ
(2x)− λκx(x2 − γ)κ−1 = 0. (2.13)

This cannot be solved explicitly and hence numerical methods must be used. For
other values of κ, the mode is at the far left, that is at x =

√
γ.

Median: The median can simply be found from the quantile function, Equation
(2.6), with q = 1

2 and hence the median is given by

Median(X) =

√(
2

λ
ln(2)

)1/κ

+ γ. (2.14)

Mean residual life time: Letm(t) denotes the mean residual life time of GRay(γ, κ, λ),
then

m(t) =
1

R(t)

∫ ∞
t

R(x)dx, (2.15)

which can be put in the following form

m(t) =

∫ ∞
√
γ

exp

{∫ t+x

t

r(y)dy

}
dx, (2.16)

see [26]. Note that for κ ≥ 1, since r(x) is increasing, then m(t) is decreasing, for
0 < κ ≤ 0.5, since r(x) is decreasing, then m(t) is increasing. Finally, for r(x)
first decreasing and then starting to increase monotonically at some time x, means
that m(t) is increasing and then decreasing.

3. Recurrence equations of upper record value moments

In this section some recurrence relations for the single and product moment and
the moment generating function of upper record values from the GRay distribution
are stated. Using these recurrence relations, the GRay distribution is characterized.

Theorem 3.1. Single moments of the upper record values: Recurrence relation
for single moments of the upper record values from GRay distribution is defined in
the following theorem.
For n = 1, 2, . . . and r = 1, 2, . . .we have that

µr+2
n+1 =

(
1 +

r + 2

2κn

)
µr+2
n − r + 2

2κn
γµrn, (3.1)

where µsl = E(XS
U(l)).

Theorem 3.2. Product moments of the upper record values: Recurrence relation
for product moments of the upper record values from GRay distribution GRay(γ, κ, λ)
are defined in the following theorem.
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(1) For m = 1, 2, . . . and r, s = 1, 2, . . .(
1 +

2κm

r + 2

)
µr+2,s
m,m+1 = γµr,sm,m+1 +

2κm

r + 2
µr+s+2
m+1 . (3.2)

(2) For 1 ≤ m ≤ n+ 1 and r, s = 1, 2, . . .

µr+2,s
m+1,n =

(
1 +

r + 2

2κm

)
µr+2,s
m,n −

r + 2

2κm
µr,sm,n, (3.3)

where µl1,l2m,n = E(X l1
U(m)X

l2
U(n)).

Theorem 3.3. Single moment generating function: Recurrence relation for single
moment generating function of the upper record values form GRay(γ, κ, λ) is given
by
For n = 1, 2, . . .

Mn+1(t) = − t

2κn
δ′n(t) +

(
γt2

2κn
+ 1

)
Mn(t)− tδn(t) + tδn+1(t), (3.4)

where Ml(t) = E(etXu(l)), δl(t) = d
dtMl(t), and δ′l(t) = d2

dt2Ml(t)).

Theorem 3.4. Joint moment generating functions: Recurrence relation for joint
moment generating function of the upper record values form GRay distribution is
stated.
For n,m = 1, 2, . . .

t21M
′′
n,m(t1, t2) =(2κm+ γt21)Mn,m(t1, t2)− 2κmt1M

′
n,m(t1, t2)

+ 2κmt1M
′
n,m+1(t1, t2)− 2κmMn,m+1(t1, t2), (3.5)

where Mn,m(t1, t2) is the joint moment generating function of XU(n), XU(m) re-
spectively, then

Mn,m(t1, t2) = E(et1XU(n)+t2XU(m)).

4. Maximum likelihood analysis

In this section, we estimate γ, κ and λ, using maximum likelihood and compute
the observed Fisher information. Suppose that x = {xU(1)

, xU(2)
, . . . , xU(n)

} are the

first n upper record values from GRay(γ, κ, λ). The general form for a likelihood
function for observed record values x, given by [1], is defined as

l(γ, κ, λ|x) =

n−1∏
i=1

f(xU(i))

1− F (xU(i))
f(xU(n)), (4.1)

where f(·) and F (·) are given by Equations (2.1) and (2.2), respectively. Then,
substituting from Equations (2.1) and (2.2) into (4.1) gives

l(γ, κ, λ|x) =


λnκn exp

{
− λ(x2

U(n)−γ)
κ

2

}
×
∏n
i=1 xU(i)(x

2
U(i) − γ)κ−1,

if xU(1) <
√
γ

0, otherwise.
(4.2)
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The logarithm of the, non-zero part of the, likelihood function in Equation (4.2),
that is when xU(1) <

√
γ, gives the log-likelihood function

L(γ, κ, λ|x) = n log λ+ n log κ−
λ(x2U(n) − γ)κ

2

+

n∑
i=1

(κ− 1) log(x2U(i) − γ) +

n∑
i=1

log xU(i). (4.3)

Notice that this is monotonic increasing in γ and hence the maximum will occur
at a boundary of the parameter space for γ, and in particular γ̂ = xU(1) that is
the minimum of the record value sample. The maximum likelihood estimate of the
other two parameters can be found by differentiating Equation (4.3) with respect
to κ and λ and equating the results to zero. This leads to the normal equations
for the parameters as

λ̂κ̂(x2U(n) − γ̂)κ̂−1

2
−

n∑
i=1

κ̂− 1

x2U(i) − γ̂
= 0, (4.4)

and

n

κ̂
− λ̂

2
(x2U(n) − γ̂)κ̂ log(x2U(n) − γ̂) + κ̂

n∑
i=1

log(x2U(i) − γ̂) = 0. (4.5)

The MLEs of κ and λ can be obtained by simultaneously solving Equations (4.4)
and (4.5). However, since Equations (4.4) and (4.5) cannot be solved analytically
some numerical method is needed—here the optim function in R [20] has been
used.

In general, the asymptotic variances and covariances of the MLE for parameters,
θ = (θ1, θ2) say, are given by elements of the inverse of the (expected) Fisher
information matrix, I, whereas an approximate variance-covariance matrix, Σn,
can be obtained from the observed information matrix, In. That is,

Σ =

[
Var(θ̂1) cov(θ̂1, θ̂2)

cov(θ̂1, θ̂2) Var(θ̂2)

]
≈ −I−1n (θ̂) (4.6)

where

In(θ̂) =

∂2L(θ)
∂θ21

∂2L(θ)
∂θ1∂θ2

∂2L(θ)
∂θ1∂θ2

∂2L(θ)
∂θ22

∣∣∣∣∣∣
θ=θ̂

. (4.7)

The asymptotic normality of the MLEs, subject to the usual regularity condi-
tions, can be used to compute the approximate confidence intervals for θ1 and θ2.
Therefore, (1− α)100% confidence intervals are, respectively,

θ1 ± zα/2 sd(θ̂1), θ̂2 ± zα/2 sd(θ̂2)

where sd(·) is the standard deviation of the argument and zα/2 is the percentile of
the standard normal distribution with right-tail probability equal to α/2.

As an alternative approach to construction of confidence intervals, consider the
asymptotic result, where the parameter vector, θ, is divided into two sets, θ1 and
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θ2,

2
(
L(θ̂)− L(θ1, θ̂2)

)
∼ χ2

d (4.8)

where L(θ̂) is the log-likelihood function of the full maximum likelihood estimates,

whereas L(θ1, θ̂2) is the log-likelihood function evaluated with fixed parameters
θ1, and degrees of freedom d is the number of parameters in θ1. To construct a
Wilks confident interval, or region, this can be re-arranged to give{

θ1 : L(θ1, θ̂2) ≥ L(θ̂)− 1

2
χ2
d

}
. (4.9)

Particular cases are, for example, the 1D confidence interval for θ1 = κ giving
d = 1, with θ2 = (γ, λ), and the 2D confidence region for θ1 = (κ, λ) giving d = 2,
with θ2 = γ.

Note that although these results can be applied for κ and λ, the non-regularity
for γ means that an alternative is required. In particular, here the highest density
95% confidence interval for γ̂, denoted as (γ̂L, γ̂U ), can be calculated using the fact
that γ̂U = γ̂ = x2U(1) and where γ̂L is such that Pr(γ̂ ≥ γ̂L) = 0.95. Note that

since x2U(1) = x21 with, x1 ∼ GRay, the density of γ̂ is a simple transformation of

the GRay PDF and hence the value γ̂L can be found easily.
To illustrate maximum likelihood estimation consider Figure 2 which uses a

record value dataset of size n = 5 from a GRay(γ = 0.1, κ = 0.5, λ = 1) distribution.
In each of (a)–(c), the profile log-likelihood is shown as a bold curve, showing that
γ̂ is located at the boundary of the parameter space whereas the other parameter
estimates occur at turning points. The location of estimated values are shown
with a black square and the true values as black triangles. Also shown for each
is a confidence interval as a grey bar which has been calculated using the Wilks
confidence interval/region result. A bivariate confidence region for (κ, λ) is shown
in (d) superimposed on the 2D log-likelihood surface contours.

5. Bayesian estimation

This section describes Bayesian modelling of record values from the GRay(γ, κ, λ)
distribution with the MCMC algorithm described in the next section. The main
idea of the Bayesian approach and computational implementation with MCMC
algorithms is to generate samples from the posterior density function and then to
compute the Bayes point estimates and also construct the corresponding credible
intervals based on the generated posterior samples. By considering the GRay model
in Equation (2.1), assume the following gamma prior densities for γ, κ and λ with
parameters (α1, β2), (α2, β2) and (α3, β3) as follows, starting with γ,

π(γ|α1, β1) =
γα1−1

Γ(α1)βα1
1

exp

{
− γ

β1

}
, γ > 0;α1, β1 > 0, (5.1)

then for κ,

π(κ|α2, β2) =
κα2−1

Γ(α2)βα2
2

exp

{
− κ

β2

}
, κ > 0;α2, β2 > 0, (5.2)
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Figure 2. Illustration of maximum likelihood estimation show-
ing the profile likelihood functions for: (a) γ, (b) κ, and (c) λ,
and in (d) the bivariate profile likelihood for κ and λ. In each, the
black square marks the MLE with true value marked as a black
triangle, and the grey interval or region shows the approximate
95% confidence interval/region.

and finally for λ,

π(λ|α3, β3) =
γα3−1

Γ(α3)βα3
3

exp

{
− λ

β3

}
, γ > 0;α3, β3 > 0. (5.3)

Now, assuming γ, κ and λ are independent, then the joint prior density of γ, κ
and λ can be written as

π(γ, κ, λ) = π(γ|α1, β1)π(κ|α2, β2)π(λ|α3, β3)

=
γα1−1κα2−1λα3−1

Γ(α1)βα1
1 Γ(α2)βα2

2 Γ(α3)βα3
3

× exp

{
−
(
γ

β1
+

κ

β2
+
λ

β

)}
. (5.4)

57



10 R.G. AYKROYD, M.A.W. MAHMOUD, AND H.M. ALJOHANI

This approach follows that of [7], with the assumption that the parameter prior
distributions are gamma distribution as suggested by [13]. Note that the hyper-
prior parameters, (α1, β2), (α2, β2) and (α3, β3), can be fixed based on expert
knowledge or via information from separate calibration experiments. An example
of the former is that an expert might be able to provide a mean and variance for
a parameter, say m and v. Then, as the expectation of the gamma distribution
takes form E(θ) = αβ, and variance Var(θ) = αβ2, the corresponding hyper-prior
parameters can be taken as α = m2/v and β = v/m. We have chosen values of
α1 = α2 = α2 = 1 and β1 = 1/10, β2 = β3 = 1, as arbitrary values, but particular
applications will lead to other choices. In early experimentation, it was found that
the only important choice was the value of β1 where a prior favouring small values
is very worthwhile. Moderate change in the other values has negligible influence
on the estimation.

Based on the likelihood function of the observed sample given in Equation (4.2)
and the joint prior in Equation (5.4), then the joint posterior density of γ, κ and
λ, given the data, is given by

π(γ, κ, λ|x) =
l(γ, κ, λ|x)π(γ, κ, λ)∫∞

0

∫∞
0

∫∞
0
l(γ, κ, λ|x)π(λ, γ, k) dγ dκ dλ

. (5.5)

The Bayes estimator of any function of the parameters γ, κ and λ, say g(γ, κ, λ),
under squared error loss function, is

Eγ,κ,λ|x(g(γ, κ, λ)) =

∫∞
0

∫∞
0

∫∞
0
g(γ, κ, λ)l(γ, κ, λ|x)π(γ, κ, λ) dγ dκ dλ∫∞

0

∫∞
0

∫∞
0
l(γ, κ, λ|x)π(γ, κ, λ) dγ dκ dλ

. (5.6)

Evaluating the ratio of the two integrals in Equation (5.6) is too complex and
complicated, and hence in this case the MCMC method is proposed to generate
samples from the posterior distributions and then compute an approximation to
the exact Bayes estimate of g(γ, κ, λ).

The important aspects of the joint posterior are obtained by multiplying the
likelihood and the joint prior of γ, κ and λ, as the normalising constant has
no information about the unknown parameters, hence the following statement
highlights the key structure,

π(γ, κ, λ|x) ∝ l(γ, κ, λ|x)π(γ, κ, λ)

which in our particular case gives

=
γα1−1kn+α2−1λn+α3−1

Γ(α1)βα1
1 Γ(α2)βα2

2 Γ(α3)βα3
3

× exp

{
−
(
γ

β1
+

k

β2
+

λ

β3

)}
exp

{
−
λ(x2U(n) − γ)k

2

}
×

n∏
i=1

xU(i)(x
2
U(i) − γ)k−1. (5.7)

We propose the following MCMC algorithm to draw samples from this posterior
density functions, then to compute Bayesian estimates and also to construct the
corresponding credible intervals.
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6. The Metropolis-Hastings method

The estimation of the parameters is based on the approximate posterior distri-
bution computations using a standard Metropolis-Hastings (M-H) algorithm. This
is a special case of the Markov chain Monte Carlo (MCMC) approach, whose use
has become widespread in the general statistical literature. The M-H algorithm
is the first example of a MCMC approach used for parameter estimation and was
proposed by [16] and subsequently generalized by [11]. Use of such methods for
parameter estimation, and general density exploration, is widespread; a review
can be found in [23], and for theoretical details see [8], [15] and [4]. For general
practical examples see the collection by [10].

The Markov chain can start at any feasible point in the parameter space, let this
arbitrary value be denoted θ0. From this starting point a discrete time Markov
chain is simulated to produce values, θ1,θ2, . . . ,θK say. The algorithm used here
is defined as a single-variable random walk MCMC algorithm, see for example [2].
It is one of the simplest schemes, but works well for many applications. It is based
on a random walk and uses separate single variable updates. That is, at each step
only the value of a single variable is proposed and the proposal is a perturbation
of the current value with variance parameter chosen to achieve an acceptable con-
vergence rate. This proposed value is accept with a probability which depends on
the posterior distribution. The general structure of the algorithm is given by

(1) Set an initial value for θ = {γ, κ, λ}, call this θ0.
(2) Repeat the following steps for k = 1, . . . ,K.

For i = 1, 2, 3, that is for each parameters, θ = (θ1, θ2, θ3) = (γ, κ, λ), in
turn.(a) Generate a propose new value θi

∗ = θi
k + ε where ε ∼ N(0, τ2i ).

(b) Evaluate an acceptance probability α, as detailed below.
(c) Generate u from a uniform distribution, U(0, 1).

(d) If α > u then accept the proposal and set θki = θ∗i , else θki = θk−1i .End

End Repeat

The components of θ are of the different types, γ, κ and λ, each allowing different
simplifications of the acceptance probability in Step 2(b) above. To explain this,
each type will now be considered separately.
Updates of γ: A proposed new value γ′ of parameter γ is drawn from normal
distribution centred on the current parameter value, with variance τ21 , chosen to
achieve an acceptable convergence rate. Here proposals which are negative or
greater than the minimum of the squared data values are rejected, but otherwise
the proposal is accepted with probability

α(γ′, γ) = min

{
1,
l(γ′, κ, λ|x)π(γ′)

l(γ, κ, λ|x)π(γ)

}
,

otherwise it is rejected and no change is made.
Updates of κ: A proposed new value κ′ of parameter κ is drawn from normal
distribution centred on the current parameter value, with variance τ22 , chosen to
achieve an acceptable convergence rate. Here negative proposals are rejected, but
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if positive the proposal is accepted with probability

min

{
1,
l(γ, κ′, λ|x)π(κ′)

l(γ, κ, λ|x)π(κ)

}
,

otherwise it is rejected and no change is made.
Updates of λ: A proposed new value λ′ of parameter λ is drawn from normal
distribution centred on the current parameter value, with variance τ23 , chosen to
achieve an acceptable convergence rate. Here negative proposals are rejected, but
if positive the proposal is accepted with probability

min

{
1,
l(γ, κ, λ′|x)π(λ′)

l(γ, κ, λ|x)π(λ)

}
,

otherwise it is rejected and no change is made.
It is important to realise that both low and high values of τ21 , τ22 and τ23 ,

lead to long transient periods and highly correlated samples and hence unreliable
estimation [2]. A reasonable proposal variance can usually be chosen adaptively
during the early burn-in period, and it has been shown that for a wide variety of
problems an acceptance rate of about 20%− 30% is reasonable [24]. A judgement
of when to declare convergence to the equilibrium distribution, and assessment
of the efficiency of the algorithm can be made using sample path trace plots and
autocorrelation functions. Also, required sample sizes can be calculated (see for
example, [2]).

Once the sample has been generated from the posterior distribution, a number
of possible estimators are available. After re-labelling, let θ1,θ2, . . . ,θN be the
MCMC sample collected after the equilibrium of the Markov chain has been de-
clared, then the posterior mean and variance, for a particular parameter θ, can be
estimated by the corresponding sample mean and variance:

θ̂ = θ̄ =
1

N

N∑
k=1

θk, σ̂2 =
1

N − 1

N∑
k=1

(θk − θ̄)2.

In some cases, for example with very skew distributions or with small sample
sizes, it is better to use more robust estimators, such as the posterior median and
percentile-based credible intervals. These can easily be obtained by first ordering
the sampled values to give θ(1), θ(2), . . . , θ(N), where θ represents any of γ, κ and
λ. Then the posterior median estimate is given by

θ̂ = θ(N/2) (6.1)

Similarly, the 100(1− α)% credible interval for θ is given by[
θ(Nα/2), θ(N(1−α)/2)

]
.

To calculate an approximate MAP estimate, the MCMC algorithm could be
converted into a simulated annealing algorithm [9]. In particular a temperature,
Tk, is included, which decreases as the iterations progress, with Tk = 2/ log(1 + k)
being one choice of annealing schedule. Hence, the acceptance ratio, α, is replaced

by αTk . Note that, the MAP estimate is taken as the final iteration, θ̂MAP = θ̂
K

.
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The advantage of simulated annealing is that it provides an answer more quickly
than a sampling algorithm. On the other hand, the disadvantage is that it does
not produce a posterior sample for further investigation [2].

7. Experiments

7.1. Preliminaries. To evaluate the behaviour of the proposed distribution, dif-
ferent upper record value samples from the GRay distribution are simulated and
estimates are calculated using the maximum likelihood and Bayesian methods al-
ready described. All graphs and calculations have been produced in R [20], with
code scripts available from the authors.

To generate a dataset of record values, consider the following sequence of values
(to 2dp) from the GRay(0.1, 0.5, 1.0) distribution.

0.87 0.64 2.26 2.17 3.81 0.48 1.83 1.69 3.22 1.76
7.16 0.96 0.55 1.45 4.08 4.03 2.84 0.37 0.67 3.92
1.89 0.35 9.20 1.85 1.14 1.38 1.91 0.49 1.59 4.04

Those in bold correspond to the record values for a dataset of n = 5, that is
U(1) = 1 with xU(1) = 0.87, U(2) = 3 with xU(2) = 2.26, U(3) = 4 with xU(3) =
3.81, U(4) = 11 with xU(4) = 7.16, U(5) = 23 with xU(5) = 9.20, giving x =
(0.87, 2.26, 3.81, 7.16, 9.20).

Throughout the simulation study γ = 0.1 and λ = 1 as these do not have an
effect on the distribution shape, but the values κ = 0.5, 0.8, 0.95 and 1.1, defined
as Cases 1–4, as in Figure 2, are considered as representative. Figure 3 shows a
summary of M = 100 record value datasets, each of size n = 10. In each, the
grey lines link together the data values within the same dataset. Note that the
variability increases with n, as well as the mean, and that there is considerable
overlap between boxplots. Also, the values are considerably greater in (a), the
case with κ = 0.5, compared to the others.
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Figure 3. Boxplots of record value data, with n = 10, from
GRay(γ = 0.1, κ, λ = 1) for different values of κ where each box-
plot contains M = 100 values and values in the same dataset are
linked by a grey line: (a) κ = 0.5, (b) κ = 0.8, (c) κ = 0.95, (d)
κ = 1.1.

Each parameter combination will be used with record value sample sizes n = 5
and n = 10, with the whole simulation process repeated for M = 100 replicates
to allow a reliable assessment of sampling variability of parameter estimation. For
the simulation study based on these upper record values, the maximum likelihood
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estimates, asymptotic confidence intervals and Bayesian posterior median with
posterior 95% credible interval for γ, κ and λ are calculated.

7.2. Maximum likelihood results. A collection of M = 100 replicates are used
to compute different estimates of λ, γ and κ with results summarised in Table 1.
Recall that in all Cases the true values γ = 0.1 and λ = 1.0 are used, but that in:
Case 1 κ = 0.5; Case 2 κ = 0.8; Case 3 κ = 0.95; and Case 4 κ = 1.1.

Case 1 Case 2 Case 3 Case 4
n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10

M
a
x
im

u
m

li
ke

li
h

o
o
d

es
ti

m
a
ti

o
n

γ̂ 6.36 9.88 2.65 3.18 1.94 2.46 1.73 2.08
Bias 6.26 9.78 2.55 3.08 1.84 2.36 1.63 1.98
SD 10.14 16.53 3.05 3.70 1.80 2.42 1.62 1.79

RMSE 11.87 19.14 3.96 4.80 2.57 3.38 2.29 2.66
Coverage 0.96 0.89 0.77 0.77 0.71 0.69 0.67 0.58

κ̂ 0.34 0.40 0.41 0.52 0.44 0.56 0.46 0.60
Bias -0.16 -0.10 -0.39 -0.28 -0.51 -0.39 -0.64 -0.50
SD 0.07 0.08 0.07 0.09 0.07 0.09 0.08 0.10

RMSE 0.18 0.13 0.40 0.29 0.51 0.40 0.65 0.51
Coverage 0.67 0.59 0.33 0.19 0.26 0.07 0.13 0.02

λ̂ 2.38 2.12 3.63 3.17 4.27 3.79 4.89 4.43
Bias 1.38 1.12 2.63 2.17 3.27 2.79 3.89 3.43
SD 0.92 1.04 0.96 1.20 1.11 1.25 1.98 1.29

RMSE 1.66 1.52 2.80 2.48 3.45 3.06 4.36 3.66
Coverage 0.98 0.81 0.84 0.44 0.69 0.26 0.58 0.11

Table 1. Summary results for γ, κ and λ obtained using MLE,
averaged over M = 100 replicates.

For each replicated data set a triplet of parameter estimates are obtained, pro-

ducing the complete set γ̂j , κ̂j , λ̂j , for j = 1, . . . ,M = 100. The results are then
summarised using the following (referring to a general parameter θ): the mean of
the estimates, corresponding bias and standard deviation of the estimates

θ̂ = θ̄ =
1

M

M∑
j=1

θj , Bias = θ̂ − θ, SD2 =
1

M − 1

M∑
j=1

(θj − θ̄)2,

the root mean squared error

RMSE2 =
1

M

M∑
j=1

(θj − θ)2

and finally the coverage probability

Coverage =
1

M

M∑
j=1

I(θ̂L,θ̂U )(θ)

where indicator function I(θ̂L,θ̂U )(θ) = 1 if θ ∈ (θ̂L, θ̂U ) and 0 otherwise.
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In all cases the estimation is poor with the key issue regarding the estimation
of γ which has a knock-on effect on κ and γ – recalling that γ̂ = x2U(1) that is the

first record value. As with other non-regular situations, this is a biased estimator
and in some cases has produced a very substantial error.

7.3. Bayesian estimation results. The same M = 100 replicates are used to
compute estimates of λ, γ and κ using the posterior median and posterior 95%
credible intervals, as defined in Section 5, with results summarised in Table 2.
Recall, again, that in all Cases the true values γ = 0.1 and λ = 1.0 are used, but
that in: Case 1 κ = 0.5; Case 2 κ = 0.8; Case 3 κ = 0.95; and Case 4 κ = 1.1.
Typical final proposal standard deviations are 0.2972, 0.4493 and 1.2440 for γ, κ
and λ respectively. The Markov chain paths, see the examples in Figures 4(a)–(c),
show rapid convergence with no discernible trend and good random fluctuations.
An initial 100 iterations have been discarded as burn-in, with the remaining M =
1000 forming the output sample. Similarly, the autocorrelations function in (d)–
(f) show acceptable autocorrelation, although this is more borderline in the case
of κ in (e). Declaring equilibrium after 100 iterations, the remainder of the sample
is used for estimation. The results of the sample size calculations suggested that
63, 587 and 283 iterations are sufficient for the main run, and hence the actual
1000 is more than adequate.
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Figure 4. Monitoring traces and autocorrelation function gen-
erated by the MCMC method.

Figure 5 show example marginal posterior histograms of the model parameters.
In (a), the distribution is heavily skew but the majority of values are close to the
true value of γ = 0.1. For κ, in (b), the distribution is more symmetric with good
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concentration around the true value of κ = 0.5. In (c), again the distribution is
skew with many values below the true λ = 1.0. Overall, these figures indicate that
good estimation should be possible, but that all distributions are skew and hence
the use of the robust estimators is advisable compared to the more conventional
means and variances.
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Figure 5. Marginal posterior samples generated by the MCMC
method summarised using histograms and kernel density curves.

Numerical results are summaries in Table 2 based on posterior median and
posterior 95% credible intervals. As with the maximum likelihood estimation,
each data produces a triplet of parameter estimates with the results summarised
using: the mean estimates, bias, standard deviation, the root mean squared error,
and the coverage probability. It is clear that all estimation is now substantial
better than with maximum likelihood. In particular biases and RMSE are low
with good coverage. There is a slight improvement due to the larger sample size,
except for γ where there is no change. Recall that in all Cases the true values for
γ and λ are fixed, but that in: Case 1 κ = 0.5; Case 2 κ = 0.8; Case 3 κ = 0.95;
and Case 4 κ = 1.1. In all Cases, there is little change in the estimation properties
for γ and λ, but some changes for κ. Overall, now the estimation is very good and
hence the inclusion of prior information has been very successful.

8. Summary

In this paper, a new distribution has been proposed with many theoretical prop-
erties derived or stated. Methods for parameter estimation from record value data
has been developed using the maximum likelihood and Bayesian approaches. In
both, care had to be taken because of the non-regular nature of one parameter,
and because of non-symmetrical and in particular non-Gaussian parameter sam-
pling distributions. The maximum likelihood approach has been shown to work
very badly, but in contrast the proposed Bayesian modelling linked with MCMC
estimation has worked very well. Although the Bayesian model included arbi-
trarily chosen prior parameters the exact values are not overly influential on the
results—clearly, a sensitivity analysis would be useful further work.

The application of the standard Rayleigh, and other distributions, to record
values and life testing situations is an important branch of statistics and it has pre-
viously been found that modifications to standard distributions are often needed
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Case 1 Case 2 Case 3 Case 4
n = 5 n = 10 n = 5 n = 10 n = 5 n = 10 n = 5 n = 10

P
o
st

er
io

r
m

ed
ia

n
es

ti
m

at
es

γ̂ 0.08 0.08 0.07 0.07 0.07 0.07 0.07 0.07
Bias -0.02 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03
SD 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

RMSE 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
Coverage 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

κ̂ 0.59 0.56 0.92 0.86 1.12 1.02 1.23 1.17
Bias 0.09 0.06 0.12 0.06 0.17 0.07 0.13 0.07
SD 0.14 0.11 0.22 0.16 0.29 0.19 0.40 0.22

RMSE 0.16 0.12 0.24 0.17 0.33 0.20 0.42 0.23
Coverage 1.00 0.96 1.00 0.99 1.00 0.98 0.97 0.99

λ̂ 0.75 0.82 0.86 0.88 0.88 0.90 0.96 0.92
Bias -0.25 -0.18 -0.14 -0.12 -0.12 -0.10 -0.04 -0.08
SD 0.41 0.45 0.45 0.48 0.45 0.50 0.50 0.50

RMSE 0.47 0.48 0.47 0.50 0.46 0.51 0.50 0.50
Coverage 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

Table 2. Summary results for γ, κ and λ obtained using
Bayesian analysis, averaged over M = 100 replicates.

for different applications. Therefore, the continued development of increasingly
more flexible distributions allows the modelling of increasingly more complicated
situations. The new generalized Rayleigh distribution proposed in this paper, can
now be added to the array available to applied statisticians – and we hope that it
will be further studied. Finally, the use of Bayesian modelling has been of great
benefit and similar approaches are likely to be helpful in other situations also—this
can be another areas of future study.
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