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ABSTRACT All enveloped viruses, including herpesviruses, must fuse their envelope
with the host membrane to deliver their genomes into target cells, making this es-
sential step subject to interference by antibodies and drugs. Viral fusion is mediated
by a viral surface protein that transits from an initial prefusion conformation to a fi-
nal postfusion conformation. Strikingly, the prefusion conformation of the herpesvi-
rus fusion protein, gB, is poorly understood. Herpes simplex virus (HSV), a model sys-
tem for herpesviruses, causes diseases ranging from mild skin lesions to serious
encephalitis and neonatal infections. Using cryo-electron tomography and subtomo-
gram averaging, we have characterized the structure of the prefusion conformation
and fusion intermediates of HSV-1 gB. To this end, we have set up a system that gener-
ates microvesicles displaying full-length gB on their envelope. We confirmed proper
folding of gB by nondenaturing electrophoresis-Western blotting with a panel of mono-
clonal antibodies (MAbs) covering all gB domains. To elucidate the arrangement of gB
domains, we labeled them by using (i) mutagenesis to insert fluorescent proteins at spe-
cific positions, (ii) coexpression of gB with Fabs for a neutralizing MAb with known bind-
ing sites, and (iii) incubation of gB with an antibody directed against the fusion loops.
Our results show that gB starts in a compact prefusion conformation with the fusion
loops pointing toward the viral membrane and suggest, for the first time, a model for
gB’s conformational rearrangements during fusion. These experiments further illustrate
how neutralizing antibodies can interfere with the essential gB structural transitions that
mediate viral entry and therefore infectivity.

IMPORTANCE The herpesvirus family includes herpes simplex virus (HSV) and other
human viruses that cause lifelong infections and a variety of diseases, like skin le-
sions, encephalitis, and cancers. As enveloped viruses, herpesviruses must fuse their
envelope with the host membrane to start an infection. This process is mediated by
a viral surface protein that transitions from an initial conformation (prefusion) to a fi-
nal, more stable, conformation (postfusion). However, the prefusion conformation of
the herpesvirus fusion protein (gB) is poorly understood. To elucidate the structure
of the prefusion conformation of HSV type 1 gB, we have employed cryo-electron
microscopy to study gB molecules expressed on the surface of vesicles. Using differ-
ent approaches to label gB’s domains allowed us to model the structures of the pre-
fusion and intermediate conformations of gB. Overall, our findings enhance our un-
derstanding of HSV fusion and lay the groundwork for the development of new
ways to prevent and block HSV infection.
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subtomogram averaging, gB, herpesviruses, microvesicles, neutralizing antibodies,
prefusion, viral fusion

Herpes simplex virus (HSV) is a model system for the herpesvirus family, which
includes human viruses that cause lifelong infections and a variety of diseases,

including skin lesions, encephalitis, and cancers. HSV, which is categorized into two
types (HSV-1 and HSV-2), also causes a highly contagious infection common and
endemic throughout the world. It is estimated that over 3.5 billion people worldwide
are infected with HSV-1, while over 400 million people are infected with HSV-2, an
infection that has been shown to increase the risk of HIV acquisition (1). Antivirals that
reduce the severity and frequency of HSV symptoms exist. However, these drugs
cannot cure infection and there is no HSV vaccine available.

A key step of viral infection is entry into the host cell, a process that for enveloped
viruses like HSV involves fusion of viral and cellular membranes, allowing the viral
genome to access the interior of the cell. Enveloped virus fusion is mediated by viral
transmembrane proteins, and mounting evidence suggests that these proteins have
converged on a similar overall strategy among different viruses and classes of fusion
proteins (2). Herpesvirus entry and membrane fusion require three virion glycoproteins
that function as the “core fusion machinery,” gB, the actual fusion protein, and the
gH/gL heterodimer (3). Additionally, HSV fusion requires the gD glycoprotein (4).
Atomic models for many of the HSV glycoproteins exist, including for gD in its
unliganded form (5) and in complex with its receptors (6–9); for a partially activated
gH/gL complex (10); and for the postfusion form of gB (11, 12). Structures of Epstein-
Barr virus gH/gL alone and in complex with gp42 (13, 14) and gB (15), human
cytomegalovirus gB (16, 17), pseudorabies virus gH/gL (18), and varicella-zoster virus
gH/gL (19) are also available.

Current HSV fusion models propose that receptor-activated gD converts the regu-
latory protein gH/gL to an active state, which in turn promotes the fusogenic ability of
gB, the fusion protein (20). A detailed description of this process is reviewed elsewhere
(4, 21). Of note, Rogalin and Heldwein have recently generated vesicular stomatitis virus
(VSV) particles pseudotyped with HSV-1 gD, gH/gL, and gB, and these particles were
found to be able to infect cells expressing gD’s receptor, showing that gD, gH/gL, and
gB are not only essential but also presumably sufficient for HSV cell entry (22).

According to their structural features, viral fusion glycoproteins are sorted into three
classes. HSV-1 gB is a 904-amino-acid class III fusion glycoprotein. The postfusion
structure of gB was determined via X-ray crystallography of a truncated form ending at
amino acid 730. Postfusion gB contains five structural domains composed of �-helices
and �-sheets, of which three are discontinuous and inserted into other domains
(Fig. 1A) (11, 12). Seen from the side, the trimeric postfusion gB appears as an elongated
three-lobed structure. Domains I and V are at the “base” (close to the viral membrane)
of the trimer (respectively, blue and red in Fig. 1). Domain I contains the fusion loops
(cyan in Fig. 1) and is therefore referred to as the fusion domain. Domain II (green in
Fig. 1) comprises the central lobe and mediates interactions with gH/gL, as evidenced
by the fact that certain monoclonal antibodies (MAbs) that bind to this domain (23)
block association with gH/gL (24). Domain III (yellow in Fig. 1) connects the central and
top lobes and consists of �-helices that form a trimeric coiled coil. Domain IV (orange
in Fig. 1) is at the top of postfusion gB (the “crown”) and might be involved in the
interaction with a cellular receptor, as suggested by the fact that MAbs to this region
block gB cell binding (25, 26). Finally, the postfusion gB structure lacks the N terminus
(amino acids 31 to 102), which was flexible in the crystals, and amino acids 730 to 904
(containing the membrane-proximal region [MPR], transmembrane domain, and cyto-
plasmic tail), which were cleaved for purification and crystallization purposes. The
structural domains of gB can also be grouped into four functional regions (FRs),
according to the mapping of epitopes of a panel of neutralizing MAbs to distinct
regions of the gB structure (27). According to this mapping, FR1 includes domains I and
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V, FR2 includes domain II, FR3 includes domain IV, and FR4 includes the unsolved
N-terminal region.

While the structure of postfusion gB has significantly advanced our understanding
of the fusion process of HSV, the structure of prefusion gB is essential in order to
complete our knowledge of how gB undergoes this transition. Also, it is this form or an
intermediate that must be the target of neutralizing antibodies against gB and that
could provide rational ways to block its transition to the postfusion form that culmi-
nates in virus entry. However, solving the structure of prefusion gB has been hampered
by the fact that all of the purified forms of gB are postfusion. Attempts to alter this
outcome by modification of gB, e.g., point mutations, deletions, and truncations, have
been unsuccessful (28). Additionally, HSV virions contain more than 12 different types
of glycoproteins on their surface, making identification of the unknown prefusion
conformation of gB very challenging (29).

To generate a model of prefusion gB, a protocol expressing full-length gB embed-
ded in a lipid bilayer was developed, making it amenable to cryo-electron tomography
(cryo-ET) and subtomogram averaging (30). The molecules expressed this way adopted
two distinct conformations, one that corresponds to the elongated postfusion form of
gB and another that corresponds to a compact form, putatively gB in a prefusion
conformation. Constrained rigid-domain positioning of two of the five domains of
truncated postfusion gB into the prefusion average allowed the generation of a
pseudoatomic model of part of the putative prefusion form of gB (Fig. 1B). This model,
from Zeev-Ben-Mordehai et al. (30), suggests that the fusion loops within domain I
(cyan in Fig. 1) point away from the viral membrane. An alternative, and strikingly
different, model of prefusion gB was proposed that is based on the similarities of gB
and the VSV fusion protein (protein G), another class III fusion protein whose pre- and
postfusion structures are known (31, 32). This model, from Gallagher et al. (33, 34),
proposes that the fusion loops point down toward the virion envelope (Fig. 1C), as has
been shown for prefusion VSV-G. Similar models with this orientation have been
proposed for prefusion gB of the herpesviruses Epstein-Barr virus and human cyto-
megalovirus (15, 35). However, these in silico models lack experimental validation.

In this study, our goal was to attempt to reconcile these disparate models of
prefusion gB. In particular, we augmented the approach of Zeev-Ben-Mordehai et al. by
taking advantage of a system that produced microvesicles containing (i) full-length gB
with embedded fluorescent proteins (FPs), (ii) gB coexpressed with neutralizing anti-
bodies, and (iii) gB incubated with antibodies against the fusion loops. We hypothe-

FIG 1 Pre- and postfusion models. (A to C) The atomic structure of postfusion gB (A) (12) is shown
together with the gB prefusion models of Zeev-Ben-Mordehai et al. (B) (30) and Gallagher et al. (C) (34).
The domains are color coded as follows. Domain I, containing the fusion loops (FL) in cyan, is blue;
domain II is green; domain III is yellow; domain IV is orange; and domain V is red. The insets show the
position of fusion loop 2 (residues 252 to 271, magenta). The locations of the FP insertions discussed here
(position 103 is shown instead of 100 because 100 is not visible in the postfusion atomic structure), the
binding region of SS55, and the fusion loops are labeled. Zeev-Ben-Mordehai et al. did not include
domains III to V in their model, and Gallagher et al. did not include domain V. All of the models also lack
the N terminus, which was disordered in the postfusion gB crystals, and amino acids 730 to 774, which
were cleaved for gB postfusion purification purposes. Fab (D) and GFP (E) are shown for size comparison.
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sized that visualizing these additional forms would allow us to discern which of the two
current gB prefusion models is correct. We characterized the microvesicles expressing
these gB forms by using cryo-ET for direct 3D imaging. We combined this technique
with subtomogram averaging, which improves the signal-to-noise ratio of repeated
structures within a tomogram. This approach made the FPs, Fabs, and antibodies
visible, enabling us to use them as structural landmarks for localization of the different
gB domains. Additionally, we showed that the different gB samples were antigenically
intact, as determined by the fact that gB epitopes covering all gB domains were
preserved when expressed in microvesicles. In summary, these experiments provide
experimental support for the arrangement of the initial prefusion gB that resembles
that of VSV-G and models proposing that the fusion loops point down toward the virion
envelope, rather than away from the viral membrane. Thus, our data provide experi-
mental evidence that the model proposed by Zeev-Ben-Mordehai et al. does not
represent the starting prefusion conformation of gB, albeit it could certainly represent
an intermediate. Our results also provide important insights into how the transition of
gB from its prefusion state to its postfusion state takes place and therefore provide a
starting point for a molecular understanding of the HSV fusion process and conse-
quently for the development of new approaches to the prevention of HSV infection.

RESULTS
Expression of full-length gB. To express full-length HSV gB in a lipid membrane,

we used two different approaches, HIV pseudotyping and microvesicle generation. To
carry out pseudotyping, we expressed HIV structural proteins in the absence of the viral
genome, replacing the HIV glycoprotein with full-length gB (36). To generate mi-
crovesicles, it was sufficient to transfect 293T cells with the gene for full-length gB. This
approach was first described for VSV-G (37) and has been used to produce mi-
crovesicles expressing gB and other membrane proteins on their surface (38).

Both approaches produced vesicles expressing gB, as shown by Western blotting
(Fig. 2A and C) and visually by electron microscopy (EM), as evidenced by the presence
of postfusion gB molecules (Fig. 2D to K). The HIV pseudotyped particles also contained
HIV-encoded proteins, as illustrated in a Western blot assay against HIV capsid protein
p24 (Fig. 2B).

While few HIV particles displayed membrane-associated proteins (Fig. 2D and E),
many were seen in the microvesicles (Fig. 2F to K). Importantly, membrane-associated
proteins in both the HIV-like particles and microvesicles corresponded to two different
structures, (i) an elongated form compatible with postfusion gB and (ii) a more compact
form similar to that found by Zeev-Ben-Mordehai et al. (30) and compatible with the
prefusion gB model proposed by Gallagher et al. (34). The average number of gB
molecules per particle was 40 for microvesicles and 16 for HIV-like particles. In both
types of particles, the majority of gB molecules, in a ratio of 5:1, adopted the postfusion
conformation (11). To improve the signal-to-noise ratio of these structures, we per-
formed subtomogram averaging for each gB conformation from each type of vesicle
(Fig. 2L to O). The postfusion form of gB was approximately 18 nm tall and approxi-
mately 6 nm wide, and the crown and central lobe were easily recognized. The putative
prefusion gB had a globular structure adjacent to the membrane that was approxi-
mately 8 nm tall and 7 nm wide. This form was identical in both pseudotyped HIV
particles and microvesicles. Because of the higher yield and the simplicity of the system,
we characterized and visualized the different gB forms expressed in microvesicles.

Antigenicity of full-length gB tagged with FPs expressed in microvesicles. To
confirm that the compact structures observed on the surface of microvesicles were
indeed gB, we took advantage of the fact that this protein tolerates the insertion of FPs
at specific sites while maintaining its fusion capabilities (34). Since FPs should be visible
in the subtomogram averages, we reasoned that they could be used to label gB and
serve as landmarks to localize its specific domains. Additionally, we reasoned that this
approach would allow us to distinguish between the two proposed gB prefusion
models (Fig. 1B and C).
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FIG 2 Characterization of pseudotyped HIV particles and microvesicles expressing full-length gB by Western

Prefusion and Intermediate Conformations of HSV-1 gB ®

July/August 2017 Volume 8 Issue 4 e01268-17 mbio.asm.org 5

 
m

bio.asm
.org

 on S
eptem

ber 6, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


To assess the proper folding of the different gB samples, microvesicle preparations
expressing full-length WT gB and the gB-FPs were characterized by “native” Western
blotting of the proteins separated on nondenaturing gels (39) (Fig. 3A). All vesicle
preparations were recognized by a gB polyclonal antibody (PAb), R217. As expected,
only the gB-FP constructs reacted with a green FP (GFP) PAb. All gB constructs were
also recognized by a set of potent neutralizing MAbs that were mapped to the different
domains of gB, including SS55 (domain I), C226 (domain II), and SS10 (domain IV) (23).
This suggests that all of the domains of full-length gB expressed on these vesicles were
properly folded and all epitopes were correctly presented.

Localization of the N-terminal domain expressing gB(81Y) and gB(100C). We
then used cryo-ET to study two gB-FP constructs, one containing a yellow FP (YFP)
tag embedded at amino acid 81, gB(81Y), and another with a cyan FP embedded at
amino acid 100, gB(100C) (34). Residues 81 and 100 are located near the N terminus
of gB (in putative domain VI). As mentioned above, no structure is available for this
region, because it is too flexible in postfusion gB crystals to be resolved (12).
However, we hypothesized that, given their size, the FPs would locate the general
position of domain VI and the beginning of domain IV (starting at residue 103).
Indeed, the postfusion gB structure located residue 103 and the FP at the top of gB
in the vesicles (Fig. 1A). In contrast, the prefusion gB model of Zeev-Ben-Mordehai
et al. tentatively located it at the bottom of prefusion gB and close to the
membrane (although they did not include it in their pseudoatomic model). In the
model of Gallagher et al., domain IV is positioned at the upper middle of prefusion
gB and faces outward (Fig. 1C).

Like the WT, the full-length gB(81Y) protein expressed on microvesicles adopted
two conformations, a postfusion conformation and a compact conformation. How-
ever, in this sample, vesicles containing compact gBs were approximately four times
as abundant as postfusion gB-containing vesicles (Fig. 3B to E). As expected,
subtomogram averaging showed three small densities at the top of the molecule in
postfusion gB (compare Fig. 1A with Fig. 3J and K, right panels). Unlike WT gB, the
compact conformation of gB(81Y) (approximately 9 nm tall and 8 nm wide) was
separated by approximately 4 nm from the membrane, with three small densities at
the sides (Fig. 3J and K, left panels). We interpret the extra densities at the top of
postfusion gB(81Y) and at the side of compact gB(81Y) to be the YFP tag, confirming
our hypothesis. The gB(100C) vesicles extended this observation. Again, we found
two types of vesicles containing either postfusion gB or the compact gB separated
from the membrane (Fig. 3F to I), with the compact gB-containing vesicles being
approximately twice as abundant as the postfusion gB-containing vesicles. The
FP-associated densities were apparent when the two conformations of gB were
imaged by subtomogram averaging, at the same positions as shown for gB(81Y)
(Fig. 3L and M). Compact gB(100C) was slightly shorter than its gB(81Y) counterpart
(approximately 8 nm tall and 8 nm wide), but its separation from the membrane was
the same (approximately 4 nm). The altered compact conformations (separated
from the membrane) may represent an intermediate conformation of gB in its path
to postfusion, as these constructs have fusogenic phenotypes that are similar, albeit
not identical, to those of WT gB (34).

FIG 2 Legend (Continued)
blotting and cryo-ET and subtomogram imaging. (A to C) Pseudotyped HIV particles (A and B) or microvesicles
(C) were isolated from transfected 293T cells. Equal volumes of vesicles from both preparations were loaded onto
a 10% Tris-glycine gel under native conditions and probed with gB PAb R217. The presence of Gag protein in the
HIV-like particles was confirmed with a MAb (B). (D to K) Central tomographic sections of HIV-like particles with
few gB molecules (D and E) and of microvesicles containing many gB molecules (F to K). gB adopts two distinct
conformations, postfusion gB (black arrowheads) and the compact prefusion form of gB (white arrowheads). (L
to O) Subtomogram averaging of the two conformations of full-length gB in both types of samples. (L and M)
Averages of HIV-like particles. (N and O) Averages of microvesicles. (L and N) Sections through the subtomogram
averages of pre- and postfusion gB. For each of the four averages, sagittal sections are on the left and transverse
sections are on the right (at the height of the line shown in the left panels). (M and O) Isosurface renderings of
pre- and postfusion gB seen from the side (left) and top (right). Bars: D to K, 50 nm; L to O, 5 nm.
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In conclusion, by using gB(81Y) and gB(100C) constructs, we have confirmed that
the compact structures on the surface of vesicles are indeed gB. The position of the
extra FP densities on gB allowed us to locate the end of domain IV and the
beginning of the N terminus (domain VI) at the center and toward the outside of

FIG 3 Antigenic characterization of full-length gB-FPs expressed in microvesicles. (A) Nondenaturing Western blot assay
of WT gB, gB(81Y), gB(100C), gB(470Y), and gB(81C-470Y). Equal volumes of vesicles isolated from cells transfected with
the gB constructs indicated were loaded onto a 10% Tris-glycine gel under native conditions and probed with gB (R217)
and GFP PAbs. The presence of intact epitopes for major neutralizing MAbs (SS55, C226, SS10), which mapped different
domains of gB, confirmed the integrity of gB molecules presented on microvesicles. (B to I) Central tomographic sections
of microvesicles expressing full-length gB(81Y) (B to E) or gB(100C) (F to I). These microvesicles contained predominantly
a single gB conformation, either compact gB (B, C, F, and G; white arrowheads) or postfusion gB (D, E, H, and I; black
arrowheads). (J to M) Subtomogram averaging of pre- and postfusion gB(81Y) (J and K) and gB(100C) (L and M). The
distribution of the panels is the same as that shown for WT gB in Fig. 2. Bars: B to I, 50 nm; J to M, 5 nm.
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intermediate gB, as suggested by Gallagher et al., and places domain VI at the top
of postfusion gB.

Localization of domain II-expressing gB(470Y) and gB(81C-470Y). Using the
same approach, we took advantage of a form of gB with a YFP insertion at 470,
gB(470Y), to elucidate the location of domain II in prefusion/intermediate gB (Fig. 4). Of
note, residue 470 was not resolved in the neutral pH gB crystal structures (11, 12),
suggesting that it is located in a flexible loop of the central lobe of postfusion gB.
According to the prefusion gB model of Gallagher et al. (34), amino acid 470 should be
located at the top of the prefusion form of gB, close to the 3-fold symmetry axis
(Fig. 1C). However, the model of Zeev-Ben-Mordehai et al. (30) locates this residue close
to the viral membrane at a position close to domain IV but offset by 60° (Fig. 1B).

Since gB(470Y) exhibits reduced cell surface expression (34), it was not surprising
that it produced fewer vesicles. As with gB(81Y) and gB(100C), many of these vesicles
contained only a compact conformation of gB. In fact, vesicles displaying the compact
conformation were three times as abundant as those containing the postfusion form.
Subtomogram averaging of the compact conformation of gB(470Y) showed that its size
was similar (approximately 8 nm tall and 8 nm wide) to that of compact gB(100C) but
was closer to the membrane (approximately 2 nm versus approximately 4 nm). Addi-
tionally, the FP density was present at the middle of gB, pointing toward the side,
locating domain II in that general area (Fig. 4E). Because of the small number of
postfusion gB(470Y) vesicles, we could not calculate a subtomogram average for this
conformation.

We also imaged a gB construct containing two FPs (81C-470Y) (Fig. 4F to H). This
construct was of special interest since residues 81 and 470 are not close to each other
in the postfusion structure (residue 81 in domain VI is located at the top of postfusion

FIG 4 Microvesicles expressing full-length gB(470Y) or gB(81C-470Y) imaged by cryo-ET and subtomo-
gram averaging. (A to E) Central tomographic sections (A to D) and subtomogram averaging (E) of
microvesicles expressing full-length gB(470Y). (F to H) Central tomographic sections (F and G) and
subtomogram averaging (H) of microvesicles expressing full-length gB(81C-470Y). The distribution of the
subtomogram averaging panels is the same as that shown for WT gB in Fig. 2. To visualize the FP
densities of these constructs, a lower threshold was used (lighter color in both averages). Bars: A to D,
F, and H, 50 nm; E and H, 5 nm. White arrowheads indicate compact gB; black arrowheads indicate
post-fusion gB.
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gB, while residue 470 in domain II is at the center of postfusion gB), but fluorescence
resonance energy transfer (FRET) experiments showed that the two fluorophores were
within FRET distance (�5 nm) in the prefusion conformation (34). In fact, according to
the prefusion models of Zeev-Ben-Mordehai et al. and Gallagher et al. and the subto-
mogram averages of gB(81Y) and gB(470Y), we expected the amino acid 81 and 470 FPs
in gB(81C-470Y) to be too close to be separated in our 3D maps. Subtomogram
averaging of gB(81C-470Y) in the putative prefusion conformation showed a globular
domain approximately 9 nm tall and 9 nm wide, separated approximately 4 nm from
the membrane (Fig. 4H). However, we could not distinguish independent densities for
the 81 and 470 FPs in gB(81C-470Y). Similar to experiments with gB(470Y), few dually
labeled postfusion gB molecules were found. Therefore, subtomogram averages could
not be calculated for this conformation.

These experiments locate domain II toward the side of prefusion gB, in a location
conflicting with respect to its proposed locations in both prefusion models (Fig. 1B and
C). Possible reasons for this are described in the Discussion.

Localization of domain I-coexpressing full-length gB with the SS55 Fab. To
localize the position of domain I in the compact gB structure, we took advantage of the
SS55 Fab, which is a potent, conformation-specific neutralizing antibody with a known
epitope. Its binding site was determined to be within domain I via negative-staining EM
experiments with postfusion gB incubated with the SS55 Fab (23). In addition, MAb-
resistant (mar) viruses for SS55 contain mutations at residues 199, 203, and 335 within
domain I (23). To ensure that we labeled as many compact gB molecules as possible,
we coexpressed full-length gB and recombinant SS55 Fab rather than adding purified
Fab to the vesicle preparations. We therefore reasoned that coexpression of SS55 with
gB would possibly trap gB in a prefusion conformation and prevent its conversion to
the postfusion form. A similar approach was previously applied to lock a truncated
soluble prefusion form of the fusion protein of respiratory syncytial virus (40). Accord-
ing to the prefusion gB model of Gallagher et al., the SS55 epitope should be located
in the middle of the lower half of prefusion gB with this domain facing outward (close
to residue 103 but offset by 60°; Fig. 1C). However, the model of Zeev-Ben-Mordehai et
al. presumed that the SS55 epitope would be at the top of prefusion gB, buried within
the contact point between protomers at the 3-fold symmetry axis (Fig. 1B).

We first sequenced the SS55 hybridoma and cloned the heavy and light chains into
the pcDNA3.1 expression vector as described in Materials and Methods. As evidenced
by Western blotting, the medium from 293T cells that had been cotransfected with
these plasmids recognized purified soluble gB730 (Fig. 5A) similarly to gB recognized by
a gB PAb (Fig. 5B). This confirmed that the SS55 Fab was indeed produced in mam-
malian cells and that it recognized gB. We then isolated vesicles from cells transfected
with full-length gB alone or coexpressed with the plasmids encoding SS55 Fab. As
shown in Fig. 5C, the presence of the SS55 Fab resulted in an increase in the size of a
portion of gB (asterisk), indicative of a gB-SS55 Fab complex. The presence of the Fab
in this sample was further confirmed by Western blotting (Fig. 5D).

The gB-SS55 Fab microvesicles contained almost exclusively the compact form of gB
when imaged by cryo-ET (Fig. 5E to G). In fact, we found 10 times as many vesicles
displaying compact forms as vesicles displaying postfusion gB. The few vesicles con-
taining postfusion gB appeared not to be bound to SS55. This is consistent with our
hypothesis that binding of SS55 prevents the prefusion-to-postfusion transition of gB.
Subtomogram averaging of the compact form of gB showed a globular domain
approximately 8 nm tall and 8 nm wide containing an extra density, corresponding to
the Fab, at the side of gB (Fig. 5H). Of note, each gB molecule contained only one
additional density, preventing the application of 3-fold symmetry. Compact gB is
separated only approximately 2 nm from the membrane, and therefore it appears that
SS55 traps gB in a conformation that differs from that of prefusion WT and the gB(81Y)
and gB(100C) intermediates, but in a form similar to that of gB(470Y). We conclude that
domain I is located on the side of an intermediate form of gB, as proposed in the model
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of Gallagher et al. To our knowledge, this is the first time a transfected Fab has been
used to trap a membrane-bound protein in a conformation other than a first prefusion
form and highlights the potential for using neutralizing antibodies to trap gB in
intermediate conformations.

Localization of the fusion loops by incubation of full-length gB with a PAb to
fusion loop 2. One of the features common to all enveloped virus fusion proteins is
that their fusion loops or fusion peptides are masked or point toward the viral
membrane in their prefusion conformation (2, 41). Therefore, the most striking feature
of the gB prefusion model by Zeev-Ben-Mordehai et al. is that the fusion loops point
away from the viral membrane. In contrast, the fusion loops point toward the viral
membrane in the model of Gallagher et al.

We previously prepared a PAb, R240, directed against fusion loop 2 of gB by
hyperimmunizing rabbits with a peptide spanning this loop (residues 252 to 271) (23).

FIG 5 Microvesicles expressing full-length gB coexpressed with SS55 Fab. (A to D) Characterization of
SS55 Fab produced in mammalian cells. (A and B) Purified truncated gB730 (A, rightmost lane) was run
on a 4 to 12% gradient gel along with high-molecular-weight (A, left lane M) and broad-range (A, right
lane M) molecular size markers in duplicate. One membrane was probed with supernatant from cells
transfected with plasmids encoding the SS55 heavy and light chains (A). The values to the left are
molecular sizes in kilodaltons. The second membrane (B) was probed with PAb R217. (C) A small
proportion of gB present on microvesicles forms a higher-molecular-weight complex when coexpressed
with SS55 Fab plasmids (asterisk) that is absent when Fab plasmids are not included in the transfection
(lane 1). SS55 Fab can be detected under denaturing conditions in the gB microvesicle preparations (D).
HRP, horseradish peroxidase. (E to H) Central tomographic sections (E to G) and subtomogram averaging
(H) of microvesicles expressing full-length gB coexpressed with SS55. The distribution of the subtomo-
gram averaging panels is the same as that shown for WT gB in Fig. 2. Bars: E to G, 50 nm; H, 5 nm.
Arrowheads indicate compact gB.
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To reduce the number of nonspecific antibodies present in the polyclonal serum, we
purified R240 by passing it though a column containing immobilized gB730 (see
Materials and Methods).

To locate the fusion loops in full-length gB, we incubated microvesicles containing
gB with a 10 M excess of purified R240. As shown in Fig. 6, subtomogram averaging of
this sample shows extra densities at the bottom/side of gB, locating the fusion loops
close to the viral membrane. Of note, fusion loop 2 is located at the bottom of domain
I in postfusion gB, extending up to half of its length. Therefore, the localization of the
extra densities in this experiment is in agreement with the model of Gallagher et al.

DISCUSSION

In this study, we characterized full-length gB expressed on the surface of HIV
pseudotyped particles and microvesicles secreted from 293T cells. We found that WT gB
was present in both pre- and postfusion conformations on the membrane surfaces.
Using preparations of microvesicles, we also expressed gB molecules with FP insertions
in different domains of the glycoprotein. Additionally, we coexpressed gB with the
neutralizing antibody to SS55. Finally, we incubated gB with a purified PAb directed
against the gB fusion loops. These approaches produced different structures of gB that
we interpret to be intermediates in gB’s transition from the prefusion to the postfusion
conformation. To use FPs, Fabs and antibodies as landmarks, we used cryo-ET and
subtomogram averaging. This approach allowed us to locate different domains of gB in
these intermediate conformations and extrapolate their location in prefusion gB. We
have further characterized the antigenic properties of these constructs, confirming that
the epitopes for a subset of our antibody collection are preserved in the gB constructs
studied.

FIG 6 Microvesicles expressing full-length WT gB incubated with an antibody against fusion loop 2. (A
to C) Central tomographic sections (A and B) and subtomogram averaging (C) of microvesicles expressing
full-length gB incubated with antibody R240 against fusion loop 2. The distribution of the subtomogram
averaging panels is the same as that shown for WT gB in Fig. 2. (D) Isosurface rendering of WT gB (gray)
together with the WT gB incubated with R240 (gold). Bars: A and B, 50 nm; C and D, 5 nm. Arrowheads
indicate compact gB.
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A summary of all of the averages produced in this study is shown in Fig. 7. We
conclude the following.

The compact form is prefusion gB. In both microvesicles and pseudotyped HIV
particles, we could find only two conformations of gB, a compact form and the
postfusion form. Using three independent approaches, we labeled the compact form,
which allowed us to identify it as gB. It has been previously shown that cells expressing
HSV-1 gB can fuse with cells expressing the gD receptor and gH/gL in the presence of
soluble gD (42). Therefore, we take this result to indicate that a prefusion form of HSV-1
gB is stable in the absence of gH/gL and gD, even though it has been shown that gB
and gH/gL from human cytomegalovirus might form a stable complex in virions (43)
and that the cytoplasmic tail of HSV-1 gH/gL has been proposed to be involved in gB
activation (44). Since, in the absence of a target membrane, gB can adopt the postfu-
sion conformation without gH/gL and the interaction between gH/gL and gB appears
to occur after gB interacts with the target membrane (24), we speculate that the
function of gH/gL is to provide the energy required for membrane merging during the
fusion process.

Forms of gB containing FP insertions represent fusion intermediates. We
reasoned that gB containing FP insertions would be an optimal way to locate the
different domains in prefusion gB. This was based on two facts, (i) that FP molecules are
bulky enough to be seen in subtomogram averages, even at low resolution, and (ii) that
the genetic encoding of the FPs guarantees that all gB molecules contain three
copies of the tag. However, we previously showed that the gB molecules containing FP
insertions behave differently from WT gB in terms of fusion when expressed on the
surface of eukaryotic cells (34). Therefore, we suggest that they could present a
somewhat different conformation (not surprising, since each FP is approximately
27 kDa). The results obtained with the FP insertions support our hypothesis, since WT
gB was in close contact with the microvesicle membrane, while all gB-FP samples,
especially N-terminal FP insertions [gB(81Y), gB(100C), and gB(81C-470Y)], showed a
clear separation (i.e., the stalk connecting the globular domain of gB to the membrane
was not visible in the averages). For other enveloped viruses, e.g., influenza virus, it has
been suggested that the fusion protein adopts an intermediate conformation in which
the molecule is completely extended (termed the extended intermediate), so that the
transmembrane region and the fusion peptides/loops are on opposite sides of the
molecule (41, 45). We propose that the gB-FP compact averages represent partially
extended intermediates that correspond to conformational changes in domain III or V,
which likely experience extensive conformational changes during the fusion process, as

FIG 7 Summary of subtomogram averages. Subtomogram averages calculated in this study are shown
together for comparison. The lines in the postfusion conformation show the top of the membrane and the
top of postfusion WT gB. The lines in the prefusion conformation show the top of the membrane, the top
of prefusion WT gB, and the top of gB(81C-470Y). Measurements and distances to the membrane of the gB
prefusion conformations are included. FL, fusion loop; N/A, not applicable.
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predicted for the equivalent domains in VSV-G. We acknowledge, however, that the
averages could also represent altered prefusion conformations caused by the FP
insertions.

Localization of the N terminus in prefusion gB. As discussed above, the structure
of the N terminus is unknown and it has been suggested that it is flexible (12). In
addition to being the site of binding of several neutralizing MAbs (27), it contains the
heparan sulfate binding region, which is required for efficient virus entry (46). This suggests
that the N-terminal region is accessible on prefusion gB (i.e., it is on the outside of prefusion
gB). This is in agreement with our averages of gB(81Y) and gB(100C) that locate the
beginning of the N terminus (domain VI) at the center and toward the outside of interme-
diate gB. Additionally, our data clearly show that FP insertions in the N terminus [gB(81Y),
gB(100C), and gB(81C-470Y)] increase the separation of the globular prefusion domain of
gB from the membrane. This suggests that the N terminus is involved in interactions of
prefusion gB with the viral membrane, locating the N terminus at the base of the prefusion
conformation. A possible explanation for these observations is that the N terminus
stretches from the side of prefusion gB to the bottom of prefusion gB, as has been
previously suggested for postfusion gB (23). While this explanation is speculative, since, as
mentioned above, the insertion of FPs alters the conformation of gB, this model agrees with
the fact that the antibody H1817, whose epitope is located in the N terminus (residues 31
to 43) (27) competes with DL16, whose epitope is located in domain V (23).

gB domains remain constant during gB rearrangement. Compared to gB, much
more is known about VSV-G, another class III fusion protein. Structures of G include
prefusion (32), postfusion (31), and monomeric intermediate conformations (47–49).
These structures revealed that most domains of G suffer only minor conformational
rearrangements during the transition between pre- and postfusion. On the basis of
these observations, it has been hypothesized that the prefusion domains of gB are
similar to its postfusion domains. In fact, the prefusion gB models of both Zeev-Ben-
Mordehai et al. and Gallagher et al. (30, 34) were generated by using this hypothesis,
although no experimental data have confirmed it. To test this hypothesis, we employed
a nondenaturing electrophoresis-Western blot assay procedure (39), probing strips of
the blot with MAbs targeting domains I (SS55), II (C226), and IV (SS10) (Fig. 3A). As all
forms of gB were recognized similarly by the three MAbs, this result shows that their
corresponding epitopes remain constant in all constructs. Therefore, we suggest that
the overall conformation of each domain remains stable, as has been previously
suggested (30, 34). However, we acknowledge the fact that our preparations contain gB
in both prefusion and postfusion conformations. Further analysis of a sample contain-
ing exclusively prefusion gB is required to confirm if gB domains are indeed similar in
its prefusion and postfusion conformations.

Fit of gB averages with current gB prefusion models. On the basis of the two
current prefusion gB models, we envision three hypotheses to explain the prefusion-
to-postfusion transition of gB (Fig. 8A). In hypothesis 1, according to the model
proposed by Zeev-Ben-Mordehai et al. (30), the fusion loops point away from the viral
membrane in the initial prefusion conformation. Therefore, to reach an extended
intermediate conformation, gB would first undergo an extension to reach the target
membrane. This extension could be mediated by a refolding of domain V. It has been
shown that the MPR (amino acids 730 to 773, for which there is no available structure)
regulates the exposure of the fusion loops (50). Thus, the MPR could also be involved
in this extension. Following the extended intermediate, the molecule would need to
fold back upon itself (experiencing an “inversion”), placing the fusion loops at the same
end as the transmembrane domains and leading to fusion (Fig. 8A1). In hypotheses 2,
if the model proposed by Gallagher et al. is correct, the fusion loops would point
toward the viral membrane in the prefusion conformation. Thus, gB could reach
the extended intermediate by experiencing an initial inversion at the same time as the
fusion loops are relocated to the top of the molecule. In this sequence of events, the
compact structure would never contain fusion loops that point away from the viral
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membrane. This inversion would be mediated by the formation of the central stalk seen
in the postfusion structure. From this extended intermediate, a second inversion (like
the one described above) would induce fusion (Fig. 8A2). Alternatively, in hypothesis 3,
according to the model of Gallagher et al., prefusion gB could experience an initial
inversion, with domain II pivoting close to the viral membrane and acquiring a
conformation similar to the one proposed by Zeev-Ben-Mordehai et al. (i.e., with the
fusion loops pointing away from the viral membrane). Extension of the structure and

FIG 8 Model of fusion. (A) Transitions of gB from the prefusion to the postfusion conformation.
According to hypothesis 1, fusion loops point up in the prefusion conformation. According to hypoth-
esis 2, fusion loops point down in the prefusion conformation and the gB compact structure does not
contain fusion loops pointing down. According to hypothesis 3, the model starts with the fusion loops
pointing toward the viral membrane with an intermediate-containing compact form with the fusion
loops pointing up. (B) Models of prefusion, intermediate, and postfusion gB fitted into representative gB
subtomogram averages from this study and according to hypothesis 3. The prefusion model of Gallagher
et al. is fitted into prefusion WT gB and in gB coexpressed with the SS55 Fab. A chimeric model using
domains I and II from the model of Zeev-Ben-Mordehai et al. and domains III and IV from the model of
Gallagher et al. is fitted into 100Y intermediate average. Postfusion gB from Stampfer et al. (12) (PDB code
3nw8) is fitted into postfusion gB(100C). GFP molecules and a Fab are included in the gB SS55 and
gB(100C) panels, respectively.

Fontana et al. ®

July/August 2017 Volume 8 Issue 4 e01268-17 mbio.asm.org 14

 
m

bio.asm
.org

 on S
eptem

ber 6, 2017 - P
ublished by 

m
bio.asm

.org
D

ow
nloaded from

 

http://mbio.asm.org
http://mbio.asm.org/
http://mbio.asm.org/


formation of the central helical stalk would follow as a distinct kinetic step, which could
resolve to membrane fusion through the second inversion described above (Fig. 8A3).

While we acknowledge that higher-resolution averages are needed to unequivocally
unravel gB’s mechanism of fusion, our results, do not support hypothesis 1. Consistent
with hypotheses 2 and 3, extra densities from the fusion loop antibodies are found at
the side of gB, close to the viral membrane (Fig. 6) and not at the top of the molecule,
as proposed in hypothesis 1. Additionally, the SS55 density is located at the middle
lower half of prefusion domain facing outward (Fig. 5), again consistent with hypoth-
eses 2 and 3, while hypothesis 1 predicts that this epitope is located at the top of the
molecule, close to the 3-fold symmetry axis.

To discern between hypotheses 2 and 3, we then considered the gB FP averages.
Specifically, our data could not reconcile the gB(470Y) average, seen toward the center
of gB and facing outward (Fig. 4), with hypothesis 2, which locates residue 470 at the
top of prefusion gB. We therefore propose that prefusion gB, with the fusion loops at
the bottom, undergoes an initial inversion while retaining an overall compact confor-
mation, following the pathway described for hypothesis 3. This initial inversion could
be mediated by a conformational change in domain V (or the MPR; see above),
adopting a compact conformation with the fusion loops pointing away from the viral
membrane, reconciling our data with data described by Zeev-Ben-Mordehai et al.
Following this inversion, domain III would extend, allowing gB to adopt the extended
intermediate conformation, and a second conformational change in domain V will
finally convert gB into its postfusion conformation, allowing membrane fusion (Fig. 8B).

In summary, we have used vesicles to express WT gB and a series of FP-modified
forms of gB, as well as anti-gB antibodies, to study different forms of gB by cryo-ET. We
have located the positions of specific residues and domains on postfusion gB and what
we believe to be the prefusion and possible intermediate forms. Our data show for the
first time how gB might transition from its starting place to its final stable postfusion
form.

MATERIALS AND METHODS
Cells and plasmids. 293T cells (ATCC CRL-3216) were grown in Dulbecco’s modified Eagle’s medium

(DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS) and 100 �g/ml penicillin-streptomycin
at 37oC in 5% CO2.

gB1 (pPEP98) was a gift from P. Spear (51). Fluorescent constructs gB(81Y) (pJG1040), gB(100C)
(pJG1049), gB(470Y) (pJG1025), and gB(81C-470Y) (pJG1026) were described previously (34). For pseu-
dotyped HIV particle production, psPAX2 was obtained through the NIH AIDS Reagent Program, Division
of AIDS, NIAID, NIH (catalog no. 11348) from D. Trono (36).

SS55 Fab sequencing and expression. Total RNA was extracted from frozen SS55 hybridoma. cDNA
was synthesized, and PCR was performed to amplify the variable and constant regions of the antibody.
The fragments were cloned into standard cloning vectors separately and sequenced (GenScript, Pisca-
taway, NJ). The light and heavy chains were reconstructed by overlap extension PCR. For light chain
reconstruction, the primers used were TTGGTACCATGAGTGTGCCCACTC (primer A), TGTTCAAGAAGCAC
ACGACTG (primer B), GCTTCTTGAACAACTTCTACCCCAAAGAC (primer C), and TAATCTCGAGCTAACACTC
ATTCCTG (primer D). For heavy chain reconstruction, the primers used were TTGGTACCATGAACTTCGG
GCTC (primer A), CACTGTCACTGGCTCAGGG (primer B), GCCAGTGACAGTGACCTGGAACTC (primer C), and
TAATCTCGAGTCAAATTTTCTTGTCCACC (primer D). The final PCR products were cloned into the pcDNA3.1
expression vector, resulting in pRC1058 (SS55 heavy chain) and pRC1059 (SS55 light chain). The correct
orientation of constructs was confirmed by sequencing.

Transfection. (i) Pseudotyped HIV particles. 293T cells (2 � 106/well) were seeded onto six-well
plates. One microgram of psPAX2 and 2 �g of pCAGGS, WT gB1, or FP-tagged gB were transfected with
10 �l of Lipofectamine 2000 (Invitrogen). All transfections were performed at 37°C, with the exception
of gB(470Y) and gB(81C-470Y). For these constructs, cells were transfected for 5 h at 37°C and then
transferred to 32°C (34).

Before transfection, growth medium from each well was replaced with 2 ml of fresh DMEM
containing 10% exosome-depleted FBS with no antibiotics. To obtain exosome-depleted FBS, FBS was
centrifuged at 28,000 rpm at 4 C for at least 16 h with an SW-41 Ti rotor. Supernatants were collected
and filtered (0.22-�m pore size). The pelleted exosomes were discarded.

(ii) Microvesicles. The transfection conditions used were similar to those used for pseudotyped HIV
particle production, but the psPAX2 plasmid was excluded from the mixture.

(iii) gB-SS55 Fab coexpression. One microgram each of gB1, SS55 heavy chain (Hc), and SS55 light
chain (Lc) plasmids was transfected into 293T cells.

Purification of full-length-gB-expressing particles. Cell media were collected from transfected
cells at 48 and 96 h posttransfection and clarified by low-speed centrifugation (1,000 rpm, 4ºC, 10 min).
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Supernatants devoid of cell debris were filtered through a 0.45-�m-pore-size filter. Vesicles were purified
by ultracentrifugation through a 5-ml 20% sucrose-HBS cushion (20% sucrose in distilled H2O with 20 mM
HEPES, 150 mM NaCl, filter sterilized) at 28,000 rpm at 4ºC for 2 h with an SW-41 Ti rotor. HIV
pseudoparticles/microvesicle pellets were resuspended overnight in HBS at 4°C with gentle shaking.

Purification of fusion loop PAb. The procedure used to make a soluble gB-CNBr Sepharose 4B
column was described previously (23).

The gB2(727t) column was washed extensively with TS buffer (10 mM Tris-HCl [pH 7.2], 0.5 M NaCl)
before being loaded with 10 mg of total anti-fusion-loop IgGs. The flowthrough was collected and
reloaded onto the column five times; this was followed by washing with TS buffer. The gB-specific IgGs
were eluted with 3 M KSCN. The eluted sample was dialyzed against phosphate-buffered saline and
concentrated with centrifugal filter units (Millipore). For cryo-ET, the purified PAb was mixed with WT gB
microvesicles at a 10 M excess overnight at 4°C.

Western blotting. A 2.5-�l portion of each microvesicle sample was run on 10% or 4 to 12% gradient
Tris-glycine gels (Novex) under native or denaturing conditions (as indicated) and subjected to Western
blotting. To probe for gB, PAb R217 [generated against truncated gB1(730) as described previously (52)]
or MAbs (27) were used, as indicated. The fluorescent tags were detected with anti-GFP polyclonal
antibody ab6556, and HIV Gag protein was detected with p24 MAb ab9071, both from Abcam, Inc. All
secondary antibodies (goat anti-mouse or goat anti-rabbit) were coupled to horseradish peroxidase (Cell
Signaling).

Cryo-ET. Grids containing microvesicles or HIV pseudotyped particles were prepared as previously
described (53). In brief, samples were mixed 2:1 with a suspension of bovine serum albumin (BSA)-coated
10-nm colloidal gold particles (Aurion, Wageningen, The Netherlands) that served as fiducial markers,
and 4-�l drops were then applied to R2/2 holey carbon grids (Quantifoil; SPI, West Chester, PA). Samples
were blotted and vitrified by plunge-freezing in liquid ethane with a Vitrobot (FEI, Hillsboro, OR) or a
Leica EM GP Automatic Plunge Freezer (Leica Microsystems, Inc., United Kingdom). Grids were then
transferred under cryogenic conditions to a specimen holder (type 626; Gatan, Warrendale, PA) for data
acquisition. A Tecnai-12 transmission electron microscope (FEI) operated at 120 kV was used to record
single-axis tilt series. Imaging was done with an energy filter (GIF 2002; Gatan) operated in zero-loss
mode with an energy slit width of 20 eV. Tilt series were acquired by serial EM (54). Images were recorded
on a 2,048- by 2,048-pixel charge-coupled device camera (Gatan) in 2° increments over an angular range
of approximately �60° to �60° at a nominal magnification of �38,500 (0.78-nm pixel size) or �53,600
(0.56 nm/pixel). The electron dose per image was approximately 1 e�/Å2, adding to a cumulative dose
of approximately 70 e�/Å2 per tilt series. The nominal defocus was �4 �m, corresponding to a first
contrast transfer function zero at 3.7 nm�1.

Tomogram reconstruction and subtomogram averaging. Tilt series were reconstructed with the
Bsoft package (55). Individual gB molecules were located on microvesicles or pseudotyped particles
denoised with an anisotropic nonlinear diffusion filter (56) and were extracted from the corresponding
raw subtomograms. The center of each microvesicle/pseudotyped particle was used to calculate the
initial orientation of each gB molecule. Alignment procedures were performed with routines from Bsoft,
modified as needed and wrapped into Python scripts. An average of all of the selected subtomograms,
obtained by using the initial orientations described above, was used as the initial model for each gB
sample studied. Threefold symmetry was used for all averages (WT gB, gB-FPs, and gB incubated with the
fusion loop antibodies), except for the gB sample coexpressed with the SS55 neutralizing antibody. Final
classification and averaging were performed by the maximum-likelihood method (57). The average
resolution was 5 nm, as calculated in terms of Fourier shell correlation (0.3 threshold). Table S1 sum-
marizes the number of particles and resolutions used for each average. Fitting of the atomic models into
the subtomogram averages was done manually with the UCSF Chimera package (58).

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.01268-17.
TABLE S1, DOCX file, 0.02 MB.
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