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ABSTRACT	

The	 perception	 of	 fine	 textures	 relies	 on	 highly	 precise	 and	 repeatable	 spiking	 patterns	 evoked	 in	

tactile	afferents.	These	patterns	have	been	shown	to	depend	not	only	on	the	surface	microstructure	

and	material	but	also	on	the	speed	at	which	it	moves	across	the	skin.	Interestingly,	the	perception	of	

texture	is	independent	of	scanning	speed,	implying	the	existence	of	downstream	neural	mechanisms	

that	 correct	 for	 scanning	 speed	 in	 interpreting	 texture	 signals	 from	 the	 periphery.	 What	 force	 is	

applied	 during	 texture	 exploration	 also	 has	 negligible	effects	on	how	 the	 surface	 is	perceived,	but	

the	 consequences	 of	 changes	 in	 contact	 force	 on	 the	 neural	 responses	 to	 texture	 have	 not	 been	

described.	In	the	present	study,	we	measure	the	signals	evoked	in	tactile	afferents	of	macaques	to	a	

diverse	 set	 of	 textures	 scanned	 across	 the	 skin	 at	 two	 different	 contact	 forces	 and	 find	 that	

responses	 are	 largely	 independent	 of	 contact	 force	 over	 the	 range	 tested.	 We	 conclude	 that	 the	

force	invariance	of	texture	perception	reflects	the	force	independence	of	texture	representations	in	

the	nerve.	

INTRODUCTION	

Scanning	a	texture	with	our	fingertip	elicits	highly	precise	and	repeatable	temporal	spiking	patterns	

in	tactile	afferents,	and	these	spike	sequences	carry	information	about	texture	identity	(Weber	et	al.,	

2013).	Temporal	spiking	patterns	mediate	our	ability	to	distinguish	fine	surfaces	with	different	fine	

microstructure,	measured	in	the	tens	of	microns	(Skedung	et	al.,	2013;	Weber	et	al.,	2013;	Manfredi	

et	 al.,	 2014).	 Spiking	 patterns	 do	 not	 simply	 depend	 on	 the	 textured	 surface,	 however;	 they	 also	

depend	on	the	speed	at	which	it	moves	across	the	skin:	patterns	contract	and	dilate	with	increases	

and	decreases	in	scanning	speed,	respectively	(Weber	et	al.,	2013).	

While	 natural	 texture	 exploration	 involves	 scanning	 movements	 that	 vary	 widely	 in	 speed	 and	 in	

contact	 force	 (Morley	 et	 al.,	 1983;	 Smith	 et	 al.,	 2002a,	 2002b;	 Tanaka	 et	 al.,	 2014;	 Callier	 et	 al.,	

2015),	 our	 perception	 of	 texture	 depends	 little	 on	 these	 scanning	 movements:	 Velvet	 feels	 like	

velvet	and	sandpaper	like	sandpaper	no	matter	how	we	touch	them,	suggesting	that	some	aspect	of	

the	 evoked	 response	 is	 invariant	 with	 respect	 to	 scanning	 parameters.	 For	 example,	 changes	 in	

scanning	 speed	 do	 not	 affect	 roughness	 perception	 (Lederman,	 1974;	 Meftah	 el-M	 et	 al.,	 2000),	

despite	 its	 powerful	 influence	 on	 texture	 responses	 in	 tactile	 afferents	 (Weber	 et	 al.,	 2013).	

Similarly,	 the	 perceived	 roughness	 of	 textured	 surfaces	 is	 relatively	 insensitive	 to	 huge	 changes	 in	

contact	force	(Lederman	and	Taylor,	1972;	Lederman,	1981):	a	five-fold	increase	in	force	only	leads	

to	a	10%	increase	in	perceived	roughness.		

In	 the	 present	 study,	 we	 examine	 the	 degree	 to	 which	 texture-specific	 spiking	 sequences	 evoked	

during	texture	scanning	depend	on	contact	force.	We	find	that,	while	firing	rates	increase	slightly	at	

higher	 forces,	 the	precise	 temporal	patterning	 is	almost	completely	unaffected	and	remains	highly	

informative	 about	 texture	 identity	 across	 contact	 forces.	 Thus,	 while	 speed	 invariance	 of	 texture	

perception	likely	relies	on	specialized	neural	circuits	(Saal	et	al.,	2016),	force	invariance	of	perception	

simply	reflects	the	force-independence	of	texture	representations	in	the	nerve.		

METHODS	

PERIPHERAL	NERVE	RECORDINGS	

Stimuli.	 A	 diverse	 set	 of	 55	 textured	 surfaces	 (see	 Manfredi	 et	 al.,	 2014	 for	 complete	 list)	 was	

presented	to	the	fingertips	of	anesthetized	macaques	using	a	custom-built	rotating	drum	stimulator,	

as	described	previously	in	detail	(Weber	et	al.,	2013).	In	brief,	textured	strips	(2.5	cm	wide	x	16	cm	in	

scanning	 direction)	 were	 wrapped	 around	 an	 acrylic	 drum	 (25.4	 cm	 in	 diameter	 and	 30.5	 cm	 in	



length).	 The	 texture	 set	 included	 gratings	 and	 tetragonal	 arrays	 of	 embossed	 dots	 created	 from	 a	

photosensitive	polymer	(Printight,	Toyobo	Co.,	Ltd.),	as	well	as	finer,	more	naturalistic	textures	such	

as	 fabrics	 and	 sandpapers.	 Textures	 were	 scanned	 across	 the	 skin	 at	 80	 mm/s	 for	 1.2	 s	 at	 two	

different	normal	forces:	50	and	25	g	wt.	Each	individual	texture	presentation	lasted	1.2	s,	followed	

by	 an	 inter-trial	 interval	 of	 3.5	 s,	 designed	 to	 be	 long	 enough	 to	 minimize	 the	 effects	 of	 afferent	

adaptation	 (Bensmaia	 et	 al.,	 2005;	 Leung	 et	 al.,	 2005).	 Each	 texture	 was	 presented	 two	 or	 three	

times.	

Neurophysiology.	 Extracellular	 single-unit	 recordings	 were	 obtained	 from	 the	 median	 and	 ulnar	

nerves	 innervating	 the	 distal	 fingertips	 of	 4	 Rhesus	 macaques	 (Macaca	 mulatta)	 as	 described	

previously	(Muniak	et	al.,	2007;	Weber	et	al.,	2013).	Data	were	collected	from	4	SA1	a,	1	RA,	and	2	

PC	fibers.	All	procedures	complied	with	the	NIH	Guide	for	the	Care	and	Use	of	Laboratory	Animals	

and	were	approved	by	the	Animal	Care	and	Use	Committee	of	the	University	of	Chicago.	Some	of	the	

data	obtained	from	the	one	RA	was	compromised,	and	so	the	(good)	data	from	this	afferent	were	

used	for	display	purposes	only	(in	Figure	1).	Responses	from	two	additional	RA	fibers	were	obtained	

in	a	separate	experiment	involving	recordings	from	the	dorsal	root	ganglia,	described	below.	

DORSAL	ROOT	GANGLION	RECORDINGS		

Stimuli.	The	stimuli	consisted	of	10	textured	surfaces	–	Chiffon,	City	Light,	Corduroy,	Crocodile	Skin,	

Deck	Chair,	Denim,	Hucktowel,	Metallic	Silk,	Nylon,	and	Upholstery	–,	seven	of	which	were	also	used	

in	 the	 peripheral	 nerve	 recordings.	 Textures	 were	 scanned	 across	 the	 fingertips	 of	 anesthetized	

macaques	 using	 a	 custom-built	 rotating	 drum	 stimulator,	 a	 smaller	 version	 of	 the	 previously	

described	 one	 (Weber	 et	 al.,	 2013).	 Textured	 strips,	 each	 2.5	 cm	 wide	 and	 16	 cm	 long	 along	 the	

scanning	 direction,	 were	 wrapped	 around	 the	 drum,	 itself	 14	 cm	 long	 and	 6.4	 cm	 in	 diameter.	

Textures	were	scanned	at	a	speed	of	80	mm/s	and	presented	at	two	different	normal	forces:	10	and	

50	 g	 wt.	 Each	 texture	 was	 scanned	 across	 the	 skin	 four	 times,	 each	 for	 1.2	 s,	 and	 texture	

presentations	were	separated	by	inter-trial	intervals	lasting	3.5	s.		

Neurophysiology.	Extracellular	single-unit	recordings	were	obtained	from	the	dorsal	root	ganglia	of	1	

Rhesus	 macaque,	 as	 described	 previously	 in	 cats	 (Gaunt	 et	 al.,	 2009).	 	 Animals	 were	 anesthetized	

with	ketamine	and	maintained	on	isoflurane	anaesthesia	for	the	duration	of	the	procedure.	The	C3	

though	 T2	 vertebrae	 were	 exposed	 through	 a	 midline	 incision	 and	 retraction	 of	 the	 overlying	

musculature	and	a	dorsal	 laminectomy	was	performed	 to	expose	 the	 spinal	 cord	 from	C5	 through	

T1.	The	laminectomy	was	extended	laterally	through	the	articular	processes	past	the	foramina	of	the	

C6-C8	spinal	roots	to	expose	the	dorsal	root	ganglia	(DRG).	Ligaments	and	other	issue	over	the	DRG	

were	 resected	 to	 provide	 a	 clear	 view	 of	 the	 DRG	 enlargement.	 32-channel	 microelectrode	 arrays	

(4x8,	Blackrock	microsystems)	were	positioned	over	the	C6-C8	DRG	and	inserted	using	a	pneumatic	

high-speed	inserter.		

Extracellular	single-unit	recordings	were	obtained	from	the	dorsal	root	ganglia	innervating	the	distal	

fingertips	(D2	and	D4)	of	1	Rhesus	macaque	(Macaca	mulatta)	using		a	high	density	microelectrode	

array	 (Utah	 Array,	 BlackRock	 Microsystems,	 Salt	 Lake	 City,	 Utah).	 Data	 were	 collected	 from	 2	 RA	

fibers.	All	procedures	complied	with	the	NIH	Guide	for	the	Care	and	Use	of	Laboratory	Animals	and	

were	approved	by	the	Animal	Care	and	Use	Committee	of	the	University	of	Pittsburgh.		

TEXTURE	CLASSIFICATION	FROM	NEURAL	DATA.		

For	all	analyses,	we	used	500	ms	of	steady-state	spiking	data	(after	the	onset	transient	and	before	

the	 texture	 began	 to	 lift	 off	 the	 fingertip).	 To	 determine	 the	 extent	 to	 which	 textures	 can	 be	

distinguished	based	on	spiking	sequences	evoked	in	individual	afferents,	we	implemented	a	nearest	



neighbour	classifier.	This	classification	analysis	gauges	whether	spike	trains	evoked	by	one	stimulus	

(in	this	case	a	given	texture)	are	more	similar	to	each	other	than	to	those	evoked	by	other	stimuli	

(different	 textures).	 Specifically,	 we	 applied	 a	 leave-one-out	 approach,	 in	 which	 we	 computed	 the	

dissimilarity	 between	 each	 spike	 train	 Si,	 and	 every	 other	 spike	 train.	 The	 texture	 was	 correctly	

classified	when	then	mean	dissimilarity	between	Si	and	spike	trains	from	the	same	texture	was	lower	

than	 the	 mean	 dissimilarity	 between	 Si	 	 and	 spike	 trains	 from	 each	 of	 the	 other	 textures.	 This	

procedure	 was	 repeated	 for	 every	 spike	 train	 obtained	 from	 each	 afferent.	 As	 a	 measure	 of	

dissimilarity,	 we	 employed	 a	 spike	 train	 distance	 metric	 (Dspike),	 used	 in	 our	 previous	 studies,	 that	

computes	the	cost	to	transform	one	spike	train	into	another	(Victor	and	Purpura,	1997;	Mackevicius	

et	al.,	2012;	Weber	et	al.,	2013;	Suresh	et	al.,	2016).	A	cost	of	1	is	incurred	for	adding	and	deleting	

spikes,	 and	 a	 cost	 per	 unit	 time,	 q,	 is	 incurred	 to	 move	 spikes.	 By	 varying	 q,	 we	 can	 assess	 the	

contribution	 of	 precise	 spike	 timing	 to	 the	 distance	 computation	 and	 thus	 to	 the	 classification	

performance.	That	is,	a	q	of	0	leads	to	a	distance	metric	based	solely	on	differences	in	spike	count:	

Two	spike	trains	will	be	different	to	the	extent	that	the	number	of	spikes	is	different.	With	non-zero	

q’s,	 shifting	 spikes	 in	 time	 is	 less	 expensive	 than	 adding	 or	 subtracting	 spikes	 when	 the	 required	

shifts	are	 less	 than	2/q	ms.	For	each	pair	of	spike	 trains,	we	shifted	one	spike	 train	relative	 to	 the	

other	 (in	 1-ms	 increments,	 for	 up	 to	 100	 ms	 in	 each	 direction)	 and	 used	 the	 minimum	 distance	

across	 all	 shifts	 to	 ensure	 that	 the	 classification	 analysis	 could	 not	 exploit	 differences	 in	 absolute	

response	phase,	which	depends	on	the	precise	location	of	the	stimulus	relative	to	the	receptive	field	

of	the	nerve	fiber.	We	performed	this	analysis	 in	two	different	ways:	First,	on	a	subset	of	the	data	

including	only	trials	at	a	single	contact	force	(either	25	g	wt	or	10	g	wt,	and	50	g	wt);	second,	on	the	

full	data	set	comparing	trials	from	one	force	to	trials	from	the	other.	While	the	former	analysis	tests	

whether	 and	 at	 what	 temporal	 resolution	 information	 about	 texture	 identity	 is	 encoded	 in	 the	

spiking	sequences,	the	latter	analysis	tests	the	robustness	of	the	neural	code	across	different	force	

levels,	and	therefore	how	robust	the	neural	code	is	to	changes	in	force.	

RESULTS	

We	 assessed	 how	 much	 varying	 the	 level	 of	 normal	 force	 exerted	 by	 the	 drum	 during	 texture	

scanning	 affected	 the	 neural	 responses	 of	 the	 three	 different	 afferent	 types	 implicated	 in	 texture	

perception:	 slowly-adapting	 type	 I	 (SA1),	 rapidly-adapting	 (RA),	 and	 Pacinian	 (PC)	 afferents	 (see	

Figure	 1	 for	 examples	 of	 neural	 responses	 recorded	 at	 different	 force	 levels).	 Data	 were	 obtained	

both	 through	 single-unit	 recordings	 from	 the	 peripheral	 nerve	 (SA1	 and	 PC	 fibers)	 and	 array	

recordings	from	the	dorsal	root	ganglia	(RA	fibers,	see	Methods	for	details).		

Effects	of	force	on	firing	rates	

First,	we	examined	 the	 influence	of	 contact	 force	on	 the	 firing	 rates	elicited	 in	 the	 three	different	

afferent	populations	(Figure	2).	We	found	that	doubling	the	force	(from	25	to	50	g	wt)	results	in	an	

increase	 in	 firing	 rate	 of	 30%	 for	 SA1	 fibers	 and	 24%	 for	 PC	 fibers.	 RA	 afferents	 are	 even	 less	

susceptible	to	changes	in	force,	as	evidenced	by	the	fact	that	a	fivefold	increase	in	force	(from	10	to	

50	g	wt)	resulted	in	a	16%	increase	in	firing	rate.	

Effects	of	force	on	precise	spike	timing	

Next,	 we	 examined	 whether	 the	 precise	 spiking	 sequences	 evoked	 during	 texture	 scanning	 were	

different	at	different	levels	of	contact	force.	To	test	the	robustness	of	the	texture	signals	conveyed	

through	 temporal	 spiking	 patterns,	 we	 classified	 texture	 identity	 from	 the	 neural	 responses	 at	

different	 temporal	 resolutions.	 To	 the	 extent	 that	 temporal	 spiking	 sequences	 evoked	 by	 a	 given	

texture	 were	 consistently	 more	 similar	 to	 each	 other	 across	 contact	 forces	 than	 they	 were	 to	



patterns	evoked	by	other	textures,	 then	texture	 identity	could	be	decoded	from	these	patterns	by	

downstream	 structures,	 regardless	 of	 contact	 force.	 The	 analysis	 also	 allows	 us	 to	 determine	 the	

optimal	temporal	resolution	to	extract	texture	information.	

First,	 we	 tested	 spike	 sequences	 at	 each	 force	 level	 individually	 and	 found	 that	 classification	

performance	 was	 consistently	 well	 above	 chance	 at	 both	 force	 levels	 for	 all	 three	 afferent	 types	

(Figure	3,	blue	and	orange	traces).	Note	that	classification	performance	is	poor	with	rates	alone	and	

that	the	optimal	resolution	is	highest	for	PC	responses,	lowest	for	SA1	responses,	and	intermediate	

for	RA	responses,	as	has	been	previously	shown	(Weber	et	al.,	2013).		

Second,	 we	 gauged	 whether	 spiking	 sequences	 were	 sufficiently	 similar	 across	 force	 levels	 to	

support	 texture	 classification.	 We	 found	 that,	 indeed,	 classification	 performance	 achieved	 by	

comparing	neural	responses	evoked	at	high	contact	force	(50g)	to	those	collected	at	a	low	one	(25	g	

or	10	g)	was	also	far	above	chance	for	each	class	of	nerve	fibers	at	their	optimal	temporal	resolution,	

albeit	lower	than	that	achieved	at	each	level	separately	(Figure	3,	yellow	traces).	This	was	also	true	

for	the	finest	textures,	the	perception	of	which	relies	exclusively	on	these	temporal	patterns.	Indeed,	

classification	performance	 for	 the	 four	 smoothest	 textures	–	chiffon,	denim,	 silk,	and	upholstery	 –	

was	71,	66,	and	63%	for	SA1,	RA,	and	PC	fibers,	respectively,	so	performance	was	better	than	chance	

(25%)	 for	 those	 too.	 In	 conclusion,	 then,	 texture-specific	 temporal	 spiking	 patterns	 are	 preserved	

across	changes	in	force	level.		

Next,	we	found	that	combining	responses	from	a	few	fibers	(4	SA1,	2	RA,	and	2	PC	fibers),	yielded	

improved	 classification	 (except	 for	 PC	 fibers,	 asterisks	 in	 Figure	 3),	 suggesting	 that	 a	 complete	

afferent	population,	comprising	hundreds	of	nerve	 fibers,	could	convey	texture	 information	that	 is	

robust	across	contact	forces.		

DISCUSSION	

Our	ability	to	discern	fine	textures	is	thought	to	be	mediated	by	the	elicitation	of	precise	temporal	

spiking	sequences	 in	somatosensory	afferents	as	the	fingertip	moves	across	the	surface	(Bensmaïa	

and	 Hollins,	 2003;	 Weber	 et	 al.,	 2013).	 For	 this	 neural	 code	 to	 be	 viable,	 however,	 these	 patterns	

have	to	remain	consistent	when	the	movements	used	to	explore	the	surface	change.	 Indeed,	both	

scanning	speed	and	contact	force	vary	widely	during	the	natural	exploration	of	textures	(Smith	et	al.,	

2002b;	Callier	et	al.,	2015).	If	the	texture	signals	from	the	hand	changed	in	unpredictable	ways	with	

changes	 in	 scanning	 parameters,	 these	 signals	 would	 be	 impossible	 to	 interpret.	 Instead,	 our	

perception	of	 texture	 is	mostly	 independent	of	exploratory	parameters	 (Lederman,	1974)	 (but	 see	

Cascio	 and	 Sathian,	 2001),	 suggesting	 that	 some	 aspect	 of	 these	 spiking	 sequences	 is	 consistent	

across	changes	in	scanning	speed	and	contact	force.	

In	previous	work,	we	have	shown	that	changes	in	scanning	speed	lead	to	systematic	changes	in	the	

neural	responses:	the	spiking	patterns	dilate	and	contract	as	scanning	speed	decreases	or	increases,	

respectively	 (Weber	 et	 al.,	 2013).	 Here,	 we	 found	 that	 the	 temporal	 structure	 of	 the	 spiking	

sequences	 is	 relatively	 consistent	 across	 contact	 force	 levels	 so	 that	 textures	 can	 be	 reliably	

classified	across	different	force	conditions	when	spike	timing	is	taken	into	account.	In	other	words,	

the	neural	code	for	texture	is	robust	across	changes	in	contact	force.	

Note	 that	 the	 sample	 size	 in	 the	 present	 study	 is	 small,	 particularly	 for	 RA	 and	 PC	 afferents.	 The	

experimental	 protocol	 in	 which	 we	 probed	 the	 effects	 of	 contact	 force	 on	 afferent	 responses	 was	

one	of	 several,	and	we	were	often	unable	 to	maintain	stable	 recordings	 from	a	nerve	 fiber	 to	 run	

that	particular	protocol.	However,	SA1	afferents	are	the	most	sensitive	to	changes	in	contact	force	

(Knibestöl,	1975)	and	the	other	two	classes	of	afferents	respond	primarily	to	changes	in	indentation	



rather	than	absolute	levels	of	indentation	(Knibestöl,	1973;	Johansson	and	Vallbo,	1983).	We	might	

thus	expect	the	texture	signals	carried	by	SA1	fibers	to	be	most	sensitive	to	changes	in	contact	force,	

and	 they	 are	 not.	 In	 fact,	 SA1	 responses	 have	 been	 shown	 to	 respond	 to	 surface	 elements	 that	

create	 local	deformations	within	the	fingertip	 in	a	way	that	 is	relatively	 independent	of	the	overall	

force	exerted	on	the	skin	(Vega-Bermudez	and	Johnson,	1999),	consistent	with	the	present	findings.	

Thus,	 the	 preservation	 of	 spiking	 sequences	 across	 force	 levels	 is	 not	 only	 consistent	 across	 fiber	

types,	but	also	observed	in	the	fiber	type	that	should	be	most	sensitive	and	has	the	largest	sample	

size.	We	thus	feel	that	our	conclusion	–	that	texture-specific	spiking	sequences	are	preserved	across	

force	levels	and	form	the	basis	for	perceptual	invariance	–	is	justified.	 	
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Figures	

	

Figure	1.	Sample	spike	trains	evoked	in	one	afferent	of	each	type	by	three	different	textures	at	two	

different	contact	forces.	Visual	 inspection	suggests	that	both	the	strength	and	temporal	patterning	

in	 the	 response	are	 relatively	 consistent	across	contact	 force	conditions.	These	afferent	 responses	

were	collected	from	the	nerves.	

	 	



	

	

Figure	2.	A|	Mean	firing	rate	evoked	in	three	individual	afferents	at	a	high	force	(50	g)	versus	that	

evoked	at	a	low	one		(25	g	or	10g).	B|	Ratio	of	the	firing	rate	evoked	at	a	high	contact	force	to	that	

evoked	at	a	low	one,	averaged	across	textures,	for	the	three	different	afferent	classes.		

	 	



	

	

Figure	3.	Percentage	of	correctly	classified	textures	at	different	temporal	resolutions	for	SA1	(A),	RA	

(B),	 and	 PC	 (C)	 afferents	 within	 force	 condition	 (blue	 and	 red)	 or	 across	 force	 conditions	 (yellow).	

Asterisks	represent	performance	of	a	small	sample	of	nerve	fibers	at	their	peak	temporal	resolution	

(n=4,	2,	and	2	for	SA1,	RA,	and	PC	fibers,	respectively).		


