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Exploiting Deep Neural Networks and Head

Movements for Robust Binaural Localization of

Multiple Sources in Reverberant Environments
Ning Ma, Tobias May, and Guy J. Brown

Abstract—This paper presents a novel machine-hearing system
that exploits deep neural networks (DNNs) and head movements
for robust binaural localization of multiple sources in reverberant
environments. DNNs are used to learn the relationship between
the source azimuth and binaural cues, consisting of the complete
cross-correlation function (CCF) and interaural level differences
(ILDs). In contrast to many previous binaural hearing systems, the
proposed approach is not restricted to localization of sound sources
in the frontal hemifield. Due to the similarity of binaural cues in the
frontal and rear hemifields, front–back confusions often occur. To
address this, a head movement strategy is incorporated in the local-
ization model to help reduce the front–back errors. The proposed
DNN system is compared to a Gaussian-mixture-model-based sys-
tem that employs interaural time differences (ITDs) and ILDs as
localization features. Our experiments show that the DNN is able to
exploit information in the CCF that is not available in the ITD cue,
which together with head movements substantially improves local-
ization accuracies under challenging acoustic scenarios, in which
multiple talkers and room reverberation are present.

Index Terms—Binaural sound source localisation, deep neural
networks, head movements, machine hearing, multi-conditional
training, reverberation.

I. INTRODUCTION

T
HIS paper aims to reduce the gap in performance be-

tween human and machine sound localisation, in condi-

tions where multiple sound sources and room reverberation

are present. Human listeners have little difficulty in localis-

ing sounds under such conditions; they are able to decode the

complex acoustic mixture that arrives at each ear with appar-

ent ease [1]. In contrast, sound localisation by machine systems

is usually unreliable in the presence of interfering sources and

reverberation. This is the case even when an array of multiple

microphones is employed [2], as opposed to the two (binaural)

sensors available to human listeners.
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The human auditory system determines the azimuth of sounds

in the horizontal plane by using two principal cues: interaural

time differences (ITDs) and interaural level differences (ILDs).

A number of authors have proposed binaural sound localisation

systems that use the same approach, by extracting ITDs and

ILDs from acoustic recordings made at each ear of an artifi-

cial head [3]–[6]. Typically, these systems first use a bank of

cochlear filters to split the incoming sound into a number of

frequency bands. The ITD and ILD are then estimated in each

band, and statistical models such as Gaussian mixture model

(GMM) are used to determine the source azimuth from the

corresponding binaural cues [6]. Furthermore, the robustness of

this approach to varying acoustic conditions can be improved by

using multi-conditional training (MCT). This introduces uncer-

tainty into the statistical models of the binaural cues, enabling

them to handle the effects of reverberation and interfering sound

sources [4]–[7].

In contrast to many previous machine systems, the approach

proposed here is not restricted to sound localisation in the frontal

hemifield; we consider source positions in the 360◦ azimuth

range around the head. In this unconstrained case, the loca-

tion of a sound cannot be uniquely determined by ITDs and

ILDs; due to the similarity of these cues in the frontal and rear

hemifields, front-back confusions occur [8]. Although machine

listening studies have noted this as a problem [6], [9], listeners

rarely make such confusions because head movements, as well

as spectral cues due to the pinnae, play an important role in

resolving front-back confusions [8], [10], [11].

Relatively few machine localisation systems have attempted

to incorporate head movements. Braasch et al. [12] averaged

cross-correlation patterns across different head orientations in

order to resolve front-back confusions in anechoic conditions.

More recently, May et al. [6] combined head movements and

MCT in a system that achieved robust sound localisation perfor-

mance in reverberant conditions. In their approach, the localisa-

tion system included a hypothesis-driven feedback stage which

triggered a head movement when the azimuth could not be un-

ambiguously estimated. Subsequently, Ma et al. [9] evaluated

the effectiveness of different head movement strategies, using

a complex acoustic environment that included multiple sources

and room reverberation. In agreement with studies on human

sound localisation [13], they found that localisation errors were

minimised by a strategy that rotated the head towards the target

sound source.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Schematic diagram of the proposed system, showing steps during
training (top) and testing (bottom). During testing, sound mixtures consisting
of several talkers are rendered in a virtual acoustic environment, in which a
binaural receiver is moved in order to simulate the head rotation of a listener.

This paper describes a novel machine-hearing system that

robustly localises multiple talkers in reverberant environments,

by combining deep neural network (DNN) classifiers and head

movements. Recently, DNNs have been shown to give state-

of-the-art performance in a variety of speech recognition and

acoustic signal processing tasks [14]. In this study, we use DNNs

to map binaural features, obtained from an auditory model, to

the corresponding source azimuth. Within each frequency band,

a DNN takes as input features the cross-correlation function

(CCF) (as opposed to a single estimate of ITD) and the ILD.

Using the whole cross-correlation function provides the clas-

sifier with rich information for classifying the azimuth of the

sound source [15]. A similar approach was used by [16] and

[17] in binaural speech segregation systems. However, neither

study specifically addressed source localisation because it was

assumed that the target source was fixed at zero degrees azimuth.

The proposed binaural sound localisation system is described

in detail in Section II. Section III describes the evaluation frame-

work and presents a number of source localisation experiments,

in which head movements are simulated by using binaural room

impulse responses (BRIRs) to generate direction-dependent bin-

aural sound mixtures. Localisation results are presented in Sec-

tion IV, which compares our DNN-based approach to a baseline

method that uses GMM, and assesses the contribution that var-

ious components make to performance. The paper concludes

with Section V, which proposes some avenues for future re-

search.

II. SYSTEM

Figure 1 shows a schematic diagram of the proposed binau-

ral sound localisation system in the full 360 ◦ azimuth range.

During training, clean speech signals were spatialised using

head related impulse responses (HRIRs), and diffuse noise

was added before being processed by a binaural model for

feature extraction. The noisy binaural features were used to

train DNNs to learn the relationship between binaural cues

and sound azimuths. During testing, sound mixtures con-

sisting of several talkers are rendered in a virtual acoustic

environment, in which a binaural receiver is moved in order

to simulate the head rotation of a human listener. The output

from the DNN is combined with a head movement strategy to

robustly localise multiple talkers in reverberant environments.

A. Binaural Feature Extraction

An auditory front-end was employed to analyse binaural ear

signals with a bank of 32 overlapping Gammatone filters, with

centre frequencies uniformly spaced on the equivalent rectan-

gular bandwidth (ERB) scale between 80 Hz and 8 kHz [18].

Inner-hair-cell processing was approximated by half-wave recti-

fication. No low-pass filtering was employed to simulate the loss

of phase-locking at high frequencies as previous studies have

shown that in general classifiers are able to exploit the high-

frequency structure [4]. Afterwards, the CCF between the right

and left ears was computed independently for each frequency

band using overlapping frames of 20 ms with a 10 ms shift. The

CCF was further normalised by the auto-correlation value at lag

zero [4] and evaluated for time lags in the range of ± 1.1 ms.

Two binaural features, ITDs and ILDs, are typically used in

binaural localisation systems [1]. The ITD is estimated as the

lag corresponding to the maximum in the CCF. The ILD corre-

sponds to the energy ratio between the left and right ears within

the analysis window, expressed in dB. In this study, instead of

estimating the ITD the entire CCF was used as localisation fea-

tures. This approach was motivated by two observations. First,

computation of ITDs involves a peak-picking operation which

may not be robust in the presence of noise and reverberation.

Second, there are systematic changes in the CCF with source

azimuth (in particular, changes in the main peak with respect

to its side peaks). Even in multi-source scenarios, these can be

exploited by a suitable classifier. For signals sampled at 16 kHz,

the CCF with a lag range of ± 1 ms produced a 33-dimensional

binaural feature space for each frequency band. This was sup-

plemented by the ILD, forming a final 34-dimensional (34D)

feature vector.

B. DNN Localization

DNNs were used to map the 34D binaural feature set to corre-

sponding azimuth angles. A separate DNN was trained for each

of the 32 frequency bands. Employing frequency-dependent

DNNs was found to be effective for localising simultaneous

sound sources. Although simultaneous sources overlap in time,

within a local time frame each frequency band is mostly dom-

inated by a single source (Bregman’s [19] notion of ‘exclusive

allocation’). Hence, this allows training using single-source data

and removes the need to include multi-source data for training.

The DNN consists of an input layer, two hidden layers, and

an output layer. The input layer contained 34 nodes and each

node was assumed to be a Gaussian random variable with zero

mean and unit variance. The 34D binaural feature inputs for

each frequency band were Gaussian normalised, and white

Gaussian noise (variance 0.4) was added to avoid overfitting,

before being used as input to the DNN. The hidden layers had

sigmoid activation functions, and each layer contained 128

hidden nodes. The number of hidden nodes was heuristically

selected – more hidden nodes increased the computation time

but did not improve localisation accuracy. The output layer
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contained 72 nodes corresponding to the 72 azimuth angles

in the full 360◦ azimuth range, with a 5◦ step. A ‘softmax’

activation function was applied at the output layer. The same

DNN architecture was used for all frequency bands and we did

not optimise it for individual frequencies.

The neural network was initialised with a single hidden layer,

and the number of hidden layers was gradually increased in later

training phases. In each training phase, mini-batch gradient de-

scent with a batch size of 128 was used, including a momentum

term with the momentum rate set to 0.5. The initial learning rate

was set to 1, which gradually decreased to 0.05 after 20 epochs.

After the learning rate decreased to 0.05, it was held constant

for a further 5 epochs. We also included a validation set and the

training procedure was stopped earlier if no new lower error on

the validation set could be achieved within the last 5 epochs. At

the end of each training phase, an extra hidden layer was added

between the last hidden layer and the output layer, and the train-

ing phase was repeated until the desired number of hidden layers

was reached (two hidden layers in this study).

Given the observed feature set xt,f at time frame t and fre-

quency band f , the 72 ‘softmax’ output values from the DNN

for frequency band f were considered as posterior probabilities

P(k|xt,f ), where k is the azimuth angle and
∑

k P(k|xt,f ) = 1.

The posteriors were then integrated across frequency to yield the

probability of azimuth k, given features of the entire frequency

range at time t

P(k|xt) =
P (k)

∏
f P(k|xt,f )

∑
k P (k)

∏
f P(k|xt,f )

, (1)

where P (k) is the prior probability of each azimuth k. Assuming

no prior knowledge of source positions and equal probabilities

for all source directions, Eq. (1) becomes

P(k|xt) =

∏
f P(k|xt,f )

∑
k

∏
f P(k|xt,f )

. (2)

Sound localisation was performed for a signal block consisting

of T time frames. Therefore the frame posteriors were further

averaged across time to produce a posterior distribution P(k)
of sound source activity

P(k) =
1

T

t+T −1∑

t

P(k|xt). (3)

The target location was given by the azimuth k that maximised

P(k)

k̂ = argmax
k

P(k) (4)

C. Localisation With Head Movements

In order to reduce the number of front-back confusions, the

proposed localisation model employs a hypothesis-driven feed-

back stage that triggers a head movement if the source location

cannot be unambiguously estimated. A signal block is used to

compute an initial posterior distribution of the source azimuth

using the trained DNNs. In an ideal situation, the local peaks

in the posterior distribution correspond to the azimuths of true

sources. However, due to the similarity of binaural features in

Fig. 2. Illustration of the head movement strategy. Top: posterior probabilities
where two candidate azimuths at 60◦ and 120◦ are identified. Bottom: after head
rotation by 30◦, only the azimuth candidate at 30◦ agrees with the azimuth-
shifted candidate from the first signal block (dotted line).

the front and rear hemifields, phantom sources may also become

apparent as peaks in the azimuth posterior distribution. Such an

ambiguous posterior distribution is shown in the top panel of

Fig. 2. In this case, a random head movement within the range

of [−30◦, 30◦] is triggered to solve the localisation confusion.

Other possible strategies for head movement are discussed in [9].

A second posterior distribution is computed for the signal

block after the completion of the head movement. If a peak

in the first posterior distribution corresponds to a true source

position, then it will appear in the second posterior distribution

and will be shifted by an amount corresponding to the angle

of head rotation (assuming that sources are stationary before

and after the head movement). On the other hand, if a peak

is due to a phantom source, it will not occur in the second

posterior distribution, as shown in the bottom panel of Fig. 2.

By exploiting this relationship, potential phantom source peaks

are identified and eliminated from both posterior distributions.

After the phantom sources have been removed, the two posterior

distributions were averaged to further emphasise the local peaks

corresponding to true sources. The most prominent peaks in the

averaged posterior distribution were assumed to correspond to

active source positions. Here the number of active sources was

assumed to be known a priori.

The proposed approach to exploiting head movements is

based on late information fusion – the information from the

model predictions is integrated. This is in contrast to the ap-

proach in [12] which adopted early fusion at the feature level by

averaging cross-correlation patterns across different head ori-

entations. Late fusion is preferred here for a couple of reasons:

i) the use of head rotation is not needed during model training

and thus it is more straightforward to generate data for train-

ing robust localisation models (DNNs); ii) early feature fusion

tends to lose information which can otherwise be exploited by

the system. As a result, the proposed system is able to deal with

overlapping sound sources in reverberant conditions, while the

system reported in [12] was tested in anechoic conditions with

a single source.

III. EVALUATION

A. Binaural Simulation

Binaural audio signals were created by convolving monaural

sounds with HRIRs or BRIRs. For training, an anechoic HRIR
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TABLE I
ROOM CHARACTERISTICS OF THE SURREY BRIR DATABASE [21]

Room A Room B Room C Room D

T60 (s) 0.32 0.47 0.68 0.89
DRR (dB) 6.09 5.31 8.82 6.12

catalog based on the Knowles Electronic Manikin for Acoustic

Research (KEMAR) head and torso simulator with pinnae [20]

was used for simulating the anechoic training signals. The HRIR

catalog catalog included impulse responses for the full 360 ◦

azimuth range, allowing us to train localisation models for 72

azimuths between 0◦ and 355◦ with a 5◦ step. The models were

trained using only the anechoic HRIRs and were not retrained

for any room conditions. See Section III-C for more details

about training.

For evaluation, the Surrey BRIR database [21] and a BRIR

set recorded at TU Berlin [9] were used to reflect different re-

verberant room conditions. The Surrey database was recorded

using a Cortex head and torso simulator (HATS) and includes

four room conditions with various amounts of reverberation.

The loudspeakers were placed around the HATS on an arc in the

median plane, with a 1.5 m radius between ±90◦ and measured

at 5◦ intervals. Table I lists the reverberation time (T60) and

the direct-to-reverberant ratio (DRR) of each room. The ane-

choic HRIRs used for training were also included to simulate

an anechoic condition.

A second set of BRIRs, recorded in the “Auditorium3” room

at TU Berlin,1 was also included particularly for evaluating the

benefit of head movements (Section IV-C). The Auditorium3

room is a mid-size lecture room of dimensions 9.3 m × 9 m,

with a trapezium shape and an estimated reverberation time T60

of 0.7 s. The BRIR measurements were made for different head

orientations ranging from−90◦ to 90◦ with an angular resolution

of 1◦. BRIRs for six different source positions, including one in

the rear hemifield, were recorded and five of them were selected

for this study (two 0◦ positions are available and the one at

1.5 m away from the head was excluded for simplicity). The

five selected source positions with respect to the dummy head

are illustrated in Fig. 4.

Note that the anechoic HRIRs used for training and the Surrey

BRIRs were recorded using two different dummy heads (KE-

MAR and Cortex HATS). We use data from two dummy heads

because this study is concerned with sound localisation in the

360◦ azimuth range; the Surrey HATS HRIRs catalog is only

available for the frontal azimuth angles and therefore cannot

be used to train the full 360◦ localisation models. However, as

the experiment results will show in Section IV, with MCT our

proposed systems generalised well despite the HRIR mismatch

between training and testing.

Binaural mixtures of multiple competing sources were cre-

ated by spatialising each source separately at the respective

BRIR sampling rate, before adding them together in each of the

two binaural channels. In the Auditorium3 BRIRs there is vary-

ing distance between the listener position and different source

1The BRIRs are freely available at http://tinyurl.com/lt76yqs

Fig. 3. Schematic diagram of the Surrey BRIR room configuration. Actual
source positions were always between ±90◦, but the system could report a
source azimuth at any of 72 possible azimuths around the head (open circles).
Black circles indicate actual source azimuths in a typical three-talker mixture
(in this example, at −50◦, −30◦, and 15◦). During testing, head movements
were limited to the range [−30◦, 30◦] as shown by the shaded area.

Fig. 4. Schematic diagram of the TUB Auditorium3 configuration. The source
distance, azimuth angle and respective T60 time are shown for each source.

positions. Furthermore there is a difference in impulse response

amplitude level even for sources of the equal distance to the

listener, likely due to the microphone response difference across

recording sessions. To compensate the level difference a scaling

factor was computed for each source position by averaging the

maximum levels in the impulse responses between left and right

ears. The scaling factors were used to adjust the level for each

source before spatialisation. As a result the direct sound level of

each source when mixed together was approximately the same.

For the Surrey BRIR set the level difference did not exist and

thus this preprocessing was not applied. The spatialised signals

were finally resampled to 16 kHz for training and testing.

B. Head Movement Simulation

For the Surrey BRIRs, head movements were simulated by

computing source azimuths relative to the head orientation, and
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loading corresponding BRIRs for the relative source azimuths.

Such simulation is only approximate for the reverberant room

conditions because the Surrey BRIR database was measured

by moving loudspeakers around a fixed dummy head. With

the Auditorium3 BRIRs, more realistic head movements were

simulated by loading the corresponding BRIR for a desired head

orientation. For all experiments, head movements were limited

to the range of ±30◦.

C. Multi-conditional Training

The proposed systems assumed no prior knowledge of room

conditions. The localisation models were trained using only

anechoic HRIRs with added diffuse noise, and no reverberant

BRIRs were used during training.

Previous studies [4]–[7] have shown that MCT features can

increase the robustness of localisation systems in reverberant

multi-source conditions. Binaural MCT features were created by

mixing a target signal at a specified azimuth with diffuse noise

at various signal-to-noise ratios (SNRs). The diffuse noise is the

sum of 72 uncorrelated, white Gaussian noise sources, each of

which was spatialised across the full 360◦ azimuth range in steps

of 5◦. Both the directional target signals and the diffuse noise

were created using the same anechoic HRIR recorded using a

KEMAR dummy head [20]. This approach was used in pref-

erence to adding reverberation during training, since previous

studies (e.g., [5]) suggested that it was more likely to generalise

well across a wide range of reverberant test conditions.

The training material consisted of speech sentences from the

TIMIT database [22]. A set of 30 sentences was randomly se-

lected for each of the 72 azimuth locations. For each spatialised

training sentence, the anechoic signal was corrupted with dif-

fuse noise at three SNRs (20, 10 and 0 dB SNR). The corre-

sponding binaural features (ITDs, CCFs, and ILDs) and ILDs)

were then extracted. Only those features for which the a priori

SNR between the target and the diffuse noise exceeded − 5 dB

were used for training. This negative SNR criterion ensured that

the multi-modal clusters in the binaural feature space at higher

frequencies, which are caused by periodic ambiguities in the

cross-correlation analysis, were properly captured.

D. Experimental Setup

The GRID corpus [23] was used to create three evaluation

sets of 50 acoustic mixtures which consisted of one, two or

three simultaneous talkers, respectively. Each GRID sentence

is approximately 1.5 s long and was spoken by one of 34 na-

tive British-English talkers. The sentences were normalised to

the same root mean square (RMS) value prior to spatialisation.

For the two-talker and three-talker mixtures, the additional az-

imuth directions were randomly selected from the same azimuth

range while ensuring an angular distance of at least 10◦ between

all sources. Each evaluation set included 50 acoustic mixtures

which were kept the same for all the evaluated azimuths and

room conditions in order to ensure any performance difference

was due to test conditions rather than signal variation. Since the

duration of each GRID sentence was different, and there was

silence of various lengths at the beginning of each sentence, the

central 1 s segment of each sentence was selected for evaluation.

Note that although the models were trained and evaluated

using speech signals, our systems are not intended to localise

only speech sources. Therefore a frequency range from 80 Hz

to 8 kHz was selected for the signals sampled at 16 kHz. Our

previous studies [6], [15] also show that 32 Gammatone filters

(see Section II-A) provide a good tradeoff between frequency

resolutions and computational cost. As the evaluation included

localisation of up to three overlapping talkers, using too few fil-

ters would result in insufficient frequency resolution to reliably

localise multiple talkers.

The baseline system was a state-of-the-art localisation sys-

tem [6] that modelled both ITDs and ILDs features within a

GMM framework. As in [6], the GMM modelled the binaural

features using 16 Gaussian components and diagonal covari-

ance matrices for each azimuth and each frequency band. The

GMM parameters were initialised by 15 iterations of the k-

means clustering algorithm and further refined using 5 iterations

of the expectation-maximization (EM) algorithm. The second

localisation model was the proposed DNN system using the

CCF and ILD features. Each DNN employed four layers includ-

ing two hidden layers each consisting of 128 hidden nodes (see

Section II-B).

Both localisation systems were evaluated using different

training strategies (clean training and MCT), various locali-

sation feature sets (ITD, ILD and CCF), and with or without

head movements. When no head movement was employed, the

source azimuths were estimated using the entire 1 s segment

from each acoustic mixture. If head movement was used, the

1 s segment was divided into two 0.5 s long blocks and the

second block was provided to the system after completion of a

head movement. Therefore in both conditions the same signal

duration was used for localisation.

The gross accuracy of localisation was measured by com-

paring true source azimuths with the estimated azimuths. The

number of active speech sources N was assumed to be known a

priori and the N azimuths for which the posterior probabilities

were the largest were selected as the estimated azimuths. Lo-

calisation of a source was considered accurate if the estimated

azimuth was less than or equal to 5◦ away from the true source

azimuth:

LocAcc =
N

dist(φ,φ̂)≤θ

N
(5)

where dist(.) is the angular distance between two azimuths, φ is

the true source azimuth, φ̂ is the estimated azimuth, and θ is the

threshold in degrees (5◦ in this study). This metric is preferred

to RMS error because our study is concerned with full 360◦

localisation, and localisation errors in degrees are often large

due to front-back confusions.

IV. RESULTS AND DISCUSSION

A. Influence of MCT

The first experiment investigated the impact of MCT on the lo-

calisation accuracy of the proposed systems. Two scenarios were
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TABLE II
GROSS LOCALIZATION ACCURACY IN % FOR VARIOUS SETS OF BRIRS WHEN LOCALIZING ONE, TWO, AND THREE COMPETING TALKERS IN THE

FRONTAL HEMIFIELD ONLY AND IN THE FULL 360◦ RANGE

Anechoic Room A Room B Room C Room D

Hemifiled Model MCT 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

no 100 99.0 90.5 84.0 63.1 52.8 81.5 59.8 51.8 100 82.5 65.5 88.2 61.2 53.5 75.6
GMM

yes 100 99.9 98.7 99.2 97.1 90.7 100 97.7 91.6 100 99.3 96.5 100 98.4 91.5 97.4

no 100 100 99.6 100 99.2 92.2 100 99.0 90.4 100 99.9 96.7 99.9 98.7 91.1 97.8
Frontal

DNN
yes 100 100 99.7 100 99.5 96.3 100 99.7 96.2 100 99.9 98.2 100 99.6 95.3 99.0

no 100 97.1 82.6 82.6 48.9 30.7 65.6 38.3 25.3 98.4 70.3 50.2 77.2 46.3 30.0 62.9
GMM

yes 100 100 97.8 99.0 94.2 80.7 97.0 89.0 77.6 100 97.6 88.7 97.3 90.6 79.0 92.6

no 100 100 97.4 100 87.0 68.4 94.5 79.0 63.9 97.7 92.5 78.9 94.4 83.4 67.9 87.0
360◦

DNN
yes 100 100 98.6 99.7 97.3 87.9 97.2 93.7 86.7 100 97.3 90.2 97.3 94.0 85.0 95.0

The models were trained using either clean training or the MCT method.

Fig. 5. Localization error rates produced by various systems using either clean training or MCT. Localization was performed in the full 360◦ range, so that
front–back errors could occur, as shown by the white bars for each system. No head movement strategy was employed.

considered: i) sound localisation was restricted to the frontal

hemifield so that the systems estimated source azimuths within

the range [−90◦, 90◦]; ii) the systems were not informed that

the sources lay only in the frontal hemifield and were free to

report the azimuth in the full 360◦ azimuth range. In the second

scenario front-back confusions could occur.

Table II lists gross localisation accuracies of all the systems

evaluated using various BRIR sets from the Surrey database.

First consider the scenario of localisation in the frontal hemi-

field. For the GMM baseline system, the MCT approach sub-

stantially improved the robustness across all conditions, with

an average localisation accuracy of 97.4% compared to only

75.6% using clean training. The improvement with MCT was

particularly large in multi-talker scenarios and in the presence

of room reverberation. For the DNN system, the improvement

with MCT over clean training was not as large as that for the

GMM system and is only observed in the multi-talker scenarios.

The limited improvement is partly because with clean training

the performance of the DNN system is already very robust in

most conditions, with an average accuracy of 97.8%, which is

already better than the GMM system with MCT. This suggests

that when localisation was restricted to the frontal hemifield,

the DNN can effectively extract cues from the clean CCF-ILD

features that are robust in the presence of reverberation.

Considering the case of full 360◦ localisation, the scenario is

more challenging and front-back errors could occur. The GMM

system with clean training failed to localise the talkers accu-

rately, with error rates greater than 50% when localising multi-

ple simultaneous talkers. The DNN system with clean training

was substantially more robust than the GMM system, but the

performance also decreased significantly when multiple talk-

ers were present. The benefit of the MCT method became more

apparent for both systems in this scenario – the average localisa-

tion accuracy was increased from 62.9% to 92.6% for the GMM

system and from 87% to 95% for the DNN system. Across all

the room conditions the largest benefits were observed in room

B where the direct-to-reverberant ratio was the lowest, and in

room D where the reverberation time T60 was the longest.

Errors made in 360◦ localisation could be due to front-back

confusion as well as interference caused by reverberation and

overlapping talkers. Figure 5 shows errors made by both the

GMM and the DNN systems using either clean training or MCT

in different room conditions. The errors due to front-back con-

fusions were indicated by white bars for each system. Here a

localisation error is considered to be a front-back confusion

when the estimated azimuth is within ±20 degrees of the az-

imuth that would produce the same ITDs in the rear hemifield.

It is clear that front-back confusions contributed a large portion

of localisation errors for both systems, in particular when clean

training was used. When the MCT method was used, not only

the errors due to interference of reverberation and overlapping

talkers (non-white bar portion in Fig. 5) were greatly reduced,

but also the systems produced substantially fewer front-back

errors (white bars in Fig. 5). As will be discussed in the next

section, without head movements the main cues distinguishing

between front-back azimuth pairs lie in the combination of in-

teaural level and time differences (or ITD-related features such

as the cross-correlation function). MCT provides the training
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TABLE III
GROSS LOCALIZATION ACCURACY IN % USING VARIOUS FEATURE SETS FOR LOCALIZING ONE, TWO, AND THREE COMPETING TALKERS IN THE FULL 360◦ RANGE

Anechoic Room A Room B Room C Room D

Model Feature 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

ITD 100 99.8 96.2 99.2 81.6 67.7 91.4 76.6 64.9 97.2 89.4 76.6 89.1 76.6 65.8 84.8
ITD-ILD 100 100 97.8 99.0 94.2 80.7 97.0 89.0 77.6 100 97.6 88.7 97.3 90.6 79.0 92.6GMM
CCF-ILD 100 100 98.4 100 87.2 73.9 92.1 81.7 71.5 99.9 93.8 81.6 92.6 83.2 72.3 88.5

CCF 100 100 99.0 99.8 95.8 86.7 91.8 89.5 83.7 98.3 95.8 89.0 91.6 87.8 80.8 92.7
DNN

CCF-ILD 100 100 98.6 99.7 97.3 87.9 97.2 93.7 86.7 100 97.3 90.2 97.3 94.0 85.0 95.0

The models were trained using the MCT method. The best feature set for each system is marked in bold font.

Fig. 6. Comparison of localization error rates produced by various systems using different spatial features. Localization was not restricted in the frontal hemifield
so that front–back errors can occur, as indicated by the white bars for each system. No head movement strategy was employed.

stage with better regularisation of the features, which is able

to improve the generalisation of the learned models and better

discriminate the front-back confusing azimuths.

It is also worth noting that the training and testing stages used

HRTFs collected with different dummy heads (the KEMAR was

used for training and the HATS was used for testing). However,

with MCT the localisation accuracy in the anechoic condition

for localising one or two sources was 100%, which suggests that

MCT also reduced the sensitivity to mismatches of the receiver.

B. Contribution of the ILD Cue

The second experiment investigated the influence of differ-

ent localisation features, in particular the contribution of the

ILD cue. Table III lists the gross localisation accuracies us-

ing various feature sets. Here all models were trained using

the MCT method and the active head movement strategy was

not applied. When ILDs were not used, the GMM performance

using just ITDs suffered greatly in reverberant rooms and when

localising overlapping talkers; the average localisation accuracy

decreased from 92.6% to 84.8%. The performance drop was

particularly pronounced in rooms B and D, where the reverber-

ation was strong. For the DNN system, excluding the ILDs also

decreased the localisation performance but the performance

drop was more moderate, with the average accuracy reduced

from 95% to 92.7%. The DNN system using the CCF feature

exhibited more robustness in the reverberant multi-talker condi-

tions than the GMM system using the ITD feature. As previously

discussed, computation of the ITD involved a peak-picking op-

eration that could be less reliable in challenging conditions,

and the systematic changes in the CCF with the source az-

imuth provided richer information that could be exploited by

the DNN.

When ILDs were not used, the localisation errors were largely

due to an increased number of front-back errors as suggested by

Fig. 6. For single-talker localisation in rooms B and D, without

using ILDs almost all the errors made by the systems were

front-back errors. When ILDs were used, the number of front-

back errors were greatly reduced in all conditions. This suggests

that the ILD cue plays a major role in solving the front-back

confusions. ITDs or ILDs alone may appear more symmetric

between the front and back hemifields, but together with ILDs

they create the necessary asymmetries (due to the KEMAR head

with pinnae) for the models to learn the differences between

front and back azimuths.

Table III also lists localisation results of the GMM system

when using the same CCF-ILD feature set as used by the DNN

system. The GMM failed to extract the systematic structure in

the CCF spanning multiple feature dimensions, most likely due

to its inferior ability to model correlated features. The average

localisation accuracy is only 88.5% compared to 95% for the

DNN system, and again it suffered the most in more reverberant

conditions such as rooms B and D.

C. Benefit of the Head Movement Strategy

Table IV lists the gross localisation accuracies with or with-

out head movement. All systems were trained using the MCT

method and employed the respective best performing features

(GMM ITD-ILD and DNN CCF-ILD).

Both the GMM and DNN systems benefitted from the use

of head movements. It is clear from Fig. 7 that the localisa-

tion errors were almost entirely due to front-back confusions in

one-talker localisation. By exploiting the head movement, the

systems managed to reduce most of the front-back errors and

achieved near 100% localisation accuracies. In two- or three-

talker localisation, the number of front-back errors was also
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TABLE IV
GROSS LOCALIZATION ACCURACIES IN % WITH OR WITHOUT THE HEAD MOVEMENT WHEN LOCALIZING ONE, TWO, AND THREE COMPETING TALKERS IN THE

FULL 360◦ AZIMUTH RANGE

Head
Anechoic Room A Room B Room C Room D

Model move 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 Avg.

no 100 100 97.8 99.0 94.2 80.7 97.0 89.0 77.6 100 97.6 88.7 97.3 90.6 79.0 92.6
GMM

yes 100 100 97.5 100 97.3 83.4 99.8 93.1 79.9 99.9 99.3 90.8 99.9 93.0 79.5 94.2

no 100 100 98.6 99.7 97.3 87.9 97.2 93.7 86.7 100 97.3 90.2 97.3 94.0 85.0 95.0
DNN

yes 100 100 98.4 100 99.2 90.0 99.8 96.1 86.9 100 99.0 91.6 99.5 94.7 84.7 96.0

All systems were trained using the MCT method.

Fig. 7. Localization error rates produced by various systems with or without head movement when localizing one, two, or three overlapping talkers. Localization
was performed in the 360◦ azimuth range so that front–back errors can occur, as indicated by the white bars for each system.

Fig. 8. Localization error rates produced by various systems with or without head movement, as a function of the azimuth. The histogram bin width is 20◦. Here
the error rates were averaged across the 1-, 2- and 3-talker localization tasks. Localization was performed in the full 360◦ azimuth range so that front–back errors
can occur, as indicated by the white bars for each system.

reduced with the use of head movements. When overlapping

talkers were present, the systems produced many localisation

errors other than front-back errors, due to the partial evidence

available to localise each talker. By removing most front-back

errors, the systems were able to further improve the accuracy of

localising overlapping sound sources.

Fig. 8 shows the localisation error rates as a function of the

azimuth. The error rates here were averaged across the 1-, 2-

and 3-talker localisation tasks. Across most room conditions,

sound localisation was generally more reliable at more central

locations than at lateral source locations. This is particularly

the case for the GMM system, as shown in Fig. 8, where the
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Fig. 9. Localization error rates produced by various systems as a function of the azimuth for the Auditorium3 task. Localization was performed in the full 360◦

azimuth range so that front–back errors can occur, as indicated by the white bars for each system.

localisation error rates for sources at the sides were above 20%

even in the least reverberant Room A. It is also clear from

Fig. 8 (white bars) that localisation errors were mostly not

due to front-back confusions at lateral azimuths, and in this

case the proposed DNN system outperformed the GMM system

significantly.

At the central azimuths, on the other hand, almost all the local-

isation errors were due to front-back confusions. It is noticeable

that in more reverberant conditions (such as Rooms B and D), the

error rates at the central azimuths [−10◦, 10◦] were particularly

high due to front-back errors for both the GMM and the DNN

systems when head movement was not used. The front-back

errors were concentrated at central azimuths, probably because

binaural features (interaural time and level differences) were

less discriminative between 0◦ and 180◦ than between the more

lateral azimuth pairs.

Finally, Fig. 9 shows the localisation error rates using the

Auditorium3 BRIRs in which head movements were more ac-

curately simulated by loading the corresponding BRIR for a

given head orientation. Overall the DNN systems significantly

outperformed the GMM systems. For single-source localisation

the DNN system achieved near 100% localisation accuracy for

all source locations including the one at 131◦ in the rear hemi-

field. The GMM system produced about 5% error rate for rear

source but performed well for the other locations. For two- and

three-source localisation, both GMM and DNN systems ben-

efitted from head movements across most azimuth locations.

For the GMM system the benefit is particularly pronounced for

the source at 51◦, with localisation reduced from 14% to 4%

in two-source localisation and from 36% to 14% in two-source

localisation. The rear source at 131◦ appeared to be difficult to

localise for the GMM system even with head movement, with

20% error rate in two-source localisation. The DNN system with

head movements was able to reduce the error rate for the rear

source at 131◦ to 8%.

In general the performance of the models for the 51◦ and

131◦ locations is worse than the other source locations when

there are multiple sources present at the same time. This is more

likely due to the nature of the room acoustics at these locations,

e.g., they are further away from the listener and closer to walls.

When the sources are overlapping with each other, there are less

glimpses left for localisation of each source and with stronger

reverberation the sources at 51◦ and 131◦ became more difficult

to localise.

V. CONCLUSION

This paper presented a machine-hearing framework that com-

bines DNNs and head movements for robust localisation of

multiple sources in reverberant conditions. Since simultaneous

talkers were located in a full 360◦ azimuth range, front-back

confusions occurred. Compared to a GMM-based system, the

proposed DNN system was able to exploit the rich information

provided by the entire CCF, and thus substantially reduced lo-

calisation errors. The MCT method was effective in combatting

reverberation, and allowed anechoic signals to be used for train-

ing a robust localisation model that generalised well to unseen

reverberant conditions and to mismatched artificial heads used

in training and testing conditions. It was also found that the

inclusion of ILDs was necessary for reducing front-back confu-

sions in reverberant rooms. The use of head rotation further in-

creased the robustness of the proposed system, with an average

localisation accuracy of 96% under acoustic scenarios where

up to three competing talkers and room reverberation were

present.

In the current study, the use of DNNs allowed higher-

dimensional feature vectors to be exploited for localisation, in

comparison with previous studies [4]–[6]. This could be carried

further, by exploiting additional context within the DNN either

in the time or the frequency dimension. Moreover, it is possi-

ble to complement the features used here with other binaural

features, e.g., a measure of interaural coherence [24], as well as

monaural localisation cues, which are known to be important for

judgment of elevation angles [25], [26]. Visual features might

also be combined with acoustic features in order to achieve

audio-visual source localisation.

The proposed system has been realised in a real world human-

robot interaction scenario. The azimuth posterior distributions

from the DNN for each processing block were temporally

smoothed using a leaky integrator and head rotation was trig-

gered if a front-back confusion was detected in the integrated

posterior distribution. Audio signals acquired during head rota-

tion were not processed. Such a scheme can be more practical
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for a robotic platform as head rotation often produces self-noise

which makes the audio unusable.

One limitation of the current systems is that the number of

active sources is assumed to be known a priori. This can be

improved by including a source number estimator that is either

learned from the azimuth posterior distribution output by the

DNN, or provided directly as an output node in the DNN. The

current study only deals with the situation where sound sources

are static. Future studies will relax this constraint and address

the localisation and tracking of moving sound sources within

the DNN framework.

REFERENCES

[1] J. Blauert, Spatial Hearing—The Psychophysics of Human Sound Local-

ization. Cambridge, MA, USA: MIT Press, 1997.
[2] O. Nadiri and B. Rafaely, “Localization of multiple speakers under high

reverberation using a spherical microphone array and the direct-path dom-
inance test,” IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 22,
no. 10, pp. 1494–1505, Oct. 2014.

[3] V. Willert, J. Eggert, J. Adamy, R. Stahl, and E. Korner, “A probabilistic
model for binaural sound localization,” IEEE Trans. Syst., Man, Cybern.

B, Cybern., vol. 36, no. 5, pp. 982–994, Oct. 2006.
[4] T. May, S. van de Par, and A. Kohlrausch, “A probabilistic model for

robust localization based on a binaural auditory front-end,” IEEE Trans.

Audio, Speech, Lang. Process., vol. 19, no. 1, pp. 1–13, Jan. 2011.
[5] J. Woodruff and D. L. Wang, “Binaural localization of multiple sources in

reverberant and noisy environments,” IEEE Trans. Audio, Speech, Lang.

Process., vol. 20, no. 5, pp. 1503–1512, Jul. 2012.
[6] T. May, N. Ma, and G. J. Brown, “Robust localisation of multiple speakers

exploiting head movements and multi-conditional training of binaural
cues,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2015,
pp. 2679–2683.

[7] T. May, S. van de Par, and A. Kohlrausch, “Binaural localization and
detection of speakers in complex acoustic scenes,” in The Technology of

Binaural Listening, J. Blauert, Ed. New York, NY, USA: Springer, 2013,
ch. 15, pp. 397–425.

[8] F. L. Wightman and D. J. Kistler, “Resolution of front–back ambiguity in
spatial hearing by listener and source movement,” J. Acoust. Soc. Amer.,
vol. 105, no. 5, pp. 2841–2853, 1999.

[9] N. Ma, T. May, H. Wierstorf, and G. J. Brown, “A machine-hearing system
exploiting head movements for binaural sound localisation in reverberant
conditions,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2015, pp. 2699–2703.

[10] H. Wallach, “The role of head movements and vestibular and visual cues
in sound localization,” J. Exp. Psychol., vol. 27, no. 4, pp. 339–368, 1940.

[11] K. I. McAnally and R. L. Martin, “Sound localization with head move-
ments: Implications for 3D audio displays,” Front. Neurosci., vol. 8,
pp. 1–6, 2014.

[12] J. Braasch, S. Clapp, A. Parks, T. Pastore, and N. Xiang, “A binaural
model that analyses acoustic spaces and stereophonic reproduction sys-
tems by utilizing head rotations,” in The Technology of Binaural Listening,
J. Blauert, Ed. Berlin, Germany: Springer, 2013, pp. 201–223.

[13] S. Perrett and W. Noble, “The effect of head rotations on vertical plane
sound localization,” J. Acoust. Soc. Amer., vol. 102, no. 4, pp. 2325–2332,
1997.

[14] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.

Learn., vol. 2, no. 1, pp. 1–127, 2009.
[15] N. Ma, G. J. Brown, and T. May, “Exploiting deep neural networks and

head movements for binaural localisation of multiple speakers in rever-
berant conditions,” in Proc. Interspeech, 2015, pp. 3302–3306.

[16] Y. Jiang, D. Wang, R. Liu, and Z. Feng, “Binaural classification for re-
verberant speech segregation using deep neural networks,” IEEE/ACM

Trans. Audio, Speech, Lang. Process., vol. 22, no. 12, pp. 2112–2121,
Dec. 2014.

[17] Y. Yu, W. Wang, and P. Han, “Localization based stereo speech source
separation using probabilistic time-frequency masking and deep neural
networks,” EURASIP J. Audio, Speech, Music Process., vol. 2016, no. 1,
pp. 1–18, 2016.

[18] D. L. Wang and G. J. Brown, Eds., Computational Auditory Scene Anal-

ysis: Principles, Algorithms and Applications. New York, NY, USA:
Wiley/IEEE Press, 2006.

[19] A. Bregman, Auditory Scene Analysis. Cambridge, MA, USA: MIT Press,
1990.

[20] H. Wierstorf, M. Geier, A. Raake, and S. Spors, “A free database of
head-related impulse response measurements in the horizontal plane with
multiple distances,” Audio Eng. Soc. Conv. 130.

[21] C. Hummersone, R. Mason, and T. Brookes, “Dynamic precedence ef-
fect modeling for source separation in reverberant environments,” IEEE

Trans. Audio, Speech, Lang. Process., vol. 18, no. 7, pp. 1867–1871,
Sep. 2010.

[22] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallett, and
N. L. Dahlgren, “DARPA TIMIT acoustic-phonetic continuous speech
corpus CD-ROM,” Nat. Inst. Standards Technol., Gaithersburg, MD, USA,
Internal Rep. 4930, 1993.

[23] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An audio-visual
corpus for speech perception and automatic speech recognition,” J. Acoust.

Soc. Amer., vol. 120, pp. 2421–2424, 2006.
[24] C. Faller and J. Merimaa, “Sound localization in complex listening situa-

tions: Selection of binaural cues based on interaural coherence,” J. Acoust.

Soc. Amer., vol. 116, pp. 3075–3089, 2004.
[25] F. Asano, Y. Suzuki, and T. Sone, “Role of spectral cues in median plane

localization.” J. Acoust. Soc. Amer., vol. 88, no. 1, pp. 159–168, 1990.
[26] P. Zakarauskas and M. S. Cynader, “A computational theory of spectral

cue localization,” J. Acoust. Soc. Amer., vol. 94, no. 3, pp. 1323–1331,
1993.

Ning Ma obtained the M.Sc. degree with distinction
in advanced computer science in 2003 and the Ph.D.
degree in hearing-inspired approaches to automatic
speech recognition in 2008, both from the Univer-
sity of Sheffield, Sheffield, U.K. He has been a Vis-
iting Research Scientist at the University of Wash-
ington, Seattle, WA, USA, and a Research Fellow
at the MRC Institute of Hearing Research, Notting-
ham, U.K., working on auditory scene analysis with
cochlear implants. Since 2015, he has been a Re-
search Fellow at the University of Sheffield, working

on computational hearing. His research interests include robust automatic speech
recognition, computational auditory scene analysis, and hearing impairment. He
has authored or coauthored more than 40 papers in these areas.

Tobias May studied hearing technology and audiol-
ogy and received the M.Sc. degree from the Univer-
sity of Oldenburg, Oldenburg, Germany, in 2007 and
the binational Ph.D. degree from the University of
Oldenburg in collaboration with the Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands.
Since 2013, he has been with the Department of Elec-
trical Engineering, Technical University of Denmark,
first as a Postdoctoral Researcher (2013–2017), and
since 2017 as an Assistant Professor. His research
interests include computational auditory scene anal-

ysis, binaural signal processing, noise-robust speaker identification, and hearing
aid processing.

Guy J. Brown received the B.Sc. (Hons.) degree
in applied science from Sheffield City Polytech-
nic, Sheffield, U.K., in 1984, and the Ph.D. de-
gree in computer science from the University of
Sheffield, Sheffield, in 1992. He was appointed a
Chair of the Department of Computer Science, Uni-
versity of Sheffield, in 2013. He has held visiting
appointments at LIMSI-CNRS (France), Ohio State
University (USA), Helsinki University of Technol-
ogy (Finland), and ATR (Japan). He has authored
more than 100 papers and is the co-Editor (with Prof.

DeLiang Wang) of the IEEE book entitled Computational Auditory Scene Anal-

ysis: Principles, Algorithms and Applications. His research interests include
computational auditory scene analysis, speech perception, hearing impairment,
and acoustic monitoring for medical applications.


