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Abstract 

Unravelling patterns of relative sea-level change during previous interglacials enhances our 

understanding of ice sheet response to changing climate.  Temperate-latitude estuarine environments 

have the potential to preserve continuous records of relative sea level from previous interglacial 

(warm) periods. This is important because, currently, we typically only have snapshots of sea-level 

highstands from low-latitude corals and raised palaeoshoreline indicators while the (continuous) 

deep-sea oxygen isotope record only provides indirect evidence of sea-level changes. Here, we focus 

on the Nar Valley in eastern England, in which is preserved evidence of a late middle-Pleistocene 

marine transgression more than 20 vertical metres in extent.  By applying a model of coastal 

succession and sea-level tendencies, as used in Holocene sea-level studies, we assess the mode 

(abrupt versus gradual) of sea-level change recorded by the interglacial Nar Valley sequences.  

Compiled palaeo-stratigraphic evidence comprising foraminifera, pollen and amino acid racemization 

dating, suggests that the mode of sea-level change in the Nar Valley interglacial sequence was gradual, 

with potentially two phases of regional transgression and relative sea-level rise occurring at two 

separate times.  The first phase occurred during the latter part of marine oxygen isotope stage (MIS) 

11 from ~8 to 18 m OD; and, the second phase potentially occurred during early MIS 9 from ~-3 to 3 

m OD (with long-term tectonic uplift included in these estimates).  We cannot conclusively preclude 

an alternative MIS 11 age for these lower sediments.   The lack of indicators for rapid sea-level 

oscillations in the Nar Valley adds weight to an argument for steady melt of the ice sheets during both 

MIS 9 and 11.  



1. Introduction 

To achieve an improved understanding of the relationship between climate, ice-sheet behaviour and 

sea level, we need to examine geological archives.  Previous interglacials are often used to assess 

changes in past sea level during warm-climate episodes (Dutton et al., 2015) and inform predictions 

of future sea-level change (Church et al., 2013; Lowe et al., 2009).  A key component of this work is 

understanding how the ice sheets may respond to future climate change, which presents the largest 

uncertainty in future predictions (Grinsted et al., 2015).  Reconstructing direct evidence of ice-sheet 

behaviour during previous interglacials is challenging, with many archives (e.g., proximal marine 

sediments and geomorphological features) removed by subsequent glaciations.  Ice cores provide the 

best insight into past ice sheet accumulation (e.g., Dansgaard et al., 1993; Petit et al., 1999), but are 

typically drilled on stable ice domes in order to provide the most complete records, whereas the 

peripheries of ice sheets are the regions where mass is potentially lost during interglacial warming.  As 

a result, observations of changes in past sea level are the most commonly used method to infer past 

ice-sheet changes (e.g., Dutton et al., 2015).   

Evidence for modes of sea-level variability during MIS 11 and 9 is relative sparse, although they are 

interglacials of particular interest.  MIS 11 is the longest interglacial of the late Quaternary (27 ka, 

Tzedakis et al., 2012) with global atmospheric CO2 at 286 ppm, and is considered a potential analogue 

of the current interglacial due to similarities in orbital configuration (McManus et al., 2013). MIS 9, 

although comparatively short in duration (11.6 ka), is the warmest interglacial recorded in Antarctica, 

with global atmospheric CO2 at 300 ppm (Past Interglacials working group of PAGES, 2016).  Yin and 

Berger (2012) demonstrate that MIS 11c, MIS 9e and MIS 5e are the warmest interglacials of the last 

800,000 years. 

Evidence of MIS 11 and 9 sea level in low-latitude regions includes relict shorelines, marine terraces, 

tidal notches and coral reefs (e.g., Blakemore et al., 2015; Chen et al., 2014; Hearty and Kindler, 1995; 

Murray-Wallace, 2002; Raymo and Mitrovica, 2012; Schellmann and Radtke, 2004; Vezina et al., 1999).  

These features typically provide evidence for the elevation of the interglacial sea-level highstand at, 

or above present, although the calculated elevation is dependent on the assumed long-term uplift 

rate (e.g., Schellmann and Radtke, 2004).  Based upon these relative sea-level (RSL) data, terrestrial 

ice extent during MIS 11 is assumed to be less than at present (Raymo and Mitrovica, 2012).  However, 

little is known about stage MIS 9.   

Marine oxygen isotope data can act as proxy for past sea level in the absence of coastal 

geomorphological features and the near-continuous time series may highlight any notable sea-level 



fluctuations (e.g., Siddall et al., 2007; Spratt and Lisiecki, 2016) (Figure 1).  These datasets suggest MIS 

11 is typified by a single, long (~30 ka) duration highstand (Siddall et al., 2007).  MIS 9 has a dominant 

single peak in sea level during the earliest substage (MIS 9e, Railsback et al., 2015), with a much smaller 

(~8-10 m lower) secondary peak during the next substage (MIS 9c) (Siddall et al., 2007). One or more 

sea-level oscillations during a highstand suggests dynamic behaviour of the ice sheets during the peak 

warm period with episodes of significant mass loss and gain, often in relatively short time intervals (a 

few thousand years or less), as has been reconstructed in MIS 5e (Kopp et al., 2009).  The marine 

isotope records from MIS 11 and MIS 9 provide no evidence for abrupt, large scale oscillations in sea 

level that might be comparable to those seen in some MIS 5e records. 

To achieve better understanding of the behaviour of ice sheets during MIS 11 and 9, there is a need 

for continuous records of RSL as found in temperate-latitude estuarine environments, similar to 

detailed study of the MIS 5e Netherlands record (Long et al., 2015; Zagwijn, 1983).  There is evidence 

for marine inundation in northwest Europe in MIS 11 and 9, for example within the Thames, and along 

the south and east coasts of England (Bridgland et al., 1999; Bridgland et al., 2013; Roe et al., 2009; 

Roe et al., 2011; Roe and Preece, 2011; Schreve et al., 2002; White et al., 2013).  Flexure of the North 

Sea Basin, tectonic uplift/subsidence, sediment compaction and glacial-isostatic adjustment (GIA) 

during repeated glacial-interglacial cycles (Busschers et al., 2008; Lambeck et al., 2012; Rose, 2009) 

mean that the elevations at which sea-level positions are observed may be different from their 

elevations at the time of formation.  Notwithstanding, these records are important because they are 

often continuous for all or part of the interglacial highstand(s), and, therefore, offer the potential to 

reconstruct the mode (gradual versus abrupt) of sea-level change with a high degree of precision, 

especially if microfossil analyses – as developed and applied in Holocene sea-level studies (e.g., Barlow 

et al., 2013) – can be applied.   

The study area for this paper, the Nar Valley in eastern England (Figure 2) has evidence of Pleistocene 

interglacial marine transgression(s), preserved over ~20 vertical metres (Stevens, 1959).  By applying 

methodological insight gained from Holocene sea-level reconstructions in estuarine settings, similar 

to that discussed by Long et al. (2015), this paper aims to assess the mode of sea-level change during 

the interglacial Nar Valley record, which we demonstrate as recording marine inundation during MIS 

11 and 9.  This archive from a temperate-latitude location may increase our knowledge of ice-sheet 

behaviour during warm periods and aid predictions of future responses. 

 

 



2. Identifying modes of sea-level change in estuarine sediments 

Assessing the mode of sea-level change in estuarine sediments requires consideration of three main 

lines of evidence which have been applied extensively in temperate-latitude, estuarine-based studies 

of Holocene sea level: 

1. The tendency of the sea-level indicator; 

2. The nature of the transgressive or regressive contact, i.e., abrupt or gradual; 

3. The lateral extent of the transgressive or regressive contact and its representation in adjacent 

vertically stacked sequences. 

The tendency of a sea-level indicator describes the stratigraphic or morphological evidence for an 

increase (positive sea-level tendency) or decrease (negative sea-level tendency) in marine influence 

(Shennan et al., 2015; van de Plassche, 1986).  This is a useful means of analysis as it goes beyond 

simply identifying the elevation of past sea level (as recorded by geomorphological indicators such as 

raised marine terraces or drowned shorelines), by also objectively describing changes in the height 

and salinity of the water table, which are in turn, related to the proximity of marine conditions and 

the elevation of the sample site with respect to defined tidal datums.   

Tendency analysis requires litho-, bio- and chrono-stratigraphic data through a sequence of 

sediments, both laterally and vertically.  Marine-brackish to brackish-freshwater vegetation 

successions in coastal lowlands of northwest Europe are typified by five coastal zones (Figure 3), which 

reflect the tolerance of different species to the frequency of tidal inundation and groundwater salinity 

(after Waller et al., 1999).  Gradual vertical changes in groundwater cause adjacent coastal vegetation 

zones to migrate up or down the environmental gradient.  For example, when saline groundwaters 

rise, the coastal zones migrate landward so that salt marsh species (zone 3 in Figure 3A) colonise 

former reed swamps (freshwater swamps colonised by the common reed) (zone 2).  Microflora and 

fauna such as diatoms and foraminifera also exhibit zonation in the coastal zone (Figure 3).  

Foraminifera are absent above the highest astronomical tides (HAT), but below this, specific 

assemblages dominate each coastal zone; for example Jadammina macrescens in the upper salt 

marsh, Miliammina fusca in the low marsh and tidal flats and Elphidium excavatum in sub-tidal 

environments (Murray, 2006).  The zonation and succession of flora and fauna thus aid interpretation 

of the positive and negative tendencies of sea level within palaeo-estuarine sequences. 

Litho- and biostratigraphical analysis of estuarine sequences may be also used to assess whether the 

transgressive or regressive contact, which records the up-core transition from fresh or brackish-water 

to marine conditions (or vice versa), is abrupt or gradual (e.g., Long and Shennan, 1994).  Abrupt 



changes in groundwater levels result in one vegetation/coastal zone being replaced by a non-adjacent 

vegetation type; for example a rapid sea-level rise may mean subtidal environments (zone 5 in Figure 

3A) replacing a freshwater swamp (zones 1 or 2), missing out the intervening salt marsh and tidal flat 

zones (zones 3 and 4).  Figure 3B shows two hypothetical stratigraphic sequences that would indicate 

a positive tendency, but with the second profile highlighting a potential jump in sea level with the 

typical pathway of coastal succession abruptly interrupted.  This analysis is first done in a single core 

(as in Figure 3B), and then may be considered together in a series of cores from across a site or region. 

By tracing the timing and lateral and vertical extent of any transgressive or regressive contacts, it is 

possible to assess whether they record site-specific processes or are part of system-wide (i.e., estuary-

scale) changes.  Transgressive contacts from the same time period, which are recorded in multiple 

sites within one or more systems, may suggest a regional change in tendency, most likely caused by a 

rise in regional sea level, as opposed to local shifts in shoreline position caused by, for example, 

changes in sediment supply or tidal channel position (e.g., Shennan, 1982; Shennan et al., 2015; 

Tooley, 1982).  Similarly, a salt marsh to intertidal mud transgressive contact recorded in one core 

may also be replicated in an adjacent vertically deeper sequence by subtidal sediments replacing 

intertidal muds.  If a core does not record a switch from one environment to another, and simply 

contains either freshwater or marine sediments, it cannot record a change in tendency, but it may be 

used as a freshwater or marine limiting point, indicating that sea level must either have been below 

or above this elevation, respectively.  Long and Shennan (1994) applied the tendency framework and 

models of vegetation and coastal succession to test for abrupt versus gradual positive and negative 

sea-level tendencies in both tectonically active and stable Holocene coastal settings. Here, we apply 

this approach to previous interglacial estuarine sequences, found in the Nar Valley. 

 

3. The Nar Valley, eastern England 

The Nar Valley (in Norfolk, eastern England) is an asymmetrical valley cut into underlying Mesozoic 

rocks (Figure 4).  The Pleistocene valley-fill is characterized by a glacial diamicton overlain by pro-

glacial lake laminated clays (Gibbard et al., 1992; Ventris, 1996), most likely formed following retreat 

of the Anglian (MIS 12) ice sheet (Pawley et al., 2008).  The clay facies are overlain by sands that fine 

upwards into clays that are, in turn, capped by a dense, lignitic bed of wood peat (Ventris, 1996). The 

sequence is collectively known as the Nar Valley Freshwater Beds (Stevens, 1959).  Above these 

freshwater sediments in several locations is the Nar Valley Clay, often containing visible remains of 

marine fauna including foraminifera (Baden-Powell, 1967; Rose, 1835; Stevens, 1959). This paper 



focuses on the nature of this flooding surface, where marine sediments of the Nar Valley Clay 

transgress the lower freshwater deposits.  In many locations the Nar Valley Clay is overlain by cold-

stage outwash (the Tottenhill Sands and Gravels), with Holocene alluvial sediments filling the modern 

River Nar valley.  Between the outwash fan formed by the Tottenhill Sands and Gravels (Gibbard et 

al., 2009; Gibbard et al., 1992; Lewis and Rose, 1991) and the modern Nar valley floor is a staircase of 

Middle–Late Pleistocene river terraces that testify to long-term land uplift (Boreham et al., 2010). 

Previous pollen analyses through the Nar Valley Freshwater Beds clearly show affinities with the 

British Hoxnian interglacial pollen assemblage (Table 1), based upon the presence of the palynomorph 

‘Type X’, high presence of Hippophae and the occurrence of significant frequencies of Tilia and Taxus, 

with the marine transgression proposed to occur through early to late-temperate pollen stages HoIIc 

to HoIIIb (Stevens, 1959; Ventris, 1996).  However, northwest European ‘Hoxnian’ profiles are thought 

to characterise both MIS 11 and 9 (Thomas, 2001).  Numerical and relative dating of the Hoxnian 

stratotype at Hoxne, Suffolk (Ashton et al., 2008) and the most complete Hoxnian pollen record at 

Marks Tey (Rowe et al., 1999; Turner, 1970) correlate the Hoxnian sensu stricto with the first warm 

period after MIS 12, therefore MIS 11 (Candy et al., 2014).  However, the evident similarities between 

the MIS 11 and 9 pollen assemblages means that separating sequences solely based upon pollen 

spectra is a challenge (Roe et al., 2009), and no single vegetation zone can be considered sufficiently 

diagnostic to be applied for dating interglacial periods.  Numerical dating of the freshwater peat at 

Tottenhill by 230Th/238U produced a mean age of 317±14 ka (Rowe et al., 1997), whilst multiple 

isoleucine epimerization determinations of Ammonia beccarii and Aubignyna perlucida foraminifera 

within the Nar Valley Clay yield mean A/I values of 0.135 and 0.111 respectively (Scourse et al., 1999), 

all of which suggested that the Nar Valley Clay correlated with MIS 9.  By comparison, similar 

aminostratigraphic dating of a Hoxnian-type sequence in the Inner Silver Pit area of the southern 

North Sea produced ages which suggest its deposition during MIS 11 (Scourse et al., 1998), highlighting 

the challenge of ascribing a definitive MIS age for Hoxnian pollen-type sequences within the same 

region (Scourse et al., 1999).   

Numerical dating of the Nar Valley has not been applied outside of the Tottenhill site.  We therefore 

we use amino acid racemization dating (AAR) of Bithynia tentaculata opercula collected from the Nar 

Valley Freshwater Beds with comparison to the established British Quaternary chronological 

framework (Penkman et al., 2011, 2013), in an effort to constrain the marine oxygen isotope stage(s) 

during which the freshwater deposits were emplaced.  However, the current absence of an AAR 

chronological framework for late-Quaternary marine sediments in Britain means we cannot 



independently date the Nar Valley Clay itself, and are therefore reliant on correlation with the Hoxnian 

pollen assemblages in Table 1. 

Zone name Pollen stage 
Fossil pollen assemblage characteristics at Marks Tey and 

Hoxne 

Post temperate HoIV 
The Early-Glacial. Arctic/Sub-Arctic conditions. Non-arboreal 

pollen (NAP) increases. 

Late Temperate HoIII a&b 

Masked by Alnus at Hoxne, Azolla filiculoides present.  

Gradual increase in Pinus and Picea, followed by increases in 

Abies and Carpinus in IIIa at Marks Tey, which is particularly 

dominant in HoIIIb (with Alnus).  Declines of Quercus and 

Ulmus in IIIa while Corylus remains.  Ilex, Hedera and Taxus 

present.  

Early Temperate 

HoIId 
Alnus-Qurcus-Ulmus-Tilia. Mixed oak forest with expansion of 

Ulmus and decline of Tilia. Fraxinus also present. 

HoIIc Alnus-Quercus-Betula-Tilia.  Rapid expansion of Alnus. 

HoIIb 
Betula-Quercus-Pinus.  Quercus became dominant. Ulmus 

incoming with sparse Tilia, Alnus and Picea later 

HoIIa Betula-Pinus colonising.  Evidence of Quercus arriving. 

Pre-temperate/ 

late glacial 
HoI Hippophae scrub, some Betula 

Table 1 – Summary of Hoxnian-type pollen assemblage characteristics and stages at Hoxne and Marks 

Tey (Turner, 1970; West, 1956). 

 

 

4. Methods 

4.1 Field methods 

Our field strategy was guided by previous work (Gibbard et al., 1992; Stevens, 1959; Ventris, 1996), 

with resampling near to known Nar Valley Clay sequences where access was available.  We aimed to 

sample material across a range of elevations to provide as much information as possible regarding the 

lateral and vertical extent of the marine sediments.   

Material was collected from five locations (Figures 5 and 6, grid references provided in the results, 

section 5): (1) at the lowest part of the working Blackborough End Quarry, near to the Blackborough 

End sequence described by Stevens (1959); (2) a newly exposed section at the southern end of 

Tottenhill Quarry south of the previously described sections (Gibbard et al., 1992; Ventris, 1996); (3) 

Horse Fen, aiming to replicate the work by Stevens (1959); (4) Railway Cottage, east of East Winch 

near to Stevens’ (1959) boreholes 1-3; and (5) Bradmoor Hill at Little Long Plantation ~1 km east of 

Summer End Farm (Stevens, 1959).  Cores at Blackborough End Quarry, Horse Fen, Railway Cottage 

and Bradmoor Hill were collected in 2012 using a Percussion drilling kit and window sampler.  At Horse 

Fen a second deeper core was collected in 2013 using a shell and auger drilling rig, ~50 m north of the 



first core to collect material below the wood peat.  A newly opened face (2014) at Tottenhill Quarry, 

where the overburden Tottenhill Sands and Gravels had been excavated, provided access to the Nar 

Valley Freshwater beds and overlying clay for monolith sampling.  All boreholes were levelled to 

metres Ordnance Datum (m OD) using local benchmarks (with the exception of Tottenhill Quarry 

where the elevation had to be estimated from Ventris, 1996) with the latitude and longitude taken 

using a handheld GPS.  The attitudinally lowest occurrence of Nar Valley Clay is found at Manor Farm 

(Figure 6), but we were unable to resample this site due to access restrictions, and therefore are reliant 

on the results of Mitlehner (1992). 

 

4.2 Laboratory methods 

Following fieldwork, the collected sediment was wrapped in plastic and stored in a fridge (~4°C) at 

Durham University and sampled for further analysis.  The sampling interval of the cores varied 

according to the stratigraphy and avoided core breaks, with a higher resolution sampling interval 

across the peat-clay contacts.  Organic content was measured across the peat-clay contact in the six 

cores, as percentage loss on ignition (LOI), by burning ~2-5 g of dried sediment at 550oC for four hours. 

All cores were subjected to spot-sampling to establish in the first instance, the absence or presence 

of foraminifera.  Where foraminifera were found, full counts and identification of taxa were carried 

out and absolute concentrations calculated. Samples (0.4-7 cc) were wet-sieved and the fraction 63-

500 µm retained. The samples were divided into four at least once and, a fraction expected to yield at 

least 100 specimens of the sample was picked. Some samples had too few foraminifera to provide a 

useful count. On average, ~140 specimens were counted per sample. The foraminifera were identified 

to species level based on the taxonomy according to Loeblich and Tappan (1987), Murray (1979); 

Murray et al. (2000) and Walton and Sloan (1990).  We follow Walton and Sloan (1990) for the genus 

Ammonia because we recognise their forms in our samples, but we are aware of the genetic debate 

and different nomenclature (Hayward et al., 2004).  Diatom samples were also prepared across each 

peat-clay contact, but no diatoms were preserved. 

Pollen analysis was undertaken on 2 cm3 sub-samples at 16, 8, 2 or 1 cm resolution from the five cores 

(due to limited material for analysis the analysed depths are not the same as for foraminifera samples). 

Higher resolution sampling focussed on the peat sections of the cores and transitions from peat to 

clay. Standard pollen extraction techniques were used (Moore et al., 1991). Because pollen was sparse 

in many samples, micromesh sieving (10 µm) was used to remove the clay and finest silt fraction prior 

to extraction. For Blackborough End Quarry, Tottenhill and Railway Cottage, samples were then 



combined with heavy liquid (LST Fasfloat) prepared to a density of 1.9 g/ml, and centrifuged for 20 

minutes at 1800 rpm (Nakagawa et al., 1998).  The retained pollen was, in all cases, mounted on 

microscope slides in glycerol jelly.   Where the density separation process was used, all residues were 

examined and found to contain no discernible pollen grains.  The pollen sum counted was dependent 

upon pollen preservation between sites and within site.  In general, a minimum sum of 300 land pollen 

grains was aimed for. Pollen taxa were were identified using the keys in Moore et al. (1991) and an 

extensive comparative collection was available to aid identification of critical taxa. In general, the 

taxonomy of Moore et al. (1991) modified by Bennett (1994) has been used. Percentage calculations 

were based on the sum of the dry land pollen with pollen marsh and aquatic pollen as a percentage 

of the sum plus this category. This also applies to fern spores and to the miscellaneous (pre-

Quaternary palynomorphs, Dinoflagellates and Pediastrum). 

The current technique of amino acid analysis developed for geochronological purposes (Penkman et 

al., 2008) combines a reverse-phase high-pressure liquid chromatography (RP-HPLC) method of 

analysis (Kaufman and Manley, 1998) with the isolation of an 'intra-crystalline' fraction of amino acids 

by bleach treatment (Sykes et al., 1995).  This combination of techniques results in the analysis of D/L 

values of multiple amino acids from the chemically protected (closed system) protein within the 

biomineral, thereby enabling both decreased sample sizes and increased reliability of the analysis.  

Amino acid data obtained from the intra-crystalline fraction of the calcitic Bithynia opercula indicate 

that this biomineral is a particularly robust repository for the original protein (Penkman et al., 2011, 

2013) and therefore has been targeted in this study. 

Amino acid racemization (AAR) analyses were undertaken on samples detailed below (supplementary 

information for results).  Opercula were not found in the freshwater sediments in any other cores. 

• 3 individual Bithynia tentaculata opercula from Nar Valley Freshwater Beds, from a grab 

sample of peat near to the Tottenhill analysed section (as in Figure 6), that had undergone 

mineral diagenesis, appearing chalky (NEaar 9786 – 9788; THBto1-3). 

• 3 individual Bithynia tentaculata opercula, from the same grab sample of peat as the chalky 

opercula near to the Tottenhill section, that had not undergone mineral diagenesis (NEaar 

9789 – 9791; THBto4-6); 

• 6 individual Bithynia tentaculata opercula from the shelly peat at the base of the analysed 

Tottenhill section (NEaar 10337-10342; Tott3Bto1-6) (see results, location given on Figure 9); 

• 1 incomplete fragment of Bithynia tentaculata operculum from Horse Fen, HF13, 1058-9 

(NEaar 10344; HF13Bo1) (see results, location given on Figure 7). 



All samples were prepared using the procedures of Penkman et al. (2008) to isolate the intra-

crystalline protein by bleaching.  Two subsamples were then taken from each shell; one fraction was 

directly demineralised and the free amino acids analysed (referred to as the 'free' amino acids, FAA, 

F), and the second was treated to release the peptide-bound amino acids, thus yielding the 'total' 

amino acid concentration, referred to as the ‘total hydrolysable amino acid fraction (THAA, H*).  

Samples were analysed in duplicate by RP-HPLC, with standards and blanks run alongside samples.  

During preparative hydrolysis, both asparagine and glutamine undergo rapid irreversible deamination 

to aspartic acid and glutamic acid respectively (Hill, 1965).  It is, therefore, not possible to distinguish 

between the acidic amino acids and their derivatives and they are reported together as Asx and Glx 

respectively. 

 

5. Results 

Six new boreholes and one quarry face section in the Nar Valley reveal shell-bearing clay (containing 

Hydrobia, Littorina and Ostrea edulis) up to +18 m OD.  At Horse Fen, Blackborough Quarry and 

Tottenhill (the lower sites) the clay overlies a lignitic peat from ~-2.5 to + 3 m OD (Figure 6).  In 

comparison, in the upper sites, Railway Cottage and Bradmoor Hill, the shell-bearing clay overlies a 

dense, chalk-rich clay and medium to coarse sand rather than lignitic peat.  Despite extensive coring 

using a hand gouge and auger at a number of test sites in the modern elevation range between the 

lower and upper sites, we found no evidence of sediments resembling the Nar Valley Clay or Nar Valley 

Freshwater Beds between +4 and +8 m OD, typically encountering bedrock Carstone under the shallow 

Holocene/Lateglacial substrate.  It must be noted that Stevens (1959) documented Nar Valley Clay at 

~5 m OD at a former brickyard near East Winch, so it is not clear whether the absence of these 

sediments within this vertical range is real or an artefact of the field sampling.  We summarise the 

lithological and biostratigraphical results from each location in turn, from the lowest occurrence of 

the marine clay (Horse Fen 13-1) to the highest (Bradmoor Hill) (Figure 6), with full biostratigraphy 

given in the supplementary information.   

 

5.1 Horse Fen 13-1 

Drilling at Horse Fen (52.70038, 0.50385), ~50 m north of the original Stevens (1959) investigations, 

revealed an organic-rich brown sandy silt from 11.00-11.50 m (Figure 6), above which, is a dense, 

black, lignitic peat to 9.98 m, with occasional (up to ~0.05 m thick) layers of marl.  The peat-clay 



boundary with the overlying stiff grey silty-clay at 9.98 m (-2.28 m OD) is visually sharp (<5 mm), with 

a decrease in organic content from ~80% at 10.05 m to ~5% at 9.90 m (Figure 7).  Due to water 

saturation, it was not possible to collect material for analysis from 8.44-9.89 m.  The stiff grey clay 

contains occasional shells of Littorina and is overlain by yellow-orange sand from ~5 m to ~0.5 m below 

the surface. 

Foraminifera were not found in the dense black peat, with the first occurrences in low numbers at 

9.99 m.  The first 0.04 m above the peat-clay contact is dominated by forms of Ammonia beccarii, 

Aubignyna perlucida, Elphidium williamsoni and Haynesina germanica (Figure 7).  E. williamsoni and 

E. incertum decrease by 9.80 m, with A. beccarii f. beccarii, H. germanica, Aubignyna perlucida and 

Elphidium incertum dominant to 7.70 m with no marked changes in the assemblage.  Samples at 6.70 

m and 5.70 m show a decrease in forms of A. beccarii and an increase in Elphidium gerthi 

(supplementary information).  These assemblages suggest an increase in water depth, as lower down 

it is dominated by intertidal species (e.g., forms of A. beccarii, E. williamsoni) which at the top of the 

sampled interval, is replaced by E. gerthi, which is found in fully marine environments (e.g., Knudsen, 

1984).   

There are a number of significant changes in the Horse Fen 13-1 pollen profile which are, in part, 

related to the changing stratigraphy of the site.  Pollen preservation in the differing sediment facies is 

poor and especially in the lignitic peat from above 10.58 m.  The basal zone (to 10.90 m) is dominated 

by Betula with few other trees and shrubs although, Juniperus and possible Tsuga are present. During 

this earliest phase, Poaceae and Cyperaceae are the dominant herbs and are probably autochthonous 

with other marsh taxa recorded (Typha latifolia, Typha angustifolia/Sparganium and Menyanthes 

trifoliata).  At 10.91-10.93 m, there is clear evidence of a stratigraphic hiatus between the basal sandy 

silts and overlying peat.  In the humic silt above the basal peat (10.90-10.70 m), Pinus becomes the 

dominant taxon with largely reduced values of Betula, Poaceae, Cyperaceae and pre-Quaternary 

palynomorphs. Subsequently, with change to the lignified peat, Pinus remains important but also with 

marked increases of thermophiles, that include Ulmus, Quercus, Tilia, Fraxinus, Alnus and Corylus 

avellana type.  Values of these latter taxa become increasingly important towards the top of the 

profile, especially after the change to humic silt above 10.1 m.  Throughout this period, levels of 

Poaceae and Cyperaceae remain low.  Spores of Pteropsida (Dryopteris type) attain high levels, which 

reflect the drier ground flora of the site and also their differential preservation in the humified peat.  

It is clear that the depositional habitat during peat formation was variable. Initially fluvial conditions 

pertained, manifested by substantial numbers of reworked pre-Quaternary palynomorphs, and the 

autochthonous vegetation was probably grass and sedge fen. There is a hiatus in the stratigraphy 



which may be due to erosion of sediment or cessation of accumulation (perhaps due to groundwater 

lowering), after which the depositional environment was of lower energy with deposition of humic silt 

again under fen vegetation.  This progressed through to a drier alder carr habitat under which the 

lignified wood peat accumulated. There was a subsequent reversal to wetter, fluvial/alluvial 

conditions. The pollen sequence obtained is, unsurprisingly, similar to that obtained by Stevens (1959) 

and may be compared with the Hoxnian profile at Marks Tey (Turner, 1970).  The base to 10.90 m may 

be correlated with pollen sub-zone HoIIa due to the importance of Betula and a diverse range of herb 

pollen.  Hippophae rhamnoides, as with Stevens (1959), is not found. The subsequent arboreal 

development with expansion of Pinus above the hiatus, with the following increase of thermophiles, 

suggests a successional sequence of HoIIa (10.90-10.70 m), HoIIb for 10.70-10.50 m and HoIIc from 

10.50-10.14 m.  The top may also be HoIIc or possibly, the early part of HoIII, although this is not clear.  

The AAR result from a single operculum fragment from Horse Fen (at 10.58 m) is discussed in the 

chronology results section below, though the sample size is too small to be reliable. 

 

5.2 Blackborough End Quarry 

The Blackborough End Quarry borehole (52.70565, 0.48763) is the lowest elevation site sampled in 

the modern Nar Valley, although the peat-clay contact is 1.18 m higher than at Horse Fen 13-1.  A 

hard, black, lignitic peat with organic content of ~85% (Figure 8) extends from the base of our core at 

7.15 to 7.06 m (upper peat contact at -1.1 m OD), with a visually sharp contact to the overlying silt-

clay (Figure 6).  At 0.08 m above the peat-clay contact is a silty-clay with detrital peat and unidentified 

shell fragments.  Above this the organic content decreases to ~10% and the dark grey sandy silt, with 

occasional Littorina and a shell bed of Ostrea edulis at 6.05-6.15 m, extends up to 3.35 m below the 

surface.  Iron-stained grey-brown silty sand overtops the sequence. 

Foraminiferal preservation in the Blackborough End Quarry core is variable.  No tests were found 

below 7.00 m; at this level, the assemblage is dominated by forms of A. beccarii, A. perlucida, E. 

williamsoni and H. germanica (Figure 8).  Counts then remain low until 6.92 m where the silt-clay to 

6.10 m primarily contains forms of A. beccarii, E. excavatum f. clavata and H. germanica.  Above this, 

to 3.70 m, preservation is again poor, albeit with an assemblage of forms of A. beccarii, Elphidium spp 

and H. germanica.  This fairly homogeneous, subtidal assemblage, contains two samples containing 

foraminifera indicative of deeper water; at 6.10 m a number of Eggerelloides scaber are found 

(although only 4%, so in the “rare and unknown” category), and a few Gavelinopsis praegeri at 5.30 



m. The presence of these sub-tidal species (e.g., Alejo et al., 1999; Alve and Murray, 1999; Mendes et 

al., 2004) in discreet intervals may indicate storm events.  

The pollen sequence from Blackborough End Quarry represents an early-temperate woodland with 

thermophiles including Ulmus, Quercus, Tilia, Fraxinus, Ilex and Hedera which are present to the base 

of the profile (Figure 8), potentially correlating with HoII.  These taxa then decline over the peat-clay 

transition with an increase in coniferales (Pinus, Picea) which may be viewed as transition to early 

HoIII.  It must be noted that diagnostic Hoxnian-type taxa such as Type X, Taxus, Vitis, low levels of 

Carpinus and the lack of Abies (typical of mid HoIII) are not evident which means that the correlation 

with the Hoxnian pollen stages (Table 1) is tentative.  The fluctuating nature of the pollen assemblages 

across the peat-clay transition at ~7 m may be partly taphonomic due to poor pollen preservation 

(indicated by very damaged pollen, low pollen concentration and, in particular, by substantial numbers 

of Pteropsida spores), or may indicate a hiatus in the record and may also explain the lack of diagnostic 

Hoxnian taxa.  It is also possible that the peat deposits may have accumulated over a long period of 

time, whilst the clay above represents a much more rapidly accumulating sediment.  

 

5.3 Tottenhill 

A newly-opened section at the south-west corner of Tottenhill Quarry (52.66985, 0.40428), ~0.8 km 

south of locations Ta-Tf of Ventris (1996), provided an opportunity to observe the lateral extent of the 

Nar Valley peat and its stratigraphic relationship to the overlying sediment.  Coarse-to-fine sands and 

gravels had been excavated from above the section, leaving a truncated surface over the underlying 

~1.6 m section.  The basal unit at the sampled section is a light-grey silty sand with occasional shells 

(below which, in some other locations, a sticky light-grey silty clay with chalk clasts was observed).  

The silty-sand is replaced by 0.21 m of grey-brown organic enriched clay-silt which then grades into a 

brown-black, dense woody peat for another 0.21 m (Figure 6).  The peat has a reasonably sharp (<1-5 

mm) upper contact (estimated elevation 2.4 m OD, based upon the Ventris (1996) stratigraphic 

sections Ta-Tf) with the overlying ~0.5 m of brown-grey silty clay, which contains many visible shells, 

sometimes in laminated bands.  The organic content decreases across the peat-clay contact from ~85% 

to 14% (Figure 9).  No foraminifera were found in the peat and overlying clay. 

The Tottenhill Quarry pollen sequence (Figure 9) presented in this study is truncated by the recent 

quarry excavations and, therefore, we also consider the profile from Ventris (1996) for a more 

complete picture.  The sequence represents a temperate wooded environment dominated by 

deciduous taxa such as Alnus, Quercus and Ulmus; that is, diagnostic of an early temperate interglacial 



phase.  Thermophiles present include, Alnus, Tilia and Hedera, as well as Type X (Phillips, 1974; Turner, 

1970) and are typical of this phase and, the pollen sequence corresponds most closely with HoIIb, 

moving into HoIIc (West, 1980).  The high Alnus values followed by a rise and fall in Corylus values, as 

well as a rise and fall in Ulmus levels, are characteristic of this transition.  The results of the AAR 

analysis of the opercula found at Tottenhill are presented in section 5.7. 

 

5.4 Horse Fen 12-2 and 12-4 

Cores 12-2 and 12-4 at Horse Fen (Figure 6) were collected to provide foraminiferal data in association 

with the Stevens (1959) pollen diagram obtained from this site.  Core 12-2 (52.69946, 0.50387) is 

located in a small clay pit where the overburden material had been removed; core 12-4 (52.69959, 

0.50388) is ~10 m north on a track above the pit.  We include 12-2 in Figure 6 for completeness as it 

is geographically closest to Stevens' Horse Fen pollen diagram. We are, however, cautious of potential 

erosion/disturbance of the peat-clay transition (see below) and therefore focus our investigations on 

borehole 12-4 where there is a greater thickness of clay for analysis.  The base of core 12-4 contains a 

grey-black, very compacted peat from 4.69-4.52 m, with an upper contact (at 2.64 m OD) to the 

overlying grey sandy silt with occasional shells and a particularly shell-rich layer containing fragments 

of Ostrea edulis at 4.27-4.35 m.  The organic content decreases from ~80% at 4.54 m to ~4% at 4.50 

m (Figure 10).  The grey sandy silt extends to 3.40 m, above which is ~0.80 m of light brown clay with 

some organics, overtopped by orange-grey silty sand from 2.60 to 0.20 m. 

Foraminifera occur between 4.54 and 2.25 m in Horse Fen 12-4, with forms of A. beccarii being 

dominant, and associated with H. germanica, A. perlucida, E. excavatum f. clavata, E. macellum, and 

E. williamsoni (Figure 10).  There is a subtle assemblage change from an intertidal assemblage with 

Ammonia spp. at 4.54 m, to a shallow sub-tidal assemblage with E. macellum (e.g., Li et al., 2000) 

between 4.41 and 2.65 m, reinforced by a peak in E. gerthi at 3.05 m.  Between 3.05 m and 2.25 m 

this trend reverses.  A similar assemblage of forms of A. beccarii, A. perlucida and H. germanica is 

found above the peat in core 12-2.  (Foraminifera counts from 12-2 are presented in the 

supplementary information). 

Stevens (1959) divides her Horse Fen peat pollen profile into two parts: a lower non-arboreal pollen 

zone dominated by Cyperaceae with small quantities of Betula and Pinus, followed by gradual arrival 

of a mixed oak forest, though heavily dominated by Alnus.  Stevens suggests the profile likely records 

a sedge fen around a lake (a fen is a minerotrophic peatland common in modern Eastern England) that 

was later overgrown by an alder carr, most likely equivalent to successions from HoIIa/b to HoIId 



(West, 1980).  Above the peat-clay contact Pinus dominates with low levels of Picea, although the 

original Stevens profile is truncated ~0.2 m above the top of the peat, which fits with our borehole 

investigations at core 12-2.  

 

5.5 Railway Cottage 

The Railway Cottage borehole (52.71964, 0.54043) is ~200 m west of Stevens' (1959) boreholes 1-3 

where she shows the Nar Valley Clay thinning out along a ridge, at ~15-16.5 m OD.  The base of our 

borehole (6.51 m) stopped in flints/stones (Figure 6) which we also observed in the base of a drainage 

pit on the other side of the road to our core.  From the base (8.51 m OD) to ~4.9 m is a black-grey silty 

clay containing remains of shells, including a visible band at 5.81-5.86 m, most likely Ostrea edulis.  

The organic content of the clay is low (<9%).  Above the clay is ~4.9 m of coarse sand with occasional 

flints that extend to the surface. 

Foraminifera are present from the base of the sample core (6.46 m) to 5.30 m, above which, no tests 

occur (Figure 11).  A relatively homogeneous assemblage, dominated by forms of A. beccarii, A. 

perlucida, H. germanica and E. incertum, characterises this lower ~1.2 m of the silty clay. The only 

notable change in this assemblage is a shift from A. beccarii f. tepida to A. beccarii f. parkensoniana 

towards the top of the clay, which may be indicative of higher salinities (Debenay et al., 1998; Walton 

and Sloan, 1990). 

The pollen sequence at Railway Cottage (Figure 11) represents a late-temperate interglacial stage 

attributed to HoIII, possible the very end of HoIIIa to HoIIIb (West, 1980). Thermophilous taxa and 

components of the deciduous, oak-dominated woodland (Quercus, Ulmus, Hedera and Ilex) decline 

or, are absent, above 6.00 m, suggesting climatic deterioration. The rapid expansion of Abies pollen 

above 6.10 m has supressed the within sum percentages of the other pollen as well as indicating the 

increasing ecological importance of fir growing in proximity to the site. 

 

5.6 Bradmoor Hill 

Stevens (1959) reports the highest occurrence of the Nar Valley Clay at Narford Hall at ~19 m OD, 

although without a sediment description.  Our borehole at Bradmoor Hill (52.70314, 0.60444) is ~1.3 

km north of this site, in a small pit on the edge of Bradmoor Plantation.  At the base of our borehole 

at 8.87 m (9.24 m OD) to 8.15 m, there is a silty sand with occasional chalk fragments (Figure 6).  

Overlying this to 6.41 m is a grey silty clay with small chalk fragments and thin laminae of fine sand, 



with occasional traces of detrital organic material. From 6.15 to 4.38 m (6.15-6.41 m was not recorded) 

is a laminated coarse-fine silty sand with occasional fine chalk fragments.  Above 4.38 m the silt-clay 

content of the sand increases to 2.8 m from where clay-silt containing many shells of Ostrea edulis, 

Hydrobia and Littorina extends to ~0.50 m below the ground surface (organic content of the clay-silt 

is typically less than 10%). 

The deepest occurrence of foraminifera at Bradmoor Hill is at 3.80 m (Figure 12), with samples at 

approximately 1 m intervals below this level barren of tests.  From 3.80 to 2.55 m forms of A. beccarii 

and H. germanica dominate with some A. perlucida.  Above 2.80 to 0.20 m A. perlucida decrease with 

an increase in E. williamsoni.  This is a gradual change with no rapid switches in assemblage, except 

for a spike in an unknown Elphidium sp. at 2.55 m.  This entire assemblage is indicative of a stable 

intertidal environment.   

The pollen spectra from Bradmoor Hill are largely homogeneous throughout, although there are some 

changes between the lower clay and the upper sandy-silt facies (Figure 12). The sequence is 

dominated by Abies, which attains high values (to 90%) with smaller numbers of other coniferales, 

including, especially Pinus and Picea. Both are consistent at low levels through most of the profile and 

expand in the upper sandy-silt from c. 0.4 m. Other coniferales include sporadic occurrences of Taxus 

and Cuppressaceae indet.  Deciduous trees include small but consistent levels of Quercus (to 4%) and 

Alnus (peak to 8%). Thermophiles occur sporadically with Carpinus, Tilia, Fraxinus, Ilex and notably 

Pterocarya in the upper levels. Type X is noted and small numbers of Vitaceae are present in the lower 

clay-silt. Ericales show some increase from 0.4 m. Although not present in quantity, there is a diverse 

range of herb pollen. Poaceae and Cyperaceae become more important in the uppermost sample. 

There are substantial numbers of Dinoflagellates. 

This pollen sequence clearly shows the dominance of Abies on, or in very close proximity to the site 

(Figure 12). The importance of Abies and the presence of Type X, Pterocarya and Vitaceae (West 1956), 

when compared with Marks Tey (Turner, 1970), suggests an immediate post-temperate phase (HoIV). 

Thermophiles are more frequent in the lower part of the profile (below ~1.80 m) and this suggests the 

remaining vegetation of the late temperate (HoIII), which fits with Stevens (1959) assessment of the 

nearby Summer End Farm borehole.  It should be noted that the dominance of Abies, which was 

growing in close proximity and with high pollen values, will have suppressed the importance of other 

taxa. Changes in the upper levels of the profile (the sandy-silt from ~0.4 m) may indicate further 

climatic change or increasing soil acidity in response to pedogenic change caused by the dominance 

of Abies.  More acidophilous taxa include Pinus, Picea and Ericales.   



 

5.7 Chronology 

The pollen results demonstrate the correlation of the Nar Valley sequences with the known Hoxnian 

pollen-assemblages (Table 1), but as discussed above, relating this to the marine oxygen isotope 

framework to compare the results on a broader scale is a challenge (Thomas, 2001).  As result, we 

applied an independent chronological control for the timing of the deposition of the freshwater 

deposits found at the lower sites.  Material collected in this project did not yield many Bithynia 

opercula (material was only found at Tottenhill and one fragment from Horse Fen), which have been 

successfully used elsewhere in relative AAR dating of the British Quaternary (Penkman et al., 2013).   

We compare the Tottenhill and Horse Fen opercula dataset (Figure 13 and supplementary 

information) to the range of data for British sites (Penkman et al., 2011, 2013).  The preparation 

technique of sample bleaching removes the leachable, open-system matrix of shell protein, leaving a 

component that exhibits closed-system behaviour (the ‘intra-crystalline’ fraction). The protein 

degradation in this intra-crystalline fraction is therefore dependent only on time and temperature 

(Penkman et al., 2008), enabling aminostratigraphic correlation between sites sharing an equivalent 

integrated temperature history (Wehmiller et al., 2000; Wehmiller et al., 1992).  The DL ratios of 

aspartic acid/asparagine, glutamic acid/glutamine, serine, alanine and valine (D/L Asx, Glx, Ser, Ala, 

Val) as well as the [Ser]/[Ala] value are assessed to provide an overall estimate of intra-crystalline 

protein decomposition (IcPD).  In a closed system, the amino acid ratios of the FAA and the THAA 

subsamples should be highly correlated, enabling the recognition of compromised samples (e.g., 

Preece and Penkman, 2005).  The D/L of an amino acid will increase with increasing time, but each 

amino acid racemises at a different rate (e.g., Kaufman, 2006), due to differing side chains as well as 

stabilities in peptide bonds.  This means that they are useful over different timescales, with fast 

racemisers such as Asx allowing better temporal resolution at young sites (less than ~130 ka in the UK; 

Penkman et al., 2013), but at older sites, where its values approach equilibrium, the extent of natural 

variability within the data precludes further age discrimination.  Conversely, Val allows only relatively 

poor age resolution in young contexts but provides much better temporal resolution at older ones, 

back to the Pliocene (Penkman et al., 2011). Serine is one of the most geochemically unstable amino 

acids, producing alanine as one of its decomposition products (Bada et al., 1978). The ratio of the 

concentration of serine ([Ser]) to the concentration of alanine ([Ala]) therefore gives a useful 

indication of the extent of protein decomposition within a closed-system, with [Ser]/[Ala] decreasing 

with time.  The D/L of Ser is less useful as a geochronological tool for samples of this age, but is 

presented here as aberrant values are useful indications of contamination.   



Many attempts have been made to refine the temporal resolution of AAR and generate numerical 

dates from kinetic experimental data (see Clarke and Murray-Wallace (2006) for a review), but recent 

studies have shown that high temperature kinetic experiments may not accurately mimic low 

temperature protein diagenesis in some biominerals (Demarchi et al., 2013; Tomiak et al., 2013).  This 

‘calibration’ approach has therefore not been attempted in this study, but the data has been 

compared to the range of data for British sites (Penkman et al., 2011, 2013), which (ignoring urban 

heat effects) span a narrow range of mean annual temperature (MAT) of 9-10˚C (Penkman et al., 

2013), so it is assumed that the samples will have experienced similar integrated thermal histories.  As 

amino acid racemisation rates within biominerals are dependent on the underlying protein sequence 

(the ordering of the amino acids in the peptide chain), significant differences are observed in the rates 

and extent of racemisation between different species, the so-called “species effect” (Lajoie et al., 

1980; Miller and Hare, 1975; Penkman et al., 2007).  This can be ignored in this study, as all the 

analyses and comparator material are undertaken on Bithynia opercula which have been shown to 

show only minimal differences in racemisation within the genus (Penkman et al., 2013). 

The “chalky” opercula, which appear to have undergone mineral diagenesis, show greater variability 

than the normal opercula from the same horizon, and are therefore not included in the results in 

Figure 13 for the age estimation.  The Tottenhill samples show levels of protein breakdown consistent 

with either a mid-late MIS 11 age, or possibly, early MIS 9.  As so little decomposition occurs in the 

cold stages and because of the extent of natural variability in biological samples, it can be difficult to 

discriminate the end of one warm stage from the beginning of the next (Penkman et al., 2013).  The 

operculum AAR sample from Horse Fen 13-1 shows lower levels of protein breakdown than at 

Tottenhill (Figure 13) but, as this is based on a fragmentary sample with low concentrations, this 

should be treated with caution.   

In an attempt to refine the age further, the AAR data can be examined for relevant sites plotted in 

order of the pollen succession where the data is available from the relevant horizons (Figure 13).  

Within MIS 9: Cudmore Grove, late temperate (Roe et al., 2009); Shoeburyness, early temperate HoI/II 

(Roe et al., 2011); Barling early pre-temperate (Bridgland et al., 2001); within MIS 11: Hoxne Stratum 

E (HoI-HoIIc) (Ashton et al., 2008); Clacton early interglacial (Bridgland et al., 1999).  Based solely on 

these comparisons, the Tottenhill samples are consistent with an MIS 11 age, and less likely to 

correlate with MIS 9, but this cannot be excluded. 

The lack of further material for AAR dating and a lack of independent dating of the marine sediments 

means we are reliant on correlation with published sites of known ages and additional stratigraphic 

evidence.  Both Bradmoor Hill and Railway Cottage, which do not have evidence of the Nar Valley 



Freshwater Beds, as well as Stevens (1959) Summer End Farm site at a similar elevation, are typified 

by very high percentage of Abies, diagnostic of HoIII.  In Stevens (1959) East Winch borehole, the Abies 

content is lower (<10%), suggesting its deposition during early HoIIIa.  The dominance of fir is also 

found at Marks Tey (Turner, 1970), Inner Silver Pit (Scourse et al., 1998), Hoxne (West, 1956), Clacton 

(Pike and Godwin, 1952) and East Hyde, Tillingham (Roe, 2001), which through independent means 

have all been correlated with MIS 11 (Ashton et al., 2008; Bridgland et al., 1999; Rowe et al., 1999; 

Scourse et al., 1998; White et al., 2013).  Together, these sites account for most of the Hoxnian sites 

at which the late part of the interglacial is represented palynologically.  The exception is the fluvial-

estuarine record at Woodston, Peterborough which, with low Abies values, has been correlated to 

HoIIc (Horton et al., 1992) but independently dated using AAR to MIS 11 (Penkman et al., 2013).  

However, the presence of marine clay overlying glacial sediments at Bradmoor Hill and expected to 

be at the base of Stevens’ (1959) East Winch and Summer End Farm sites and our Railway Cottage 

borehole, which are most likely from the extensive MIS 12 Anglian glaciation (Pawley et al., 2008), 

leads us to conclude that the marine sedimentation in the higher-level Nar Valley interglacial sites 

relates to a MIS 11 transgression during the late-temperate phase of the interglacial, most probably 

the warm MIS 11c substage (Candy et al., 2014).   

The apparent of the Nar Valley Freshwater Beds above ~4 m OD and the difference in relative timing 

(c. HoII versus HoIII) of the marine phases between the lower and upper sites, raises the question of 

whether there are two separate phases of marine sedimentation recorded in the Nar Valley.  Previous 

dating of both the Nar Valley Freshwater Beds and Nar Valley Clay at Tottenhill suggested correlation 

with MIS 9 (Rowe et al., 1997; Scourse et al., 1999).  Our new AAR results from freshwater Bithynia 

opercula at Tottenhill point to late MIS 11 age, but cannot also exclude an early MIS 9 age (Figure 13), 

with the pre- and early-temperate (HoI-II) pollen assemblage for the Freshwater Beds at Tottenhill 

(Ventris, 1996) potentially favouring the early MIS 9 age, with the pollen not suggesting late 

interglacial conditions.  The absence or relatively low abundance of Abies at Horse Fen, Tottenhill and 

Blackborough leads to the suggestion of a difference in the regional pollen assemblage in comparison 

with MIS 11 sites in eastern England where Abies is dominant.  The absence of ‘classic’ Hoxnian pollen 

indicators for the early and late temperate phases: Pterocarya, Vitis, Buxus, Azolla filiculoides and the 

low levels of Taxus at Horse Fen and Tottenhill, (albeit with the presence of Type X demonstrably 

present in both the MIS 11 and MIS 9 interglacials (Roe et al., 2009)), also highlights that these sites 

may have been deposited during a different, post-Hoxnian interglacial stage.  These species, as well 

as Type X, are also absent at Blackborough Quarry (potentially due to poor pollen preservation) and 

mean that it is not possible to designate with any certainty the interglacial stage to which this 

particular sequence might belong.  These lower-level Nar Valley profiles show similarity with estuarine 



sites from the Thames and Essex with low Abies, high Pinus and occasional Type X, including Barling 

(Bridgland et al., 2001), Purfleet (Bridgland et al., 2013; Schreve et al., 2002), Cudmore Grove (Roe et 

al., 2009), Shoeburyness (Roe et al., 2011), Rochford and Burnham-on-Crouch (Roe and Preece, 2011) 

all of which have been attributed to MIS 9.  In the absence of absolute dating, it is therefore not 

possible to reject a MIS 9 age for the lower Nar Valley sites, as also dated by Scourse et al. (1999) at 

Tottenhill.  This contracts the more definitive attribution of the upper sites to MIS 11. Therefore, the 

Nar Valley Clay, previously recorded as being a single unit (Stevens, 1959; Ventris, 1996), most likely 

represents two separate periods of marine inundation, during two different interglacials. 

 

6. Discussion 

6.1 Modes of sea-level change in the Nar Valley 

The results presented above provide details of a lower freshwater peat, transgressed by a marine clay, 

most likely deposited during MIS 9.  In the uppermost sites (Railway Cottage and Bradmoor Hill) the 

peat is absent (Figure 6), with the marine clay overlying a silty clay with sand and chalk fragments, 

devoid of foraminifera.  It is most likely that the underlying sandy-silt is glacially derived, probably 

correlating with the Anglian (MIS 12) deposits found along the East Anglian coast (Pawley et al., 2008; 

Jim Rose, personal communication), which means the upper Nar Valley Clay was most likely deposited 

earlier (during MIS 11) than that found in the lower sites.   We summarise the palaeo-environments 

of peat and clay recorded in our new boreholes in Table 2, and synthesize the results to assess the 

mode of sea-level change through the sequences: gradual versus abrupt.   

Change in tendency 

The tendency of a sea-level indicator describes the increase or decrease in marine influence (Shennan 

et al., 2015; van de Plassche, 1986).  Foraminifera are absent above the limit of the highest 

astronomical tides, but occur throughout the marine environment (Figure 3).  The replacement of 

freshwater peats, devoid of foraminifera, by clay containing taxa such as forms of Ammonia beccarii, 

Haynesina germanica and Elphidium species at Horse Fen and Blackborough End Quarry records a 

positive tendency across the peat-clay (transgressive) contact.  Our new section at Tottenhill Quarry 

does not extend into the marine shell-bearing clay recorded by Ventris (1996), with the sequence 

truncated by the quarry excavations and only extending into the freshwater lake marl above the peat.  

The composite section of Ventris (1996) from the northern half of the quarry suggests that the 

freshwater lake was replaced by brackish conditions (as indicated by the presence of Hydrobia 



molluscs), followed by fully marine conditions (indicated by the occurrence of oysters).  This site also 

records an increase in marine influence and, therefore, a positive sea-level tendency.   

At Railway Cottage, the foraminifera-containing clay overlies gravel clasts, mainly flints (of unknown 

origin) suggesting a stable marine environment but no indication of a change in tendency.  At 

Bradmoor Hill, the first occurrence of foraminifera (at ~3.8 m) occurs in clay in association with 

occasional fragments of chalk and flint, although these clasts disappear with the slight increase in 

organic content above ~3.0 m.  There is then some reworking between the glacial sediments and the 

bottom of the overlying marine clay.  Therefore, it is not possible to ascribe a change in tendency 

based on the coastal succession model in Figure 3 for the upper sites, although it appears marine 

conditions replaces non-marine glacial sediments.  Evidence of negative sea-level tendencies within 

the Nar Valley interglacial sequences is absent as there are no intercalated peats within the Nar Valley 

Clay recorded by this and previous work (Stevens, 1959; Ventris, 1996). 

The nature of the transgressive contact: abrupt or gradual? 

The lower sites (Horse Fen, Blackborough End Quarry and Tottenhill Quarry) all provide evidence of a 

positive sea-level tendency.  As discussed above, there is no direct evidence for a change in tendency 

over a transgressive contact at Bradmoor Hill or Railway Cottage.  In both cases, however, the 

relatively homogenous foraminiferal assemblages of forms of A. beccarii f., H. germanica and species 

of Elphidium suggest a stable intertidal to subtidal environment with no evidence for rapid change in 

water depth.  The occurrence of beds of molluscs such as Hydrobia, Littorina and oysters also suggests 

no rapid changes in environment.   

Previous work in the Nar Valley has not focused on the nature of the peat-clay transition and our 

detailed laboratory analysis allows assessment of the character of the transgressive contact using the 

coastal succession model in Figure 3.  We found very low numbers of typical salt-marsh foraminifera 

such as Jadammina macrescens and Trochammina inflata within the analysed Nar Valley sequences, 

nor are there transitional salt-marsh pollen taxa.  The transgressive overlaps at Horse Fen, 

Blackborough End Quarry and Tottenhill Quarry record a freshwater peat replaced by low intertidal 

facies, representative of a fen being replaced by a tidal flat. Salt-marsh facies are absent, so the 

transgression can arguably be interpreted as a ‘moderate’ drowning, a transition from zone 2 to zone 

4 in Figure 3. Using modern analogues this represents a minimum RSL rise of about half the tidal range, 

as peat forms above the highest tide level and the salt marsh to mudflat transition is found around 

mean tide level in the UK (e.g., Horton and Edwards, 2006). Is this evidence for a rapid rise in sea level?   



We compare our lower Nar Valley stratigraphies with similar sequences from Holocene estuarine 

deposits from this region. This is potentially a useful exercise, because we know that during the 

Holocene, very rapid sea-level oscillations (on the order of metres per century) did not occur (with the 

exception of the 8.2 ka BP event (Lawrence et al., 2016)).  If the transgressive sequences we find in 

the Nar Valley also occur in the Holocene, then we may reject the hypothesis that they are due to 

rapid sea-level rise and ice-sheet instability.  Holocene transgressive sequences in eastern England 

that include the same, non-erosive, transition from fen to tidal flat include several deep cores along 

the Norfolk coast, where basal peats are overlain by mudflat sediments (Andrews et al., 2000). Dates 

on these contacts range between 5000 and 7000 cal. yr BP when relative sea level rose at average 

rates of ca. 3-5 mm/yr (Shennan et al., 2000). 

The Fenland arguably represents the nearest Holocene analogue to the estuary of the Nar Valley 

during MIS 11 and 9. In the Fenland, several basal peat sequences representing a freshwater swamp 

environment are overlain by either salt-marsh or mudflat sediments. Examples of the latter are 

described by Waller (1994) at Welney Washes (ca. 6200 14C yr BP), Feltwell Common (ca. 4200 14C yr 

BP), and Farcet Fen (ca. 3800 14C yr BP). Relative sea-level rise during the formation of these contacts 

was on average ca. 3 mm/yr (Shennan, 1994).  Rapid compaction of peat following marine inundation 

can also create accommodation space that results in widespread inundation and the rapid deposition 

of thick intertidal sediments (Long et al., 2006). 

In summary, several examples exist from Holocene coastal sequences in eastern England that include 

similar stratigraphic signatures of the drowning of basal peat as found in the lower Nar Valley. These 

transitions were not due to rapid rates of sea-level rise caused by abrupt ice-sheet collapse. Instead, 

they can be formed by gradual changes in RSL due to long-term subsidence, or to various coastal 

processes, including coastal barrier shifts, changes in basin morphology and local tidal range, basal 

peat compaction, and sedimentation (Shennan, 1994). Our model of rapid sea-level rise (Figure 3B) 

does not apply to the Nar Valley sequences, but rather suggests the sea-level rise recorded in the 

lower (MIS 9) sites was gradual.   



Site 

Peat-clay 

contact 

elevation 

(m OD) 

Foraminifera 

palaeo-

environment 

Pollen palaeo-

environment 

Relative timing of 

marine conditions 

(Hoxnian pollen 

stage) 

Change in 

tendency 

Change in 

coastal zone 

(from Fig 3) 

AAR result 

Suggested 

MIS age 

correlation 

Bradmoor Hill 

13.9 

(first 

occurrence of 

foraminifera) 

Stable 

intertidal 

Succession from late-

temperate to post-

temperate woodland  

HoIIIb potentially to 

start of HoIV 
None 

Zone 4/5 

Stable marine 

conditions 

n/a 11 

Railway 

Cottage 

6.5 

(onto hard 

substrate) 

Stable 

subtidal 

Succession from 

deciduous woodland to 

late-temperate 

woodland 

End of HoIIIa to 

HoIIIb 
None 

Zone 4/5 

Stable marine 

conditions 

n/a 11 

Horse Fen 

(12-4) 
2.8 

Intertidal, 

deepening to 

shallow 

subtidal 

Succession from fen to 

alder carr and aboreal 

woodland (from 

Stevens, 1959) 

HoIId 

(from Stevens, 

1959) 

+ 

Change from 

zone 2 to 4 

(RSL rise = half 

the tidal range) 

n/a 9 (11)* 

Tottenhill 

Quarry 

~2.6 m 

(from Ventris, 

1996) 

No 

foraminifera 

present in this 

study 

Late early-temperate 

woodland 

HoIIc  

(from Ventris, 1996) 

None in this 

study 

+ in Ventris 

(1996) 

Gradual 

(from Ventris, 

1996) 

Late MIS 11 

or early 

MIS 9 

(Bithynia 

opercula) 

9 (11)* 

Blackborough 

End Quarry 
-1.1 

Intertidal/ 

shallow 

subtidal  

Succession from early 

temperate to 

temperate woodland 

HoIIa-c ? + 

Change from 

zone 2 to 4 

(RSL rise = half 

the tidal range) 

n/a 9 (11)* ? 

Horse Fen 

(13-1) 
-2.3 

Intertidal, 

deepening to 

subtidal 

Succession from fen to 

alder carr and aboreal 

woodland 

HoIIc or HoIII + 

Change from 

zone 2 to 4 

(RSL rise = half 

the tidal range) 

Mid-

Pleistocene 

(Bithynia 

opercula) 

9 (11)* 

Table 2 – Summary of palaeoenvironments and estimate of age at each core location in the Nar Valley from this study, along with an estimate of the change 

recorded with respect to the coastal succession model in Figure 3. *The balance of evidence points to a MIS 9 age for these sites, but a MIS 11 age can also 

not be rejected outright.



 2 

Lateral extent of the transgressive contact and its representation in adjacent sequences 3 

The occurrence of a transgressive contact over a wide area of the Nar Valley (Figure 6) suggests the 4 

marine sedimentation was not simply a consequence of site-specific processes.  Transgressive 5 

contacts from the same time period which are recorded in multiple cores may suggest a regional 6 

tendency (Shennan et al., 2015).  Based upon the Hoxnian-type pollen zones (Table 1), the 7 

transgression at Horse Fen and Tottenhill Quarry occurred within HoII, most likely HoIIc at Horse Fen 8 

13-1 and Tottenhill, and HoIId at the upper Horse Fen sites, suggesting a system-wide positive 9 

tendency.  The difference in Hoxnian pollen-zone between Horse Fen 13-1 (HoIIc) and 12-4 (HoIId) 10 

may be a consequence of the ~5 m difference in elevation, suggesting that the sea-level rise was 11 

gradual during this phase of climatic succession.  The pollen assemblage at Blackborough End Quarry 12 

similarly suggests that the transgression occurred during the latter part of the Early Temperate phase, 13 

as in Horse Fen and Tottenhill, but with the absence of diagnostic Hoxnian taxa as found at the other 14 

sites, correlation remains tentative.   15 

The relative timing of the marine conditions at the higher sites of Railway Cottage and Bradmoor Hill 16 

differs from the lower transgressive contacts, with both containing HoIII (and potentially early HoIV at 17 

Bradmoor Hill) pollen assemblages.  This fits with the Ventris (1996) summary of HoIIIb marine 18 

conditions at East Winch (~8.5 m OD) and Summer End Farm (Stevens, 1959) (~12.8-10.5 m OD).  The 19 

absence of marine conditions during HoIII in the lower-level sites, based upon the absence of Abies in 20 

these sequences, adds further support to our argument that the two phases of marine sedimentation 21 

occurred during two separate interglacials.   22 

The representation of a positive tendency across a peat-clay contact may also be replicated in adjacent 23 

vertically deeper sequences as a deepening, for example from an intertidal to subtidal foraminiferal 24 

assemblage.  The transgressive contact at Blackborough End Quarry (~1.1 m OD) and the marine clay 25 

of Horse Fen 13-1 are the only instance from the cores we collected where there an elevation overlap 26 

of this nature.  At this elevation of the Blackborough End Quarry flooding surface, the Horse Fen clay 27 

contains a homogenous foraminiferal assemblage dominated by forms of A. beccarii and Aubignyna 28 

perlucida, suggesting stable shallow subtidal conditions, with no evidence for rapid deepening.  The 29 

transgressive contact at Horse Fen 13-1 (~2.3 m OD) overlaps with diatom samples analysed in the 30 

upper part of the Manor Farm borehole by Mitlehner (1992), which also show no rapid changes in 31 

water depth, but instead a gradual shift in current turbidity in a shallow marine setting.   32 



Consideration of the palaeo-stratigraphic evidence from the Nar Valley against the three main criteria 33 

leads us to conclude that the mode of sea-level change during the Nar Valley interglacial sequence 34 

was gradual (Figure 14), in line with similar Holocene changes, with potentially regional transgression 35 

occurring during both MIS 11 and 9.   36 

 37 

6.2 Sea-level change in the Nar Valley 38 

Pollen data from the Nar Valley sequences correlate with the British Hoxnian interglacial pollen 39 

assemblage sensu lato (Table 1), which have been demonstrated to have affinities to both MIS 11 and 40 

9 (Thomas, 2001), although the stratotype site of Hoxne and the full Hoxnian para-type succession at 41 

Marks Tey are now correlated with MIS 11, probably substage 11c (Ashton et al., 2008; Candy et al., 42 

2014; Rowe et al., 1999).  The balance of evidence (discussed above) leads us to suggest the Nar Valley 43 

Clay was deposited during both MIS 11 and 9, with long-term uplift (Westaway, 2009) separating their 44 

local elevation (Figure 14), and not during a single interglacial as previously thought (Stevens, 1959; 45 

Ventris, 1996).  The two-interglacial model further supports evidence for the mode of sea-level change 46 

in the Nar Valley being gradual, with rising sea level during MIS 9, and a stable highstand recorded 47 

during both MIS 11 and 9 (Figure 14), rather than the elevation difference between the lower and 48 

upper sites being explained by a sea-level jump.  However, we cannot preclude erosion by subsequent 49 

glacial sedimentation of the upper part of the marine sediments in the lower sites (Horse Fen, 50 

Tottenhill and Blackborough) where HoIII pollen is absent.  This means it is also not possible to reject 51 

outright a MIS 11 age for the whole Nar Valley sequence based upon correlation with the Hoxnian 52 

succession at Marks Tey (Rowe et al., 1999; Turner, 1970).  Nonetheless, even within a single 53 

interglacial framework there is a lack of indicators for rapid sea-level oscillations in the Nar Valley. 54 

 55 

6.3 MIS 11 and MIS 9 sea-level highstands around the world 56 

Evidence for two late-Middle Pleistocene marine transgressions (MIS 11 and 9) have been found 57 

elsewhere in eastern England, most notably in the channel-fill deposits of the Thames and its 58 

tributaries in eastern Essex (Roe and Preece, 2011).  Determining maximum water heights at any of 59 

these sites, or in the Nar Valley, is difficult as ascribing absolute water depths from the foraminiferal 60 

assemblages is not possible and the upper surfaces of the marine units have been eroded.  61 

Furthermore, regional uplift and cycles of glacial isostatic adjustment have modified the elevation of 62 

the sediments from that at the time of deposition (Westaway, 2009).  Due to the issues of dating 63 

‘Hoxnian’ sediments, as discussed here, correlation with other sites in northwest Europe is challenging 64 



and beyond the scope of this study.  However, the absence of intercalated peats within the interglacial 65 

marine sediments, or any change in tendency (beyond the initial recorded transgression at both MIS 66 

11 and 9 sites in eastern England such as Cudmore Grove, Tillingham, Shoeburyness and Barling 67 

(Bridgland et al., 2001; Roe et al., 2009; Roe et al., 2011; Roe and Preece, 2011)), suggests that neither 68 

highstand was typified by markedly rapid RSL changes. 69 

Geomorphological evidence of MIS 11 and 9 sea level found in low-latitude regions provide a snapshot 70 

of the interglacial sea-level highstand at, or above, present sea level (Blakemore et al., 2015; Chen et 71 

al., 2014; Hearty and Kindler, 1995; Murray-Wallace, 2002; Raymo and Mitrovica, 2012; Schellmann 72 

and Radtke, 2004; Vezina et al., 1999).   A stack of ocean sediment core-based reconstructions of Late 73 

Pleistocene sea level identifies the highstands in sea level during MIS 11 and 9, but is unable to resolve 74 

millennial-scale structure (Spratt and Lisiecki, 2016).  The only ‘continuous’ sea-level record that might 75 

provide further insight into the mode of sea-level change during the MIS 11 and 9 highstands is 76 

currently from the Red Sea which, within the sample resolution, does not suggest any rapid 77 

fluctuations when sea level is above present (Rohling et al., 2010; Rohling et al., 2009), unlike the MIS 78 

5e record in the same location (Rohling et al., 2008).   79 

Ice extent during MIS 9 has received little attention (Past Interglacials working group of PAGES, 2016) 80 

and, a mean highstand of 9±23 m based upon a range of ocean-core records (Spratt and Lisiecki, 2016), 81 

suggests the potential for either greater, the same or reduced total ice volume relative to present.  82 

Data for MIS 11 is a little more comprehensive.  Ice core and oceanographic records from Greenland 83 

during MIS 11 suggest that although ice was probably present at the centre of the present ice sheet 84 

(Yau et al., 2016), it was much smaller in overall extent, potentially losing up to 6 m sea-level-85 

equivalent volume (de Vernal and Hillaire-Marcel, 2008; Reyes et al., 2014).  After correcting for GIA, 86 

Raymo and Mitrovica (2012) calculate that global mean sea level during MIS 11 was 6-13 m above 87 

present and infer melt of the Greenland and West Antarctic ice sheets towards the end of the 88 

interglacial, but relative stability of the East Antarctic Ice Sheet, although the rate of mass loss is 89 

unknown (Alley et al., 2010).  Delayed melting of the ice sheets within MIS 11 fits with our pollen 90 

records from Bradmoor Hill and Railway Cottage, which suggest marine sediment deposition during 91 

the Late Temperate phase of the interglacial.  Although there is clear evidence for sea-level highstands 92 

above present during MIS 11, and potentially also during MIS 9, in both the low latitudes and 93 

northwest Europe, the absence of indicators for one or more sea-level oscillations, in our albeit 94 

spatially limited datasets implies steady melt of the ice sheets during the interglacial phases.  95 

 96 



7. Conclusions 97 

MIS 11, 9 and 5e have been shown to be the warmest interglacials of the last 800,000 years (Past 98 

Interglacials working group of PAGES, 2016; Yin and Berger, 2012), and therefore hold insights into 99 

ice-sheet behaviour in warm climates and provide potential analogues for the future.  Evidence for 100 

the mode of sea-level change during MIS 11 and 9 is sparse compared to that from MIS 5e (Dutton et 101 

al., 2015).  We present new detailed analysis of a ‘Hoxnian’ sequence from the Nar Valley and apply 102 

multi-proxy methods of reconstruction which have been widely applied to similar Holocene 103 

temperate-latitude estuarine sequences.  Such records are valuable as they have the potential to 104 

provide more continuous archives of RSL change and therefore identify millennial-scale changes in sea 105 

level that large-scale geomorphological features, such as raised beaches, may not record.  The 106 

application of methodologies developed in Holocene settings to previous interglacial deposits may be 107 

restricted by the preservation of material across a range of elevations, sampling resolution and 108 

limitations of dating.  Notwithstanding these challenges, we apply the tendency methodology to 109 

marine sediments from over a ~20 m modern elevation range in the Nar Valley, with pollen analysis 110 

and AAR dating suggesting that there may be two periods of marine sediment deposition: one during 111 

MIS 11 (Hoxnian Late Temperate phase) from ~8 to 18 m OD; and a second phase potentially during 112 

MIS 9 (Hoxnian Early Temperate phase) from ~-3 to 3 m OD, although we cannot conclusively preclude 113 

an alternative MIS 11 age for these lower sediments.  It must be noted that these modern elevations 114 

likely bear very little resemblance to their elevation at the time of deposition due to glacial isostatic 115 

adjustment and long-term tectonic uplift.  We do not find any compelling evidence for abrupt changes 116 

in sea level either in the Nar Valley or nearby similar sequences in eastern England during these times 117 

and no difference in the nature of the MIS 9/11 transgression when compared to similar Holocene 118 

sequences, where there is no evidence for abrupt (multi-meter) sea-level jumps.  These results add 119 

weight to similar analysis of the MIS 5e record from the Netherlands (Long et al., 2015), which suggest 120 

gradual, rather than rapid, melt of the ice sheets persisted in these interglacials when sea level was at 121 

or above present-day levels, although much more data is needed to test these hypotheses.   122 
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 422 

Figure 1: MIS 9 and 11 global sea level highstands recorded by the Spratt and Lisiecki (2016) ocean 423 

core sea level stack (PC1) relative to present (0 m at 0 ka).  Only vertical uncertainties shown, for 424 

clarity. 425 

  426 



 427 

Figure 2: Map of eastern England showing location of the Nar Valley and key locations given in text. 428 



 429 

Figure 3: A: Model of northwest European coastal succession (after Waller et al., 1999).  B: Models of 430 

gradual (left) and abrupt (right) sea level rise as recorded by a coastal sequence (adapted after Long 431 

and Shennan, 1994).  Note: the length of panel B is not indicative of the amount of sedimentation and 432 

both models assume the same total RSL rise. 433 



 434 

Figure 4: Stratigraphy of the Nar Valley and locations of former boreholes.  Cross section adapted from 435 

Ventris (1996) 436 

  437 



 438 

Figure 5: Map of the Nar Valley showing locations of new boreholes and key settlements.  Topography 439 

from NEXTMap British Digital Terrain Model Dataset Produced by Intermap with tickmarks in degrees, 440 

minutes and second.  White contours show location of Nar Valley Clay as mapped by British Geological 441 

Survey (BGS). 442 



 443 

Figure 6: Nar Valley borehole lithology, collected as part of this work, with additional boreholes from 444 

the literature at sites we were unable to resample.  Elevation of Tottenhill section estimated from 445 

Ventris (1996). 446 



 447 

Figure 7: Horse Fen 13-1 litho- and bio-stratigraphy.  Foraminifera >5% of total tests counted (grey line n=50). Selected pollen taxa shown.  Lithology key same 448 

as Figure 6. 449 



 450 

Figure 8: Blackborough End Quarry litho- and bio-stratigraphy.  Foraminifera >5% of total tests counted (grey line n=50). Selected pollen taxa shown.  Lithology 451 

key same as Figure 6. 452 



 453 

Figure 9: Tottenhill litho- and biostratigraphy.  Selected pollen taxa shown. Lithology key same as Figure 6.  No foraminifera were found at this location. 454 

 455 



 456 

Figure 10: Horse Fen 12-4 litho- and bio-stratigraphy.  Foraminifera >5% of total tests counted (grey line n=50). Lithology key same as Figure 6.  Pollen for this 457 

location in Stevens (1959) though exact elevations do not match. 458 

 459 



 460 

Figure 11: Railway Cottage litho- and bio-stratigraphy.  Foraminifera >5% of total tests counted (grey line n=50). Selected pollen taxa shown.  Lithology key 461 

same as Figure 6. 462 

 463 



 464 

Figure 12: Bradmoor Hill litho- and bio-stratigraphy.  Foraminifera >5% of total tests counted (grey line n=50). Selected pollen taxa shown.  Lithology key same 465 

as Figure 6.466 



467 

Figure 13: D/L values of glutamic acid/glutamine (Glx) and alanine (Ala) for the total hydrolysable 468 

amino acid (THAA;H) fractions of bleached Bithynia tentaculata opercula from Horse Fen (HF) and 469 

Tottenhill (TH and Tott3) (light blue) compared with opercula from UK sites correlated with MIS 9 470 

(grouped in darker blue) and MIS 11 (grouped in purple). Selected relevant sites are plotted in the 471 

order in which they are presumed to occur based on the pollen succession (CG = Cudmore Grove, Pu 472 

= Purfleet, Sh = Shoeburyness, Ba = Barling, Ho = Hoxne, Wo = Woodston, Cl = Clacton) by which to 473 

compare the results from this study.  For each group, the base of the box indicates the 25th percentile, 474 

the line within the box plots the median, and the top of the box indicates the 75th percentile. Where 475 

more than nine data points are available, the 10th and 90th percentiles can be calculated (shown by 476 

lines at the bottom and the top of the boxes, respectively). The results of each duplicate analysis are 477 

included in order to provide statistically significant sample sizes. 478 



 479 

Figure 14: Summary figure as to the mode of sea-level change in Nar Valley assuming the two 480 

sequences (upper and lower) were deposited during differing interglacials.  The alternative hypothesis 481 

is that the lower sites (shown as MIS 9 here) were also deposited during MIS 11, but during a differing 482 

sub-stage.  Elevation correction is for illustration assuming uplift between MIS 11 and 9 (Westaway 483 

(2009) estimates ~3.3-5 m uplift during the two interglacials in this location). 484 


