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Abstract

Linear estimators of the affine term structure model are inconsistent since they

cannot reproduce the factors used in estimation. This is a serious handicap empirically,

giving a worse fit than the conventional ML estimator that ensures consistency. We

show that a simple self-consistent estimator can be constructed using the eigenvalue

decomposition of a regression estimator. The remaining parameters of the model follow

analytically. Estimates from this model are virtually indistinguishable from that of the

ML estimator. We apply the method to estimate various models of U.S. Treasury

yields. These exercises greatly extend the range of models that can be estimated.
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Introduction

This paper proposes a simple regression-based method for estimating the risk-neutral

dynamics of the affine term structure model that is internally consistent in the sense that

it can reproduce the factors used in estimation. We obtain this result using the eigenvalue

decomposition of a linear estimator. The remaining parameters of the model follow ana-

lytically. Remarkably, the fit of this model is virtually indistinguishable from that of the

maximum likelihood (ML) estimator.

The estimation of a no-arbitrage dynamic term structure model (DTSM) represents a

challenging numerical problem, but in recent years significant progress has been made in

tackling this (Joslin et al. (2011), Hamilton and Wu (2012), Adrian et al. (2013), Abrahams

et al. (2015) and Diez de Los Rios (2015)). These new methods greatly facilitate the estima-

tion of term structure models but have their own limitations. For instance, the method of

Joslin et al. (2011) (henceforth JSZ) maximizes the likelihood of the cross-section of yields,

but is slower than the new linear methods and requires the nature of the risk-neutral roots

of the model to be specified (as real or complex and distinct or repeated). Moreover, the

presence of multiple local optima means that good parameter starting values are necessary

to increase the chances of finding the global optimum.

On the other hand, the linear estimators of Adrian et al. (2013) and Abrahams et al.

(2015)1 (henceforth AACM) yield instantaneous solutions that are unique, but as Joslin

et al. (2013) point out, they contain redundant parameters. For example, with 3 factors,

the risk-neutral response matrix that underpins the model of the cross section of yields, is

defined by 3 characteristic roots (or eigenvalues), while the regression uses 9 parameters.

Joslin et al. (2013) show that this means that the models are not self-consistent in the sense

that they assume that the yield-based factors are observed without error, but the factors

reconstructed from the yields fitted by the model differ from these observed values.

1This working paper version is not to be confused with the published version (Abrahams et al., 2016),
which eschews the regression approach and instead employs the Maximum Likelihood method, which is
internally consistent.
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This theoretical inconsistency may or may not be important in practice, but is just one

potential consequence of over-fitting. As in any econometric model, eliminating redundant

parameters should improve general performance in fitting the data, as well as forecasting

and simulation exercises, reducing the risk of misleading inferences being drawn.

The constrained estimator (DLRC) proposed by Diez de Los Rios (2015) (henceforth

DLR), uses an iterative method to remove these redundant parameters from initial regression

estimates (DLRU) of the risk-neutral dynamics. Instead, we do this in a way that preserves

the characteristic roots of the DLRU risk-neutral response matrix and thus its dynamic

characteristics. This matrix determines the factor loadings in the model of bond yields. We

then exploit the sequential nature of the arbitrage-free parameter solution to find a closed

form expression for the risk-neutral level parameter, conditional upon the response matrix.

This determines the intercepts in the yield model.

By eliminating redundant parameters, our estimator markedly outperforms linear esti-

mators that are not self-consistent. In practice this means that the fit of the latter needs to

be improved by increasing the number of factors. Our procedure preserves the risk-neutral

dynamics that are embedded in the characteristic roots, while iterative procedures that en-

sure consistency, like the one used by DLR, are unlikely to do this. His estimator does not fit

a standard set of U.S. Treasury yield data and simulated data sets based on this benchmark

data as well as ours does.

We show that any regression-based estimator of the risk-neutral dynamics (such as

AACM or the unconstrained DLR estimator, DLRU), can easily be modified to give a

self-consistent term structure model. This method is based on four key observations, of

which two are well-established and two are novel. First, JSZ showed that ML estimates of

the physical factor dynamics can be provided by a stand-alone vector autoregression (V AR)

of the principal components of yields and second, that the factor covariance matrix provided

by this V AR is consistent and very close to the ML estimate. These techniques are exten-

sively used in the new linear regression literature. We take this further by noting that the

risk-neutral roots of the self-consistent model can be estimated as the characteristic roots
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of the risk-neutral response matrix of any linear regression model. Moreover, although raw

regression estimates (such as DLRU) are under-identified, these eigenvalues, which charac-

terize the Q−dynamics, are estimated with an extremely high degree of precision. They are

strongly rooted in the data, helping to explain why our approach works so remarkably well.

Finally, we show that given these values, the remaining parameters follow analytically. This

completes the specification of the risk-neutral dynamics, allowing the coefficients of the full

cross-section of yields to be estimated using well-known affine recursion relationships.

Using a standard data set for U.S. Treasury yields, we find that applying our simple

self-consistent (SSC) procedure to the unconstrained DLR estimator gives results that are

virtually indistinguishable from those obtained by the JSZ ML estimator. Similarly, we

find that using the characteristic roots of the risk-neutral response matrix from the DLRU

regressions as starting values for the root parameters in the JSZ ML algorithm, hardly any

iteration is required to get the ML values, since these are so close (see Table 2).

We check the robustness of these findings using bootstrap simulations. The simulation

exercise takes the ML estimates of the JSZ model as the ‘true’ values and uses these to

generate 5, 000 artificial yield data samples of the same length and character as the original

U.S. Treasury yield data set. This exercise reveals that the SSC(DLRU) and ML methods

both display negligible bias and that the former fits the simulated data almost as well as the

latter. Remarkably, initiating the ML procedure using the DLRU estimates is as effective

as initiating it from the ‘true’ values used to generate the artificial data.

These exercises show how our new algorithm can estimate the Q−dynamics in the stan-

dard V AR(1) DTSM , quickly and consistently. However, the recent literature has been

focussed on generalizing and refining the specification of the P−dynamics. These can be

used to represent market expectations that, subtracted from the corresponding yields, gives

residuals that can be interpreted as term premia. These new time-series approaches are based

on ML methods and can be very time-intensive, but we show that they can be speeded up

enormously using our regression-based approach, greatly extending the range of problems

that can be handled.
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We demonstrate this using a generalization of the standard V AR(1) DTSM proposed by

Joslin et al. (2013), who consider V AR(p), p ≥ 1, for the physical dynamics and V AR(1) for

the risk-neutral dynamics. For the three factor model, the Akaike (AIC) and Hannan-Quinn

(HQIC) information criteria favour the V AR(2), while the Bayesian information criterion

(BIC), which is stricter, selects the V AR(1). As usual, we find that many of the parameters

of these time-series models are insignificant, leading to poorly-determined estimates of the

term premium. So we apply the model selection procedure proposed by Joslin et al. (2014) to

eliminate insignificant parameters and search over parameter combinations that is optimal

in terms of these information criteria. For the V AR(2) model we need to select a model

from over two million (221) possible combinations. This would not be feasible using ML,

but we can find this solution quickly using our regression-based framework. Imposing these

restrictions reduces the variance of the term premium without significantly reducing the

likelihood of the model.

The paper is set out as follows. The next section sets out the theoretical model of

the risk-neutral dynamics and the term structure and discusses the alternative ML and

linear estimation approaches. Section 2 shows how a self-consistent model of the risk-neutral

dynamics can be found using any linear estimator. Section 3 compares the performance of

these self-consistent regression-based estimators with that of the ML approach. In Section

4 we apply our estimation method in conjunction with generalized physical dynamics of the

factors. Section 5 concludes with some observations on the the implications of these results

for research on the term structure.

1 Estimating affine term structure models

Assume that the zero-coupon log bond prices, pm,t, are affine in K observable factors qt:

−pm,t = am + b′
mqt. (1)
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We collect these in a vector p of log prices with J maturities that can be collected in a vector

m = [m1,m2, . . . ,mJ ]
′, where −pt = a +B′qt, a = [am1

, . . . , amJ
]′ and B = [bm1

, . . . ,bmJ
].

Also assume that the factors follow a V AR(1) process under the risk-neutral measure:

qt+1 = µµµQ +ΦQqt + uQ
t+1 (2)

with uQ
t ∼ i.i.d.NQ(0,Σ).

The core of the estimation problem is to find the parameters of this process: µµµQ and ΦQ.

These are related to the price coefficients by the well-known recursions:

bm = b1 +ΦQ′bm−1, (3)

am = a1 + am−1 + b′
m−1µµµ

Q − 1

2
b′
m−1Σbm−1. (4)

1.1 Indirect Maximum Likelihood estimators of the risk-neutral

dynamics

Until recently, the standard way of estimating the parameters of the risk-neutral dynamics

was to embed them in the price coefficients using (3) and (4), substitute them back into (1)

and, upon transformation to yields by ym,t = −pm,t/m, optimize the likelihood of observing

the associated bond yields. Because yields do not exhibit an exact factor structure it is

assumed that they are measured with error. Following Duffee (2011) and others we denote

observed yields by yo
t and add the vector of pricing errors vt:

yo
t = ŷt + vt

= ay +B′
y
qt + vt, (5)

where ay ≡ M−1a, B′
y
≡ M−1B′, vt ∼ N (0,Σv) , and M is a diagonal price-yield trans-

formation matrix with maturities m on the main diagonal. In particular, the short rate
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equation (rt ≡ −p1,t) becomes:

rot = δ0 + δδδ′1qt + v1,t. (6)

Since the measurement errors are not priced, they have the same distribution under both

the physical and the risk-neutral measure: vt ∼ i.i.d.N(0,Σv).

Hamilton and Wu (2012) note that an OLS regression of the form (5) provides a bench-

mark for these affine models, which ignores the no-arbitrage restrictions (3) and (4). They

propose a minimum χ2 estimator that minimizes the distance between the restricted and

unrestricted estimates of ay and By.

1.2 Direct regression-based estimators of the risk-neutral dynam-

ics

In contrast, the regression-based approaches attempt to estimate the parameters of the

risk-neutral dynamics µµµQ and ΦQ directly using either the OLS regression estimates of ay

and By or those of excess ex post return regressions. As noted, these regression estimators

cannot reproduce the pricing factors. It is usual to assume that these factors are the first K

principal components (PCs) of the cross-section of yields:

qt ≡ W′yo
t . (7)

Substituting (5) into (7), we see that internal consistency requires:

W′M−1a = 0, (8)

W′M−1B′ = I, (9)

and W′vt=0. In other words, the factors reconstructed from the yield estimates qt = W′ŷt,

must coincide with those constructed from the observed yields in (7).

This problem is a consequence of the basic problem that the regression models contain

redundant parameters (Hamilton and Wu, 2012, Diez de Los Rios, 2015). The indirect ML
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estimators eliminate these using alternative (but equivalent) identification schemes. For

example, JSZ scheme, which we use, is discussed in the next section. Conveniently, when

the factors are PCs, the weights W used in the construction of the factors qt are provided

by the eigenvectors of the eigendecomposition of the yield covariance matrix and the OLS

factor loadings are the transpose of this matrix, allowing us to write the Hamilton and Wu

(2012) benchmark OLS regression (5) as: yo
t = c+Wqt + v̂t, where W ≡ B′

y
, c is a vector

of constants and v̂t is a vector of PC or equivalently OLS residuals.

The weights W can thus be used to estimate B′ = MW and hence the risk-neutral

parameters using the Hamilton and Wu (2012) or DLR approaches. For example, the DLR

cross-section regression estimator DLRU of the risk-neutral feedback matrix Φ̂Q in (3):

Φ̂Q =

(
mJ∑

m=m2

bm−1b
′
m−1

)−1( mJ∑

m=m2

bm−1(b
′
m−b′

1)

)
, (10)

(his Eq.(9)). Our self-consistent estimator focuses on this matrix.

The model is completed by specifying the physical dynamics of the factors. In this paper

we first assume that they follow a V AR(1) process:

qt+1 = µµµ+Φqt + uP
t+1 (11)

with uP
t ∼ i.i.d.NP(0,Σ), but it is straightforward to make an extension so that they can

include other, unspanned variables (Joslin et al., 2014) or include multiple lags (Joslin et al.,

2013), as we do in Section 4.

2 The simple self-consistent term structure estimator

In this section, we show how the redundant parameters of any linear regression model

(such as AACM or the unconstrained DLR estimates outlined in the previous section) can

be eliminated using the standard eigenvalue decomposition.
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2.1 Structural restrictions and the JSZ identification scheme

A convenient identification scheme was proposed by JSZ. They assume that the under-

lying latent factors follow the risk-neutral dynamics:

xt = µµµQ
x
+ΦQ

x
xt−1 + uQ

x,t, (12)

where ΦQ
x

has an ordered Jordan form determined by K parameters only and uQ
x,t ∼

i.i.d.NQ(0,Σx). The level parameter can be identified by specifying jointlyµµµQ
x
= (µQ

∞, 0, . . . , 0)′

and δx,0 = 0.2 The theoretical log bond prices are:

−pt = ax +B′
x
xt, (13)

where ax and Bx follow from recursion systems analogous to (3) and (4):

bx,m = bx,1 +ΦQ′
x
bx,m−1, (14)

ax,m = ax,1 + ax,m−1 + b′
x,m−1µµµ

Q
x
− 1

2
b′
x,m−1Σxbx,m−1. (15)

The observed yields can be expressed as:

yo
t = ay,x +B′

y,xxt + vt, (16)

where ay,x = M−1ax and B′
y,x = M−1B′

x
, and the short rate is given by:

rt = δx,0 + δδδ′
x,1xt + v1,t, (17)

where δx,0 = ax,1 and δδδx,1 = bx,1.

2Alternatively, if the factors are stationary under the risk-neutral measure (the most persistent factor
has the multiplicity one with the autoregressive coefficient |φ1| < 1), the level parameter can be identified
by setting δx,0 = rQ∞ and µµµx = 0. These two identification schemes are equivalent in this case and the
parameters are related by rQ∞ = µQ

∞/(1− φ1).
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In a single-market setting (e.g. when modelling nominal government bonds in one coun-

try), δδδx,1 is not identified under the JSZ parametrization and thus can be normalized to an

arbitrary vector (usually a K−dimensional vector of ones, δδδx,1 = 1). In a joint model of two

or more markets with common factors, however, δδδx,1 needs to be estimated, since in general

the latent factor loadings for one country affect the observable factor loading of the others.3

Substituting (13) into (7) and assuming that W′vt = 0 allows us to switch between the

latent and observable factors using:

xt = −(W′B′
y,x)

−1W′ay,x + (W′B′
y,x)

−1qt. (18)

This implies that the relationship between the coefficients in the dynamics of the observable

factors (2) and latent factors (12) is:

ΦQ = (W′B′
y,x)Φ

Q
x
(W′B′

y,x)
−1, (19)

µµµQ = (W′B′
y,x)µµµ

Q
x
+ (I−ΦQ)W′ay,x, (20)

and

Σx = (W′B′
y,x)

−1Σ(W′B′
y,x)

−1′. (21)

JSZ note that the parameters {µµµ,Φ} describing the P−dynamics of the observable fac-

tors (11) are unrestricted and can be estimated by OLS regression. This regression also

provides a consistent (although not efficient) estimate of the Σ matrix, which is involved in

determination of the affine coefficients am. Given these parameters, we are concerned in this

paper with finding self-consistent estimates of the remaining parameters, which determine

the risk-neutral dynamics of the factors.

3More technical details and the application of the estimator to a joint two-country model can be found
in the working paper version of this article, Goliński and Spencer (2019).
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2.2 The simple self-consistent (SSC) estimator

Any approach that returns unconstrained estimates of the risk-neutral dynamics uses

K ×K free parameters in the response ΦQ matrix instead of the K parameters in ΦQ
x
and

K parameters in µµµQ instead of the single level parameter in µµµQ
x
, and thus results in a model

that is over-parametrized and therefore internally inconsistent. However, the factor structure

of the ΦQ matrix (19) suggests that the underlying roots of the model can be found from

the eigenvalue decomposition of a regression-based Φ̂Q.4 We can put these roots in the real

Jordan form Φ̂Q
x
and replace the regression-based response ΦQ matrix by its self-consistent

counterpart corresponding to (19): Φ̃Q = (W′B′
y,x)Φ̂

Q
x
(W′B′

y,x)
−1, where the loadings By,x

follow from (14) and (16). Substituting the latent factors (18) into (16), which represents

yields in terms of the latent factors, and equating this with (5), which expresses them in

terms of the observed factors, allows us to find its loadings and intercepts:

B′
y

= B′
y,x(W

′B′
y,x)

−1 (22)

ay = Hay,x, (23)

where H is the idempotent matrix:

H = I−B′
y,x(W

′B′
y,x)

−1W′ (24)

and I is the identity matrix. Also, integrating the intercept recursion in (15) and substituting

µµµQ
x
= (µQ

∞, 0, . . . , 0)′ gives the closed form:

ay,x = µQ
∞c0 − c1, (25)

4One of the advantages of this approach is that we do not need to test different root configurations (i.e.
whether they are real/complex, distinct/repeated).
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where the elements of c0 and c1 are:

c0,m =
1

m

m∑

j=1

bx,1,j−1, c1,m =
1

2m

m∑

j=1

b′
x,j−1Σxbx,j−1. (26)

The consistent estimate of the level parameter is given by substituting (25) into (23) and

equating this vector with the unrestricted yield intercepts: ãy = yo − B′
y
q, where yo and

q denote vectors of sample means of yields and the observable factors, respectively, and By

are the arbitrage-free slope coefficients (22). We can then solve for the level parameter as:5

µ̂Q
∞ = (c′0H

′Hc0)
−1

c′0H
′ (ãy +Hc1) . (27)

The terms on the right hand side of (27) are evaluated conditional on the estimated roots.

To summarize, our simple self-consistent estimator, SSC(DLRU), is obtained as follows.

The vector of parameters to estimate is Θ = {µQ
∞,ΦQ

x
,µµµ,Φ,Σ,Σv}. We follow JSZ, AACM

and others in estimating the P−dynamics of the observable factors (µµµ,Φ,Σ) in (11) by OLS.

We obtain ΦQ using (10). The roots of the model are the eigenvalues of ΦQ, which form ΦQ
x
.

Given the estimates of Σ and ΦQ
x
, we compute the loadings B using (22) and find the level

parameter using (27). Similarly, our simple self-consistent AACM estimator, SSC(AACM),

is obtained by finding ΦQ from excess return regressions.

3 Empirical evaluation of the SSC estimator

This section reports the results of using the basic V AR(1)DTSM to represent a standard

data set for the U.S. Treasury market. Later sections look at extensions of the model

stemming from the recent literature on the physical dynamics.

5The formula for rQ∞ is identical, with c0 equal to a vector of ones, c0 = 1.
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3.1 Data

To compare the performance of this new approach with others, we first employ these on

a standard monthly data set for the U.S. Treasury market, one used for example in Goliński

and Spencer (2017). This is similar to the data set used by Adrian et al. (2013) and comprises

eight base yields with maturities 1 month, 1, 2, 3, 5, 7, 10 and 15 years for the period January

1983 to December 2015, which followed the Volker experiment. The annual maturities come

from the well-known data set constructed by Gurkaynak et al. (2007) using the Svensson

(1994) parametric method, which are published by the Federal Reserve Board.6 The short

rate data comes from the Fama Treasury bills files available from the Center of Research in

Security Prices. For more detailed description of the data, see Goliński and Spencer (2017).

3.2 The performance of different estimators

Table 1 shows the performance of different estimators, measured in terms of the root-

mean-square error (RMSE) for each yield and the average across yields for 3, 4 and 5 factors.

This is a natural measure of performance used for example by Adrian et al. (2013), even

though their estimates are based on return regressions, perhaps making RMSEs for returns

more relevant. The Hamilton and Wu (2012) regression model (5) and ML estimate of the

JSZ model (reported respectively as OLS and JSZ for short) constitute benchmarks for

other models. The OLS regression is the best linear unbiased estimator. The ML routine

searches numerically for the parameters (including Σ) that maximize the likelihood function

subject to the no-arbitrage constraints, providing the upper bound for the no-arbitrage

approaches. These two routines optimize the likelihood function for these eight base yields

directly, while the other methods that we consider estimate the price coefficients indirectly

using estimates of the parameters of the risk-neutral dynamics for different sets of maturities.

The information set used in these estimators is larger than in JSZ, since it includes both the

eight base maturities and eight adjacent maturities. Finally, these other approaches satisfy

6Available at: http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html.
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the restriction that the Σ parameters appearing in the cross-section (2) and the time series

dynamics (11) are the same by using the estimates from the the latter, while the ML routine

uses these parameters to optimize the fit of both dimensions jointly. However, all methods

considered in the table use the same observable factors, which are the first K principal

components of our eight base yields.

In our comparison we include the linear estimators that do not impose self-consistency

restrictions, namely the AACM and DLRU , as well as estimators that do, like the estimator

proposed by Diez de Los Rios (2015), denoted DLRC , adapted to our selection of yield

maturities.7 As noted in the introduction, the DLR routine imposes the self-consistency

constraints using iterative methods. However, as opposed to the original DLR estimator, we

use the OLS version of the DLR method, since we found that his GLS estimator diverges

when the number of factors is larger than three. For three factors, the DLR routine results

obtained by constrained OLS and constrained GLS are similar. As input for our SSC

method we then use the estimates of ΦQ from the AACM and DLRU estimators to get

SSC(AACM) and SSC(DLRU), respectively.

Finally, in the comparison we use the constrained estimator DLRC as input to get

SSC(DLRC). Since the DLRC estimator is already self-consistent, this estimator returns

the same estimate of the ΦQ matrix, and thus the By factor loadings. The difference between

these two methods comes solely from the method of estimation of µµµ; while the DLR method

simultaneously uses all risk-neutral parameters to fit the model to its OLS counterpart, the

SSC estimator obtains the level parameter using (27) conditional on the ΦQ matrix.

Table 1 indicates that three factors are sufficient to give a plausible fit to the term

structure, in line with typical bid-ask spreads in the U.S. Treasury market. However, a four

or perhaps a five factor model is needed to get the performance of the JSZ model close to

that of the unrestricted OLS model. The loadings on the first three principal components

are shown in Figure 1. They have the shapes to the level, slope and curvature factors, as

typically found in the literature.

7We are grateful to Antonio Diez de los Rios for providing us with his code.
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The next two results are for the AACM and DLRU regressions, which do not impose the

self-consistency condition. The AACM algorithm gives the worst fit of all approaches for

the 3 factor model, with an average RMSE exceeding 12 basis points. The table shows that

it requires 4 (or perhaps 5) factors to get a plausible fit, but even then it is noticeably worse

than the OLS and JSZ benchmarks. The average RMSE for the DLRU method for the 3

factor model is about 8.5 basis points, which is much lower than for the AACM routines.

The fit obtained by the DLRU method for the 5 factor model is, however, slightly worse

than for the AACM method. This is mainly due to the poor fit apparent for the 1−year

yield.

Surprisingly, the performance of the constrained linear estimator proposed by DLR is

always visibly worse than the JSZ benchmark. This is particularly glaring for the model

with 4 and 5 factors, where the RMSEs exceed those of the JSZ benchmark by a several

basis points.

The last three entries in the table, SSC(AACM), SSC(DLRC) and SSC(DLRU), com-

pare the fit of the simple self-consistent estimation methods based on the roots of the es-

timates of the ΦQ matrix obtained by different methods. Imposing the self-consistency

restrictions in this way always improves the fit. For instance, SSC(AACM) with 3 factors

reduces the average RMSE from over 12 basis points to under 8 basis points. The absolute

improvement in fit for a larger number of factors is smaller but is still considerable: e.g.

for the 5 factor model the RMSE of the AACM and DLRU estimators are reduced from

about 1.6− 2.0 basis points to under 1 basis point. Remarkably, the SSC(DLRU) estimator

is very close to that obtained by the JSZ method. This is impressive given the fact that

the key parameters are estimated by simple linear regression, using data for a selection of

DLRU regressions rather than by optimizing the fit for the eight base yields, using all the

model parameters. This reflects the observation made in the introduction that the estimates

of the roots of ΦQ
x

provided by the basic DLRU regressions are very close to those of the

ML estimates. Finally, it is worth noting that applying our SSC method to the DLRC

gives considerably better fit to the data, than the DLRC routine, which demonstrates the
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gain from estimating the level parameter upon conditioning on the fitted loadings.

3.3 Parameter estimates

While practitioners are likely to be interested in the ability of a method to fit the cross-

section of bond yields, a researcher is more likely to be interested in drawing statistical

inferences about the risk-neutral parameters. In this respect, direct regression-based esti-

mates provide a useful check upon inferences drawn indirectly from the parameters embedded

in bond yields. Table 2 reports the ML estimates of µQ
∞ and the roots of ΦQ

x
in the JSZ

model for 3, 4 and 5 factors. We checked different root configurations and report those with

the highest likelihood value. Specifically, the roots for the 3 factor models are all real, while

those for the 4 and 5 factor models include a complex pair. Table 2 also reports the struc-

tural parameters implied by the DLRC routine, as well as SSC(AACM) and SSC(DLRU)

methods.

It is striking how close the roots of the DLRU estimator always are to the ML estimates.

The roots obtained from the SSC(AACM) estimator are generally some distance away from

the ML values. Most problematic for the SSC(AACM) method is the estimate of the least

persistent root, which is always much too small. This is most apparent for the 4 and 5

factor models, where the estimates of the least persistent real root is negative, while the ML

estimate is about 0.6.

Interestingly, while the direct regression methods, AACM and DLRU , return the same

roots as JSZ, i.e. real roots of ΦQ
x

for the 3 factor model and complex roots for 4 and 5

factors, for the 4 factor model the roots obtained by the DLRC method are all real. This

demonstrates the likely ‘distortion’ caused by the iterative procedure of imposing nonlinear

self-consistency constraints that can drive the roots away from those in the linear regression

estimates (DLRU). Also, for the specification with 4 and 5 factors, the 2 largest roots

obtained by the DLRC method are furthest away from the ML estimates. The next section

analyses the robustness of these findings.

The standard errors reported in this table come from the asymptotic variance matrix
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of the parameters found using the delta method (see e.g. Greene, 2002, Theorem D.21A).

Specifically, the distribution of the risk-neutral parameters Ψ = (µQ
∞,λλλ′)′, where λλλ are the

risk-neutral roots, is calculated from

√
T
(
Ψ̂−Ψ

)
d→ N (0,ΓΩΓ′) , (28)

where Ω is the variance matrix of the reduced form parameters ay and By in (5) for both

the set of J yields with our basic maturities and J yields with subsequent maturities, and Γ

is the Jacobian matrix of partial derivatives calculated numerically. Since Σ has no effect on

the roots and only a second-order effect on the level parameter, we assume that it is known

with certainty in these calculations, having checked that it does not materially affect the

results.

Alternatively, the standard errors could be calculated in a bootstrap exercise. Given the

rapid execution of the linear regression, its applicability to bootstrap and other simulation-

based problems offers further advantage over the ML methods. Throughout this paper,

however, we report asymptotic standard errors for two reasons. First, it gives a direct

comparison with other results reported in the related literature (Joslin et al., 2011, Bauer

et al., 2012, Adrian et al., 2013, Joslin et al., 2014, Diez de Los Rios, 2015). Second, since

in application the linear regression method puts emphasis on simplicity and time efficiency,

for consistency we stay with the standard errors generated by an instantaneous solution of

the delta method rather than the time-consuming bootstrap procedure.

As we would expect, the efficient JSZ maximum likelihood procedure generates the

smallest standard errors. The self-consistent linear regression methods based on yields,

DLRC and SSC(DLRU) have slightly larger standard errors, but they are generally of

the same order of magnitude as those returned by the maximum likelihood algorithm. In

particular, the very low standard errors of the latter indicate that although the raw regression

estimates are under-identified, their eigenvalues are strongly rooted in the data, helping to

explain why our approach works as well as it does. On the other hand, the standard errors

from the SSC(AACM) routine are an order of magnitude larger, making some of them
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statistically insignificant. This is particularly evident for the level parameter, which is poorly

identified from the excess return regressions. This provides further evidence that the model

parameters obtained from excess returns should be treated with caution.

3.4 Robustness

To examine the robustness of these results, we conducted a bootstrap simulation exercise

that takes the ML estimates of the JSZ model in Table 2 as the ‘true’ values and uses these

to generate 5, 000 artificial data samples of the same length and character as the original

data set.

In the first stage we use the estimates of the P−dynamics in (11) to simulate the time

series of the principal components.8 This gives the ‘true factors’ for each sample. We next

use each set of factors to generate a cross-section of yields using (5) with a∗
y
and B∗

y
obtained

from the recursions (3-4) using the ‘true’ JSZ parameters. Then we add the measurement

errors, obtained by randomly drawing the joint residuals v∗
t from the ‘true’ JSZ model

estimates using the circular stationary bootstrap proposed by Politis and Romano (1994).

We then present a hypothetical researcher with each data sample. Importantly they only

see the cross-section of yields. They do not know what the true factors are, but have to back

these out of the cross-section using principal components and the JSZ assumption that

weighting up the ‘true’ residuals v∗
t using the sample-dependent weights W gives W′v∗

t = 0.

Since this may not be true in these samples, setting the simulations up in this way allows us to

test the validity of this assumption by checking the parameter estimates for the measurement

error bias discussed in Section 2.1. Finally, our researcher uses these estimated factors to

estimate the term structure model using the ML, DLRC and SSC(DLRU) methods. Table

3 reports the bias and root-mean-square error (RMSE) of each method. It shows that

the SSC(DLRU) and ML estimates display negligible bias and that their RMSEs are

8Specifically, starting from the value q1 in the first period of the original sample, we use (11) to project
this forward in time over a period of 896 months given the values of the previous period and adding forecast
errors uP

t+1 that are randomly selected (with replacement) from the original sample of forecast errors. We
dispose of the first 500 generated observations, leaving a set of 396 observations that match the size and
character of the historical sample.

18



close. However, the SSC(AACM) estimator always has a much larger RMSE than the

SSC(DLRU). It also exhibits large negative bias in the least persistent real root, consistent

with our observation in Section 3.3 regarding the point estimate of this parameter.

The largest bias and RMSEs, however, are obtained by the DLRC estimator, which are

generally an order of magnitude bigger than for other methods. Particularly notable are the

large biases for the 2 largest roots for the 4 and 5 factor models, which, again, is consistent

with the comparison of the point estimates in Table 2.

As mentioned in the introduction, one of advantages of the SSC method is that it does not

require the researcher to specify whether the roots of the model are real or complex, distinct

or repeated. This could potentially inhibit the simulation exercise, since the estimated roots

might not match the ‘true’ roots. We found, however, that the SSC methods estimated the

same roots as ‘true’ roots in over 99% of simulations (when calculating the bias and RMSE

we rejected the remaining results when the estimated roots where ‘incorrect’). Also, the

DLRC estimator returned the correct roots in over 99% cases for the model with 3 and 5

factors, but for the model with 4 factors it found the correct roots in only about 70% of

simulations.

3.5 Linear regression estimates as starting values in ML estima-

tion

So far we have considered the DLRU and SSC(DLRU) estimators as stand-alone esti-

mation methods. However, it is well known that the likelihood function exhibits multiple

local maxima and it is standard practice to use a range of starting values to identify these,

making it likely (though not certain) that they include the global optimum. As suggested

in the introduction, a researcher interested in the ML estimates could view the roots from

the linear DLRU method (i.e. the SSCDLRU
estimates) as potentially useful starting values.

To investigate this option, we used these estimates as one of the sets of parameter starting

values for the ML routine in the bootstrap simulations. As another set we used the ‘true’

values which were used to simulate the artificial data. Finally, to represent the usual prac-
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tice, we use 5 sets of random starting values.9 The parameters reported in Table 2 are those

that gave the maximum for the optimized likelihood out of these seven sets. How likely is it

that any particular starting value specification returns this best fit? Although there can be

no guarantee that this represents the true global optimum, this should indicate the ability

of different specifications to distinguish the global from other local optima.

As Hamilton and Wu (2012) observed, we find that parametrization in terms of the level

parameter rQ∞ frequently leads the numerical routine to stall. They showed that this problem

is alleviated by parametrization in terms of µQ
∞, but we go a step further with our ML

algorithm by concentrating the level parameter out from the likelihood function, as shown

in Section 2.2. Thus, we only estimate the K roots of the ΦQ matrix and the K(K + 1)/2

parameters of Σ. We find that this algorithm is very robust for the model with 3 factors,

always converging very close to the same maximum, irrespective of the choice of starting

values. The ability of different specifications to find the largest local maximum for the 4

and 5 factor models is reported in Figure 2. This shows that with 4 and 5 factors, initiating

the search from the roots of the DLRU estimator as the starting values gives the best fit

about as often as initiating the search from the ‘true’ values of the parameters. In both cases

the convergence rate is about 99%. This contrasts starkly with the performance of random

values. When using a single set of random starting values, the algorithm converges to the

best fit in about 40% and 61% of simulations for the 4 and 5 factor models, respectively.

Even if 5 sets of different starting values are used, this is found in only 91% of simulations

(see Figure 2(a)). Interestingly, the performance of random starting values for the 5 factor

model appears to be better than for the 4 factor model (see Figure 2(b)).

9Specifically, we randomly draw the starting values for the real roots (and the real part of the complex
roots) from the range (1−0.1K, 1), where K is the number of factors, and the imaginary part of the complex
roots is drawn from the uniform distribution in the range (0, 0.1). The starting values for Σ again come
from the V AR model of the physical dynamics.
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3.6 Discussion

It is perhaps not surprising to find that imposing self-consistency on regression estimators

by removing redundant parameters improves their performance. But it is a surprise to

find that in practice the constrained DLR estimator does not perform as well as our SSC

approach. This is reflected by the RMSEs of DLRC , SSC(DLRU) and SSC(DLRC) in

Table 1 and the parameter biases and RMSEs shown in Table 3.

The DLRC method is based on a linear approximation of the highly nonlinear self-

consistency constraints. Indeed, several iterations are typically necessary to reach a self-

consistent solution, which indicates that the nonlinearities involved are important. In other

words, the convergence gradient is not optimal in the ML sense and in the iteration process

the roots tend to move away from their OLS and ML counterparts. On the other hand,

the roots recovered by the SSC method preserve the characteristics of the OLS risk-neutral

dynamics. As originally noted by Hamilton and Wu (2014), the OLS slope coefficients are

numerically very close to the no-arbitrage values estimated by their χ2 minimization proce-

dure (and by implication ML), so there is little efficiency loss in using our SSC approach

instead. In contrast, Hamilton and Wu (2014) noted that the no-arbitrage constraints on

the yield intercepts were strongly rejected in their data set.

Importantly, the SSC method estimates the level parameter conditional on the risk-

neutral roots, which is similar to concentrating the parameters out of the likelihood in ML

procedures. On the other hand, the DLRC estimator constrains all parameters simultane-

ously, which means that, due to the iteration process, the risk-neutral level parameter µQ
∞

may not be estimated efficiently. The importance of this point can be seen by comparing

RMSEs of DLRC and SSC(DLRC) in Table 1. Since both estimators use the same roots,

they have the same factor loadings By, and therefore the difference in performance between

them is solely due to the superior SSC estimate of the level parameter.
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4 Modelling the physical dynamics and the term pre-

mium10

Thus far, we have focussed on our new algorithms for estimating theQ−dynamics quickly

and consistently. However, the recent literature has been focussed on the P−dynamics,

which are used to represent market expectations. These are especially important from a

policy perspective because subtracting these expectations from the corresponding yields gives

residuals that can be interpreted as term premiums. Unfortunately, because the physical

dynamics are estimated from the time-series dynamics they are subject to prediction errors

that are an order of magnitude larger than the measurement errors found in the cross-section,

as noted by Dai and Singleton (2000), Cochrane and Piazzesi (2008) and others. They

usually contain many insignificant parameters and may also be subject to small sample bias.

The new time series methods have been focussed on ways of dealing with these problems.

However, they can be very time-intensive when used in conjugation withML estimates of the

risk-neutral dynamics. Because our algorithms solve almost instantly for the Q−dynamics,

they complement these innovations nicely.

4.1 Generalizing the dynamic structure

Thus far, we have assumed that the dynamics are V AR(1) under both the risk-neutral

and the physical measures, which is the most common DTSM specification in this litera-

ture. However, recently some papers, have considered generalizing the factor dynamics. For

instance, Abbritti et al. (2016) proposed V ARFIMA real world dynamics, while Goliński

and Spencer (2017) considered ARFIMA risk-neutral factor dynamics. Both of these papers

assumed a linear specification of the price of risk, which implies non-standard dynamics for

the corresponding equivalent measure through the no-arbitrage condition. Le et al. (2010)

considered a model with V AR(1) dynamics under the risk-neutral measure but with a non-

10We are grateful to two referees of this journal who urged us to investigate more general dynamic models
and recently developed methods for improving the performance of the physical dynamics.
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linear specification of the price of risk, which also implies non-standard P−dynamics. There

is also an immense literature that examines the time series properties of interest rates outside

the no-arbitrage framework.

These models are computationally difficult and lie well beyond the linear-in-variables

framework considered here. However, given the evidence suggesting that the V AR(1) dy-

namics are too simple, we investigate a linear generalization proposed by Joslin, Le and

Singleton (2014), who consider V AR(p), p > 1, for the physical dynamics and V AR(1) for

the risk-neutral dynamics. The advantage of this framework is that the dynamics are explicit

under both probability measures, while the price of risk specification remains implicit and

linear-in-variables. This means that the decomposition of a yield into an expectation and

risk premium remains just as straightforward as it is in the basic V AR(1) model. In this

section we employ standard statistical selection criteria to find the best specification of the

time series dynamics. We show that our linear estimation methods allow restrictions within

this generalized setting to be tested much more quickly than ML does.

Thus, we now consider a model defined by (5) and (6), but replace the specification of

the P−dynamics (11) by:

qt+1 = µµµ+

p∑

j=1

Φiqt−j+1 + uP
t+1. (29)

We restrict our attention to the three factor model, K = 3, since a higher number of factors

poses significant risk of over-fitting the model. We consider the V AR(p) model with up to

p = 12 lags. Table 4 reports (the negative of) the information criteria for the first six lags.

The Akaike (AIC) and Hannan-Quinn (HQIC) information criteria favour the V AR(2),

while the Bayesian information criterion (BIC), which is stricter, selects the V AR(1). The

unrestricted parameters of the V AR(1) process for the factors are reported in Panel A of

Table 5, while Panel A of Table 6 reports the estimates for the V AR(2) model.
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4.2 Selecting the best model of the physical dynamics

As we have noted, many of the parameters of the price of risk and the physical dynam-

ics are insignificant, making estimates of the term premium poorly determined. Moreover,

the physical dynamics are less persistent, possibly due to the well-known small sample bias.

Researchers have recently been trying to improve these estimates by imposing various pa-

rameter restrictions. We can exploit our rapid estimation procedure to implement these for

models that would otherwise be too time consuming to consider.

We first apply the model selection procedure proposed by Joslin et al. (2014). Following

Bauer (2018) we write the parameters of the P−dynamics in (11) in terms of those of the

Q−dynamics in the V AR(1) model (2) using:

µµµ = µµµQ + l0, Φ = ΦQ + L1, (30)

and testing zero restrictions on the risk-adjustment parameters l0 and L1. Similarly, in the

V AR(2) model, we test the significance of l0, L1 and the extra lag parameters (Φ2 = L2).

Since the zero price-of-risk restrictions effectively push the parameters of the P−dynamics

towards those of the Q−dynamics, which are more strongly determined, one would expect

that the restricted models would be more persistent (Cochrane and Piazzesi (2008)).

Thus, for the optimal V AR(p) model of the P−dynamics selected by the information

criteria, we consider all possible combinations of the zero restrictions on the price of risk

parameters. Specifically, we estimate 212 different model specifications for V AR(1) selected

by the BIC and 221 specifications for V AR(2) using AIC and HQIC.

Importantly, the restricted P−dynamics can be estimated by the method of restricted

least squares, which fits neatly into our linear-in-variables framework. Moreover the roots of

the risk-neutral response matrix ΦQ do not change as this model of the P−dynamics shifts

(i.e. they remain as reported in Table 2).

However, as in the basic V AR(1) model, the level parameter introduces a slight com-

plication: our solution for Σ and hence µµµQ is no longer sequential as it is with the uncon-
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strained OLS model of the P−dynamics in earlier sections. We need to find the constrained

P−dynamics and µµµQ simultaneously, which we do using a recursive estimation strategy.

Specifically, we start with the estimate of Σ from the unconstrained OLS model, use this to

find µµµQ and hence the constrained P−dynamics. We repeat this procedure until the norm

of the Σ matrix is smaller than 10−6. This procedure is similar in spirit to that proposed

by Diez de Los Rios (2015). However, in practice because Σ has only a second-order ef-

fect on the a coefficients, we find that the cross-sectional fit is virtually unaffected by the

specification of the P−dynamics and typically convergence is achieved in a single iteration.

In marked contrast, the selection procedure for the full ML estimates requires the whole

model of the cross-section to be re-estimated for each combination of the restrictions. That

is because as Joslin et al. (2014) note, when there are restrictions across the model of the Q−
and P−dynamics as in (30), the latter can no longer be estimated separately. We find that

this puts up the time required for ML estimation from around a second for the unrestricted

model to between 8 and 20 seconds for the restricted model. Using this procedure on a similar

macro-finance model, which generalizes the P−dynamics by introducing growth and inflation

variables, Joslin et al. (2014) manage to select a model from 219 possible combinations. This

is unlikely to be feasible for our 3 factor V AR(2) model, for which there are over two million

combinations, four times as many as in their problem. However, using our linear method we

are able to analyse this number of combinations in just 7 − 8 hours using a single desktop

computer.

We use our regression approach11 to select the best V AR(1) and V AR(2) models using

information criteria and report the ML estimates of the resulting models in Tables 5 and

6. For the V AR(1) dynamics, the BIC selects the model with nine restrictions, leaving

only the first column of the ΦQ
1 matrix unconstrained. For the V AR(2) dynamics, the AIC

11The information criteria select the optimal model based on the value of the likelihood function at the
maximum. As explained in Joslin et al. (2011), the model likelihood can be decomposed into a part coming
from the cross-sectional fit and another from the physical dynamics of the factors. In order to avoid the
risk of distorting the likelihood value by using our sequential linear estimation method for finding the cross-
sectional part of the likelihood function, the cross-sectional part of the likelihood is obtained for each model
from the benchmark OLS regression (5).
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criterion selects a model with six restrictions. The HQIC, which is stricter, selects the same

six restrictions as the AIC plus three additional restrictions. As expected, the restricted

models are more persistent than the unrestricted ones, as indicated by the largest eigenvalue

of the P−dynamics, reported in the last column of Tables 5 and 6.

4.3 Directly restricted degree of persistence

To deal directly with the problem of small sample bias in the P−dynamics Bauer et al.

(2012) propose a simulation-based correction. We apply this technique to the V AR(2)

process, to compare with the results of the price of risk restrictions shown in Panels A

to C of Table 6. In our data, the constraint in the adjustment procedure that keeps the

process stationary is binding and the shrinkage method is necessary to keep the eigenvalues

of the system smaller than unity. The estimates are reported in Panel D of Table 6. The

highest eigenvalue that results is 0.9999. Since the eigenvalues are within the unit circle, the

stationarity assumption is satisfied and the standard asymptotics hold.

Finally, we apply the restriction proposed by Joslin et al. (2011), that the highest eigen-

value under the physical measure is equal to the value (of 0.9976) under the risk-neutral

measure, shown in Panel A of Table 2. We implement this adjustment using linear reduced

rank regression. Since the process under the risk-neutral measure is more persistent than

under the physical measure, this method is also designed to reduce the small sample au-

toregressive bias. We call this model Eig(Q) and report the estimates in Panel E of Table

6.

4.4 Evaluating the term premium

For each specification of the P−dynamics, we calculate the term premium, defined as the

difference between the fitted yield and the average forecast of the 1−month rate for a given

maturity. We focus on the 10−year term premium, which is the common benchmark in the

literature. The diagonal entries in Table 7 show the standard deviation of each estimate of

the term premium. The largest variation (1.07%) is displayed by the term premium from the
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model with unrestricted V AR(2) P−dynamics, while the V AR(1) BIC model, which has

the most heavily restricted dynamics, exhibits the smallest variation (0.19%). The cross-

correlations between these six estimates are reported in the off-diagonal entries of Table

7.

Figure 3 plots the estimates of the different term premia. The grey areas in the plot

denote the NBER recession periods. Clearly, the differences between different term premium

estimates can be very large at times. Consistent with the results of Table 7, the term premium

from the unrestricted V AR(2) model takes the most extreme values, while the BIC term

premium is the smoothest in our sample.

The decomposition of the yield into a market expectation and a term premium can be used

to analyse the behaviour of the U.S. Treasury market during key monetary policy episodes.

For example, this has been used extensively to analyse the well-known ‘conundrum’ identified

originally by Alan Greenspan, when in 2004 and 2005 short term policy rates rose but the 10

year forward rate continued to fall (see e.g. Backus and Wright, 2007). The term premia in

these models exhibit counter-cyclical behaviour, increasing during recessions and declining

between recessions. So they suggest that the premium would decline as short rates increase.

However, the response in the basic V AR(1) BIC model is hard to discern from the chart, as

is the response in the V AR(2) HQIC. These models suggest that the conundrum occurred

because long term rate expectations fell or were flat. However, the premium in the more

flexible V AR(2) AIC, BRW and Eig(Q) models fell back markedly over this period. Like

the recent macro-finance term structure literature (Joslin et al., 2011), this suggests more

plausibly, that the conundrum occurred because the premium fell, offsetting an increase in

long term rate expectations. These results underline the importance of developing richer

models of dynamic adjustment in term structure models carefully.
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5 Conclusion

Until the advent of the recent regression-based estimators, estimates of the parameters µµµQ

and ΦQ of the risk-neutral dynamics were obtained by embedding them in the bond pricing

coefficients and then using numerical methods to find values that optimized the fit of these

equations. However, the new linear regression methods allow us to estimate this structure by

OLS. Although these estimators are not internally consistent, we can estimate the response

matrix ΦQ by OLS and use its characteristic roots to obtain a consistent response matrix

for the JSZ canonical form. The level parameter then follows directly from the affine bond

pricing recursions and the remaining risk-neutral parameters are determined by the internal

consistency conditions. Finally, the affine recursions determine the bond yields.

It is reassuring to find that our parameter estimates are very close to globalML estimates

of the risk-neutral parameters embedded in bond yields, and that the bias revealed by our

bootstrap simulations is negligibly small. It is clear that the risk-neutral dynamics are

strongly rooted in the data, allowing both approaches to be used to draw statistical inferences

about the risk-neutral parameters and, in the case of our estimator, to fit the term structure

of bond yields by extrapolation.

Our algorithms ensure consistency by eliminating redundant parameters from the risk-

neutral dynamics embedded in the cross-section of yields. Recent innovations in handling

the time-series part of the DTSM work by eliminating insignificant parameters from the

P−dynamics and using other constraints to improve precision. However, they are used in

conjunction with ML methods for estimating the risk-neutral dynamics, which are very

time intensive when used in this way. Because our algorithms solve almost instantly for the

Q−dynamics, they complement these innovations nicely.

Our linear estimator offers the researcher a useful addition to the term structure toolkit.

As the exercises reported here demonstrate, its speed gives it a clear edge in model selection

and simulation exercises involving a large number of models or replications. However, this

estimator is likely to prove very useful in other areas as well. For example, in the working
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paper version of this article (Goliński and Spencer, 2019), we show how the SSC procedure

can be extended to handle multi-market term structures with common factors and use this

to model the U.S. and German government bond markets jointly, representing the common

factors as principal components from the joint yield covariance matrix. We find that six

factors are sufficient to give a plausible fit to the term structure for both countries and that

the RMSEs of the SSC(DLRU) procedure is very close to the fit of an OLS benchmark.

Although this fit is similar to that obtained using two separate-country three-factor models,

we find that there are significant differences between the single country and joint approaches

in terms of the physical dynamics. Looking forward, we intend to use the methods of Section

4 to refine the model of the physical dynamics and thus the term premia.

Regression methods have been extensively employed by central banks and other policy-

makers (Bauer and Rudebusch, 2014), despite their lack of consistency and efficiency, but

our estimator avoids this trade-off and allows both academic researchers and practitioners

to obtain results with speed, consistency and efficiency.
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Tables

Root-mean-square error (bp)
yields: 1m 1y 2y 3y 5y 7y 10y 15y Av.RMSE

Panel A: K = 3

OLS 2.5 11.2 3.0 6.6 8.4 5.8 4.0 9.9 6.43
JSZ 2.6 12.0 3.7 7.4 8.5 6.1 5.6 10.2 7.01

AACM 2.5 20.4 6.4 7.9 14.4 15.2 10.6 20.2 12.20
DLRU 2.5 17.6 7.0 7.3 8.9 7.5 7.6 10.0 8.55
DLRC 2.6 11.7 4.9 7.3 9.4 8.3 6.5 13.6 8.05

SSC(AACM) 2.7 13.1 4.3 8.3 8.8 6.7 6.4 11.0 7.65
SSC(DLRC) 2.6 12.4 3.9 7.7 8.7 6.1 5.9 10.1 7.17
SSC(DLRU) 2.6 12.4 4.0 7.7 8.7 6.1 5.8 10.1 7.16

Panel B: K = 4
OLS 0.3 3.1 3.0 3.1 1.4 3.4 3.4 4.0 2.71
JSZ 0.3 3.1 3.0 3.1 1.5 3.4 3.4 4.1 2.72

AACM 0.3 5.0 3.8 3.5 1.6 3.8 4.0 4.2 3.28
DLRU 0.3 4.5 3.3 3.2 1.5 3.4 3.6 4.1 2.99
DLRC 0.5 6.6 5.1 7.5 1.6 7.9 9.9 11.1 6.29

SSC(AACM) 0.3 3.4 3.3 3.2 1.7 3.5 3.6 4.2 2.89
SSC(DLRC) 0.6 4.3 3.7 4.5 1.5 4.8 5.7 6.4 3.90
SSC(DLRU) 0.3 3.1 3.0 3.1 1.5 3.4 3.4 4.1 2.72

Panel C: K = 5
OLS 0.1 0.8 1.3 0.3 1.3 0.4 1.7 0.8 0.82
JSZ 0.1 0.8 1.4 0.3 1.3 0.5 1.7 0.8 0.86

AACM 0.1 3.2 2.6 1.4 1.9 0.8 2.2 1.0 1.64
DLRU 0.1 6.5 2.8 1.6 1.5 0.5 1.7 0.9 1.96
DLRC 0.3 3.6 5.1 2.2 6.3 3.3 9.8 4.3 4.34

SSC(AACM) 0.1 0.9 1.6 0.4 1.5 0.5 1.9 0.9 0.97
SSC(DLRC) 0.2 2.1 3.2 1.2 3.7 1.6 5.2 2.3 2.42
SSC(DLRU) 0.1 0.8 1.5 0.6 1.4 0.6 1.7 0.8 0.92

Table 1. Goodness of fit.
The table reports the fit of the model for the Treasury yields, as measured by the root-mean-
square error of the measurement errors. The model is estimated with 3, 4 and 5 principal
components of yields. The reported values are in basis points. The sample period is January
1983 to December 2015.
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µQ
∞ × 100 λ1 λ2 λ3 λ4 (λreal ± iλimag)

Panel A: K = 3

JSZ 0.0403
0.0005

0.9971
0.0001

0.9714
0.0006

0.7537
0.0098

SSC(AACM) 0.0434
0.2871

0.9958
0.0409

0.9779
0.0654

0.1657
0.2986

SSC(DLRU) 0.0338
0.0019

0.9976
0.0003

0.9686
0.0021

0.7862
0.0322

DLRC 0.0391
0.0016

0.9975
0.0004

0.9677
0.0026

0.7711
0.0301

Panel B: K = 4

JSZ 0.0143
0.0004

0.9998
0.0001

0.5930
0.0250

0.9664
0.0008

0.0194
0.0008

SSC(AACM) 0.0204
0.0631

0.9991
0.0089

−0.0666
0.2562

0.9656
0.0434

0.0221
0.0563

SSC(DLRU) 0.0136
0.0015

0.9998
0.0002

0.6103
0.0630

0.9655
0.0020

0.0188
0.0019

DLRC 0.0199
0.0089

0.9958
0.0040

0.9791
0.0153

0.9472
0.0217

0.6163
0.0660

Panel B: K = 5

JSZ 0.0129
0.0003

0.9998
0.0001

0.9621
0.0052

0.6020
0.0186

0.9728
0.0019

0.0184
0.0011

SSC(AACM) −0.0006
0.0241

1.0012
0.0020

0.9741
0.0932

−0.0656
0.2446

0.9625
0.0286

0.0233
0.0692

SSC(DLRU) 0.0125
0.0022

1.0003
0.0003

0.9528
0.0066

0.7100
0.0395

0.9789
0.0010

0.0211
0.0018

DLRC 0.0092
0.0010

1.0041
0.0007

0.8691
0.0181

0.7249
0.0332

0.9878
0.0011

0.0282
0.0008

Table 2. Estimates of the risk-neutral parameters.
The estimates of risk-neutral dynamics are obtained by different methods for 3, 4 and 5
factor JSZ models.
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µQ
∞ × 100 λ1 λ2 λ3 λ4 λimag ± xi

Panel A: K = 3
JSZ Bias 0.2521 -0.0001 0.0023 -0.0015

RMSE 0.2634 0.0003 0.0028 0.0244
SSC(AACM) Bias 0.6978 -0.0012 0.0034 -0.0747

RMSE 0.7329 0.0016 0.0050 0.0822
SSC(DLRU) Bias 0.6094 0.0001 -0.0012 0.0133

RMSE 0.6341 0.0004 0.0022 0.0371
DLRC Bias 0.5710 0.0002 -0.0022 0.0095

RMSE 0.5944 0.0007 0.0036 0.0353

Panel B: K = 4
JSZ Bias 0.2480 0.0002 0.0064 0.0014 -0.0027

RMSE 0.2563 0.0003 0.1057 0.0022 0.0040
SSC(AACM) Bias 0.5469 0.0000 -0.1084 0.0005 0.0013

RMSE 0.5696 0.0005 0.1204 0.0034 0.0037
SSC(DLRU) Bias 0.5561 0.0000 0.0010 -0.0005 -0.0006

RMSE 0.5805 0.0002 0.0562 0.0022 0.0027
DLRC Bias 0.8418 -0.0077 -0.0193 0.0031 -0.0024

RMSE 6.1602 0.0240 0.0674 0.0082 0.0077

Panel B: K = 5
JSZ Bias 0.4522 0.0004 -0.0011 0.0291 -0.0001 -0.0031

RMSE 0.4748 0.0007 0.0098 0.0346 0.0039 0.0051
SSC(AACM) Bias 0.7212 -0.0016 0.0092 -0.1070 -0.0055 0.0049

RMSE 0.7701 0.0318 0.0170 0.1229 0.0498 0.0082
SSC(DLRU) Bias 0.6570 0.0002 -0.0051 0.0441 0.0025 0.0014

RMSE 0.6864 0.0004 0.0099 0.0548 0.0035 0.0028
DLRC Bias 0.4024 0.0033 -0.0569 0.0744 0.0127 0.0070

RMSE 0.4258 0.0035 0.0584 0.0800 0.0128 0.0071

Table 3. Bias and RMSE for different estimation methods.
The statistics are calculated for 3, 4 and 5 factor JSZ model based on 5, 000 simulation
bootstrap assuming the JSZ estimates are the ‘true’ values. The simulated model for 3
factors was based on 3 real roots, while for 4 and 5 factors included a complex root.
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Lags (k): 1 2 3 4 5 6

−BIC 32.7973 32.7744 32.6677 32.5754 32.4667 32.3538
−AIC 32.8899 32.9596 32.9455 32.9458 32.9296 32.9094
−HQIC 32.8531 32.8861 32.8353 32.7988 32.7460 32.6890

Table 4. V AR lags selection for physical factor dynamics.
The table shows the negative of Bayesian, Akaike and Hannan-Quinn information criteria.
The bold font denotes the highest value for each criterion. The sample period is January
1983 to December 2015.
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µµµ Φ1 P−eigenvalues
Panel A: VAR(1) (unrestricted)

0.0023
0.0014

0.9936
0.0048

0.0008
0.0295

−0.2055
0.0880

0.9933

−0.0019
0.0007

−0.0014
0.0024

0.9483
0.0147

0.3683
0.0439

0.9678

0.0030
0.0007

0.0009
0.0021

0.0186
0.0133

0.6191
0.0397

0.6000

Panel B: Var(1) BIC (9 restrictions)
−0.0014

0.0004
1.0043
0.0026

0.0617
0.0075

−0.2112
0.0398

0.9995

−0.0008
0.0002

−0.0075
0.0016

0.9754
0.0047

0.2944
0.0295

0.9709

0.0013
0.0001

0.0071
0.0012

−0.0013
0.0030

0.7342
0.0066

0.7436

Table 5. MLE Estimates for different V AR(1) specifications of the physical dynamics.
Panel A shows the unrestricted estimates of the V AR(1) model. Panel B shows the estimates
of the model selected by the BIC model. The bold font denotes restricted parameters. The
sample period is January 1983 to December 2015.
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µµµ Φ1 Φ2 P−eigenvalues
Panel A: VAR(2) (unrestricted)

0.0012
0.0015

1.1334
0.0524

−0.1155
0.1264

−0.3231
0.1358

−0.1395
0.0523

0.1067
0.1247

0.2585
0.1467

0.9938

−0.0017
0.0007

−0.0295
0.0264

0.9811
0.0637

0.4140
0.0684

0.0284
0.0264

−0.0294
0.0628

−0.0789
0.0739

0.9658

0.0030
0.0007

−0.0640
0.0235

0.1607
0.0567

0.6285
0.0609

0.0652
0.0234

−0.1460
0.0559

−0.0113
0.0658

0.6033

Panel B: VAR(2) AIC (6 restrictions)
−0.0014

0.0004
1.1388
0.0478

0.0201
0.0248

−0.2110
0.0399

−0.1400
0.0477

0
0.0000

0.2449
0.0758

0.9995

−0.0023
0.0007

−0.0170
0.0018

0.9755
0.0047

0.4259
0.0509

0.0169
0.0029

−0.0192
0.0152

−0.0650
0.0473

0.9695

0.0031
0.0006

−0.0688
0.0186

0.1593
0.0371

0.6153
0.0395

0.0679
0.0186

−0.1458
0.0376

0
0.0000

0.6015

Panel C: VAR(2) HQIC (9 restrictions)
−0.0014

0.0004
1.1312
0.0475

0.0616
0.0075

−0.2109
0.0399

−0.1361
0.0476

0
0.0000

0.1933
0.0632

0.9963

−0.0028
0.0006

−0.0170
0.0018

0.9755
0.0047

0.3769
0.0424

0.0162
0.0030

0
0.0000

0
0.0000

0.9801

0.0033
0.0006

−0.0674
0.0187

0.1426
0.0345

0.6157
0.0393

0.0685
0.0187

−0.1367
0.0344

0
0.0000

0.6098

Panel D: VAR(2) BRW
0.0004
0.0015

1.1291
0.0520

−0.1098
0.1255

−0.3279
0.1349

−0.1291
0.0519

0.1022
0.1239

0.2545
0.1457

0.9999

−0.0020
0.0007

−0.0300
0.0262

0.9909
0.0631

0.4149
0.0678

0.0297
0.0261

−0.0301
0.0623

−0.0872
0.0733

0.9778

0.0029
0.0007

−0.0653
0.0233

0.1612
0.0562

0.6363
0.0604

0.0657
0.0233

−0.1435
0.0554

−0.0026
0.0652

0.6170

Panel E: VAR(2) Eig(Q) (1 restriction)
0.0007
0.0015

1.1360
0.0520

−0.1160
0.1253

−0.3223
0.1347

−0.1388
0.0519

0.1071
0.1237

0.2617
0.1455

0.9971

−0.0018
0.0007

−0.0292
0.0262

0.9811
0.0631

0.4141
0.0678

0.0284
0.0261

−0.0294
0.0623

−0.0784
0.0733

0.9658

0.0031
0.0007

−0.0643
0.0233

0.1608
0.0562

0.6284
0.0603

0.0652
0.0232

−0.1461
0.0554

−0.0117
0.0652

0.6027

Table 6. MLE Estimates for different V AR(2) specifications of the physical dynamics.
Panel A shows the unrestricted estimates of the V AR(2) model. Panel B and Panel C report
the estimates of the models selected by AIC and HQIC, respectively. Panel D reports the
V AR(2) estimates with the Bauer et al. (2012). Panel E shows the estimates for a model
that restricts the largest eigenvalue of the physical dynamics to be the same as the one for
the risk-neutral dynamics shown in Panel A of Table 2. The bold font denotes constrained
parameters. The sample period is January 1983 to December 2015.
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(1) (2) (3) (4) (5) (6) (7)
(1) VAR(1) unrestr. 1.0372
(2) VAR(2) unrestr. 0.9903 1.0658
(3) VAR(1) BIC 0.2943 0.1658 0.1905
(4) VAR(2) AIC 0.8387 0.7701 0.7274 0.5650
(5) VAR(2) HQIC 0.8298 0.8959 -0.2765 0.4461 0.5152
(6) VAR(2) BRW 0.7267 0.6345 0.8626 0.9703 0.2426 0.9395
(7) VAR(2) Eig(Q) 0.9670 0.9294 0.5147 0.9469 0.6783 0.8749 0.8590

Table 7. Standard deviation and correlation of different risk premia.
The standard deviation of the term premium estimates is on the diagonal. The lower-
triangular part of the matrix shows the correlations between particular term premium esti-
mates. The sample period is January 1983 to December 2015.
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Figure 1. Principal components loadings. The figure shows the loadings on the first
three principal components. The loadings are are obtained as the eigenvectors corresponding
to the first three largest eigenvalues of the covariance matrix of yields.
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Figure 2. Finding the global maximum likelihood. The figure shows the percentage of
simulations converging to the global maximum when initiating the numerical MLE routine
from different starting values for the 4 and 5 factor model in Panel (a) and Panel (b),
respectively. The starting values are the values used to generate the simulated yield samples
(’True’), the roots of the ΦQ matrix estimated by the DLRU estimator, SSC(DLRU), and
from 1 to 5 different random starting values (’RD’). The global maximum is assumed to be
the optimum with the highest likelihood values found from any of these starting values.
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Figure 3. U.S. 10-year term premium. This figure shows 10−year yield and the 10−year
term premium implied by different specifications of the P−dynamics. The grey areas denote
the NBER recession periods. The time series models are as specified in Tables 5 and 6.
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