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Highlights

» From this study we were able to show how an inappropriateelobistatistical model can often lead to misleadésylts and conclusions about
associations between changes in the animals’ environmetit@ntehaviour.

* We found that detailed understanding about the design antse&kging an experiment can aid in the statistical @mland it is important for
statistical input from the beginning to ensure outcomedeanodelled appropriately.

* Higher body injury scores were found in the more enriched@mwient whereas higher ear injury scores were found inseeslegiched environments.

» Finding differences in the risk factors for injury scarghe body and ears supports the hypothesis that injuribe bidy and ears occur as a

consequence of behaviours with different underlying motivation

ABSTRACT

Investigations comparing the behaviour and welfare of animalgferent environments have led to mixed and often wiinf§y results. These could arise

from genuine differences in welfare, poor validity of indicaf low statistical power, publication bias, or inappropsggstical analysis. Our aim was to



investigate the effects of using four approaches for infiateamalysis of datasets of varying size on model outsane potential conclusions. We
considered aggression in 864 growing pigs over six weeksasuneel by ear and body injury score and relationships withaled more enriched
environments, pig's relative weight, and sex. Pigs were hanggdups of 18 in one of four pens, replicating the expearirh2 times. We applied four
inferential models that either used a summary statipficoach, or else fully or partially accounted for comifiks in study design. We tested models using

both the full dataset (n = 864) and also using small sasigds (n = 72).

The most appropriate inferential model was a mixed effeepeated measures model to compare ear and body satistic§l models that did not account
for the correlation between repeated measures amg/oanhdom effects from replications and pens led to spuaisgciations between environmental
factors and indicators of aggression, which were not suggpbst the initial exploratory analysis. For analysesroaller datasets (n = 72), due to the effect

size and number of independent factors, there was icgumfifipower to determine statistically significant assians.

Based on the mixed effects, repeated measures modélst bigdy injury scores were associated with more enrichfoeet est. = 0.09, p = 0.02); weight
(coef. est. = 0.05, p < 0.001); pen location on the right sikd.(est. = 0.08, p = 0.03) and at the front of the experahesam (coef. est. =0.11, p =
0.003). By comparison, lower ear injury scores were assdaidte more enrichment (coef. est. =-0.51, p = 0.005)pmmdlocation at the front of the
experimental room (coef. est. = -0.4, p = 0.02). These wixdelifferences support the hypothesis that injuries tbdldg and ears arise from different risk
factors. Although calculation of the minimum requirethpke size prior to conducting an experiment and selecfitrednferential analysis method will
contribute to the validity of the study results, conflict tegwthe outcomes will require further investigation vieeddht methods such as sensitivity and

specificity analysis.



Word count: 400
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1. INTRODUCTION

The statistician George Box stated “all models are wrbagsome are useful” (Box and Draper, 1987); which raiseguéstion, how do we determine
which statistical model, or in other terminology, inferahdéinalysis method, is most appropriate? In recensyaapotlight has been directed at the
transparency of animal research methodology, with low cdtesthodological reporting being associated with lessisigerigour and lower
reproducibility (Vogt et al 2016, lonnides et al 2009, Kilkenny &0f19). Articles pertaining to animal research have bgtoised in the past for their
design, statistical analysis and reporting (McCance, 1Ri@ienny et al., 2009; Sargeant et al., 2010). The publicati@nlist of guidelines for animal
research known as the

ARRIVE guidelines (Kilkenny et al., 2010), has helped to impibeegquality of animal research (Gulin et al., 2015). €lpgdelines highlight the
importance of choosing the appropriate experimental assesss@mple sizes and statistical inferential anslysthods.It is important to ensure the
sample size is sufficient to test the study hypothesisalbatbearing in mind the ethical and financial imgiaoas of using an unnecessarily large sample
size within an experiment. There is a plethora of tectesdo produce sample size estimates, and the apprapciateque will depend on the inferential
analysis used for a study. Sample size can oftemwiibe djfficult to calculate for more complex designs,ujio the importance of conducting these

calculations accurately has been well communicatedcpkatiy in clinical trials literature (Freiman €t,a978; Biau et al., 2008).
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Discussion in this area naturally leads into considamaif the methodology of the statistical analysis conducted arotleeted data. Many of the papers
focussing on the quality of research using animals have pisirtengeted experimental design, animal numbers, epdrting, but have not discussed the
appropriate analysis of what can often be complex datd2edcise replication of a published study is rarely pmed, and typically different studies will
use different experimental designs and statistical infiedeéechniques to address the question. Although thisrede® comparisons between published
studies difficult, agreement in the overall conclusions uadeh circumstances can be considered strong evidenite fiormed association, though more
subtle or complex relationships may potentially be mis8eddentified significant treatment effect acroagdgts through use of meta-analysis, is typically
considered to be robust evidence for an association, sma@ldws the magnitude of the effect size to be moregaigogstimated than in single studies
considered in isolation (Borenstein et al., 2009). Howewda-analysis also has limitations, for example whkenstudies have been published in an area,

when they differ substantially, or when the inferentialysis used is inappropriate for the design.

Within the field of animal welfare, many published reswih a particular issue are mixed or conflicting, legddo somewhat mixed messages about what
the most appropriate solution for an identified welfarzabhd might be. To some extent, it is possible thatighat least partly due to publication bias (e.g.
Hopewell et al., 2009; Brown et al., 2017) and the drivenbwelty rather than further support for a set of hypothaspublished research. However, the
lack of agreement between studies may be due to fattters — the differences may reflect genuine differeietween the studies, arising for reasons as
yet unmeasured or unaccounted for. They may be dhe st of indicators that have not been thoroughly vatidatall respects for the species in
guestion (Cronbach & Meehl, 1955). Finally, the observeddhelgreement may be due to inappropriate statistiedysin, leading to masking of true

effects, or the discovery of false positives.



Even when two studies ask a very similar researchiguesith largely similar methodology, mixed results careage. A typical example of this can be
found in studies that investigate causes, and conseqeehitjons, for aggression in pigs. For example, Beatt#. (1996) investigated whether an
enrichment object or floor space had more influence obegdigviour. Their analysis showed that duration of harbdhbviour was significantly higher in
less enriched pens, and measured pig aggressive belsavémlino significant association with space allowangecoBparison, Turner et al. (2000) found
that smaller space allowances were associated witl skin lesions and longerlasting aggressive events. Ehadies were similar in a number of
respects, except that Turner et al. (2000) regularly adjystn sizes to maintain a consistent stocking gefsitight per rf) throughout the experiment,
whereas Beattie et al. (1996) maintained pen dimensionse(staking density would increase throughout the study)sé€tprently, the two studies are
incomparable with conventional meta-analytic approachesatariin the indicators used could also potentially érplifferences in model outcomes For
example, different indicators of injuries in pigs resuldliffierences in the final conclusion, even if the studiesotiserwise similar experimental designs
and methods for inferential analysis. In relationhi provision of straw for pigs, different indicators ofgsion have lead to different conclusions; for
example, Lahrmann et al. (201f6und reduced shoulder injuries for straw-housed pigs, whiteggan et al. (1998) found that straw-housed pigs
performed more aggressive interactions and Statham(20a1)and Arey and Franklin (199%ave both reported no significant effect of the provision of
straw on outbreaks of aggression. Aggression can, anddintkes been described and measured using a wide varietlicaitors. Examples of indicators
for aggression are: duration of fights and number eshiAndersen et al. (2000); prevalence of giving/ receivifg beking, mounting, ear and tail biting,
and biting the pen bars, chains or other pen details (Brgrét al. (2011)the ratio of aggressive events to social interactiDnckamer et al., 1999); skin
lesions on different body areas (Desire et al., 2016). Ergtyy there is little or no overlap between studiespostruct validation to demonstrate that all
indicators recorded measure what they are proposed sunee@.g. tail biting has been considered an indicataggfession; however this has been

reconsidered in more recent years, e.g. Taylor 2@il0).



Here we used a study investigating aggression in pigs tparendifferences between two areas for the assessirgkin injuries (believed to be indicative
of aggression in pigs), an ear score and a compositedoody (Conte et al. 2012), and the effects of analysindateevia four inferential methods: (i)
generalised linear models; (ii) repeated measures andiijsinear mixed effect models; and (iv) linear mikeffect models for repeated measures. We
compare the significant associations between the two ingsgssments and the covariates detected via the egplaatl four methods of inferential
analysis. These four approaches were chosen becauvaeyity degrees, these models could account for some f#athees of the data and model

parameters could be directly interpreted.

Methods (i)-(iii) were considered sub-optimal relativéi¥d, as these models were unable to account for caoelisithe repeated measures, and /or random
effects from the hierarchical structure in the data (peéttsn replication). We hypothesised that not accountargrdndom effects from the pens within
replication and correlation between repeated measutiesiter result in additional spurious relationships and/askpossible significant relationships
between our injury assessments and the covariates. Byrigmandom effects, we hypothesise there will be motestally significant associations with
environmental factors, and by ignoring the repeated measuts, we hypothesise the association between injury aodréme covariate will be more

complex.

We investigated the effects of sample size within nayél designs by analysing the data from different rapios (n=18 pigs * 4 pens per replicate) as
separate studies, and comparing the coefficient estirinateseach of these analyses. A reduced sample sizetteadiecrease in power, which means it is
more difficult to identify the environmental factors asat@il with the injury scores. We hypothesize, that witeduced sample size, there will be fewer

statistically significant associations between injurgres and environmental factors.



2. METHODS AND MATERIALS

2.1 Animals and Housing

The study was conducted at the Agri-Food and Bioscienstggite, Hillsborough, County Down, Northern Ireland. Bhaly used commercial crossbreed
PIC 337 (Large White x Landrace) pigs. Pigs received arecial weaner diet ad libitum and water was alwasgslable, according to the standard

practices on the farm.

Each pig was weighed when they were four weeks and aigein weeks old. The pigs’ sex and weights at 4 weekg®fwere used by the stockman to
balance the groups to achieve a similar average weighita sex ratio in each group of 18 individuals. Groups weredlt@sated at random to one of
four pens. The pigs remained in these pens for a periapprbximately six weeks, and the study was replicatelyéwienes, which led to a sample size of

864.

Pigs were assigned to one of four pens for the studywrat contained within an experimental room situatedam@ shed, which was divided into a series
of similar rooms, with floor to ceiling solid walls beten each room. Two types of pen environment were usechwliibistudy. Pens 1 and 3 were classed
as more enriched environments; these pens were 2.18 m x fnldimension with deep straw bedding (replenished weeklys Pamd 4 were classed as
less enriched environments, these were 2.18 m x 3.42 m in dimgasd no straw was provided. Both pens had floorstagted from concrete and were
partially slatted, however in the more enriched pens @13athe slats were covered with plywood to prevent strdimdahto the slurry system. In all pens,

suspended wooden blocks were provided as standard enrichment.



Pens 1 and 2 were located on the left side of the expetélroom and pens 3 and 4 were located on the right.djdgeat room on the right (next to pens
3 and 4) almost always contained weaner pigs, whereasljiieent room on the left (next to pens 1 and 2) was fraguampty, or was occasionally used
to house sows that could not enter farrowing crate® difference in directional noise from each adjacent roasilvalanced in the experimental design by
having one pen of each treatment type on both sides abahe Mwo of the four pens were located next to the frotitefoom (pen 2 and pen 3), and the

other two pens were located at the back next to amaidteorridor.

The pigs were kept commercially, hence decisions reladimglting and health were made by the farm manager, asfglie standard on-farm procedures.
Outbreaks of aggression leading to injury were observed onliden footage, analysed typically several weeks admording took place. Animals that were
observed to have high body scores were reported to fafinagtd monitored closely by farm staff and reseacii@r a period of 7 days after. No animals

were culled for the purposes of this study, though as motsettion 2.3, a small number of animals (n=9 out of 86&) giigd during the study period due to

poor health or failure to thrive.
2.2 Assessment of Injury

An assessment of each individual’'s injuries was compketéaree time points after entering the pens:

(1) On day 4; (2) Between days 8 — 17; (3) Between days@®3%rAt each assessment each pig was scored on theifigilbady areas: left and right ear;
snout; left and right shoulder; front and back legs;defl right flank; left and right hindquarter; and backygis six point scaling system, as defined in
figure 1 (Conte et al. 2012). As part of the standard peaot the farm, 50% of the tail was docked within the Bdshours after birth for every pig, this

meant that tail score had limited value as an indidar aggression.



2.2.1 Indicators of Aggression

Ear and body score were considered as indicators of aggreas each assessment time point, the ear scoreegasded as the higher observed injury
score on either the left or right ear (possible scdsg @nd the body score was recorded as the sum scdre batk, left and right shoulder, flank and

hindquarters scores (possible score 0 — 25).

Due to the method used to construct the body score, based@orieeet al (2012) scale, the two elements of frequenioyuoy and severity are confounded,
especially for lower values. In our dataset, body scanged between zero and 25, suggesting body score coulclyseghas a continuous variable. A

histogram plot of the log transformed body score implie¢owdd assume the data followed a Gaussian distribution.

Each ear was scored on a scale between zero anditlteg score of zero signifying no injuries or damage, ascbae of five indicating the presence of
many deep red lesions. As very few pigs were identifiéld aviscore of 3 or more, categories 3 to 5 were combsoetthat the ear score categories
represented: 0 = no injuries; 1 = one small superficisdie® = more than one small, superficial lesion; or odg/ieedeeper than score 1) superficial
lesion; 3 = one or more deep lesions, or more than orsupeficial lesions. Initial exploratory analysis sugegdhat the relationship between the
housing conditions, sex and weight were similar for pigh ait ear score of 0 or 1. Therefore, these two graeps combined to simplify subsequent

inferential analyses.
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2.3 Statistical Analysis

As injury assessments were made at three irregulaalyesppoints in time, the assessments for an individualaquityl be correlated, but the strength of the
correlation may differ because of the variable timeedifices. Replicating the study 12 times may cause signifemagiom effects for each pen within
replication. The differences could be caused by the conntwinatt pigs within a pen, or even associated with unmedsxternal influences (e.g. weather
conditions, handler behaviour, noise). Using weight at 4 amekeg8s of age, we produced estimates of each individnedisriediate weights by fitting a
linear model between the two time points. Although grogtirsiually statistically modelled by a curve, plots ofdkgected growth curves in Carr (1998)

indicated that a linear estimate of pig weight woul&beppropriate approximation over the short time scaleingk study.

We calculated individual relative weights in each pen witkplication, in line with previous research indicatingttan individual's relative size compared
with its group mates is more important than its dctizee (Nettle et al., 2013). Andersen et al. (2000) foundgrifigiant difference in number of bites
between groups of pigs with low and high weight variabilitiiich suggested removing pen differences would have no adféests. This is similar to

comparing a pig's weight rank, but also accounts for igriaeight differences between pigs.

Missing data were due to human error in data eatrgl,death or culling of the individual pig during the coursimefstudy, either due to poor health or

failure to thrive.

The plots and statistical analyses were produced usingjdtistical program R (Team, 2015) using the multgee (ToluWwA16) ordinal (Christensen,

2015) and Ime4 (Bates et al., 2015) packages to produce tigisthimodels.
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2.3.2 Exploratory Analysis

Before applying any statistical test or fitting a sttal model to data, it is important to perform appmterexploratory analysis. Choosing the right method
to explore the data will depend on the question being axlslies\s these data consisted of observations measuretihozewe aimed to explore how body

and ear score changed over time.

We plotted each pig’s body score over time and fitted@s&an kernel smooth estimator to pigs within each catgge. by treatment enrichment level).
A kernel estimator is a non-parametric method of fittilig@between two continuous variables. If there is uag#ly about the form of this relationship
(i.e. linear, quadratic, etc.), visual inspection otplaf the data can provide insight into this. An appedprbandwidth is determined, with bigger
bandwidths creating smoother lines. We selected a bardefidi5, as injury assessments took place every 14 dayemne (more details of kernel
estimators can be found in Wand and Jones (1994)). As rectrgating ear score as an ordinal variable, we loakétk proportional change of pigs

within each category, and used the same methods as ouwttiogd for body score.
2.3.3Inferential Analysis

The data from this experiment possessed a hierardticature, where we had repeated measurements fopiggaetithin a pen, within a replication.
There are various methods that can be applied to thiofygsa, depending on the assumptions one makes. We conparedults of four methods of
analysis on body and ear score, where each method congiiféeseht aspects of the study design: (i) ignored the studgrdds) considered correlation

in the repeated measurements; (iii) considered rand@utefirom the hierarchical structure; (iv) consideredttreslation structure and the random
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effects. Table 1 provides a comparison of the different infelemethods considered in this paper. Depending on thg design, it indicates which

inferential method would be appropriate for different typledata.

(i) Ignoring study design (without accounting for repeated measures or hierarchical structure)

To demonstrate the effects of ignoring the study design conypliete not accounting for repeated measures of indalgland random effects, we fitted a
generalised linear model (GLM) to body and ear score. fidlyi a log linear model (LLM) was fitted to body sca@ed a cumulative logistic regression

model (CLM) was fitted to ear score.

(i) Repeated measures (without accounting for hierarchical structure)

As we assumed body score is continuous, we performadtivamiate analysis of covariance (MANCOVA) with a@sian distribution. This methodology
compares the means of all the different possible groupdetatdmines whether a significant difference is present wemsuating for a possible time-
dependent correlation between the assessments. We tatéurthe replications within this inferential argis/using an error structure for individuals
within replications.

MANCOVA assumes that the assessments measured areatadgumlly spaced points in time, and the differencienia is the same for each individual.

Only individuals with complete data are included.

As ear score is an ordinal variable, we fitted a dative logistic regression model for repeated measuesactount for repeated measurements of the ear

score, the parameters were estimated via generalizethsy equations (GEE), which allow for the presencemssible time-dependent correlation
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between ear score assessments made at different Himssver, a covariate for the replication was alsaiet! to account for the possible differences

between replications.

(iii) Hierarchical structure (without accounting for repeated measures)

To remove the effect of the repeated measures we prodwstednaary variable for each pig. The summary variablédoly score was simply the mean of
the log transformed body score across each of the tpeated measures. The summary variable for earwegrslightly more complicated. Often
categorical variables are summarised by their median oalmatlie. However, as the median and mode are not intfficeby extreme values, it meant that
severe injuries were missed. Therefore, we summedatigcere for each replication, then combined some afategories according to the frequency and
level of injury the category represented to bring the scdieerwith the original scoring system. The new earecategories were 0 = less than 2
occurrences of superficial lesions, or 1 occurrence of g lésen; 1 = 1 occurrence of a deep lesion and 1 occuroéacsuperficial lesion or 3

occurrences of superficial lesion; 2 = more than 1 ocooeref a deep lesion.

To account for the random effects of pen within regian we fitted a mixed effects linear regression m@ddE) to the mean log body score

yij= a+ Xijf + Zijéi,

Equation 1

and a cumulative logistic mixed effects regression mdcleME) to the re-categorized sum of ear score

14



logit(Pr [Yi;< k]) = art Xijf + Zijbi,

Equation 2

where: y;; is the mean log body scoig; is the ear score category #6¢0,1,2;a is the intercept whereas is the intercept for thi" cumulative logit;8
is a vector of fixed effects coefficient estimatis; are the fixed covariates design vector forjthpig, in thei™ replicationdiis a vector of the random

effects for replicatiom; andZ;; is a design vector of the random effects.

An important difference between the GLM and a mixieces model comes from the estimation of the variaimca.GLM only the variance of the

individual pigs is required, whereas now an estimate fovdhiance for the individual pigs and the replication®igiired.

(iv) Hierarchical data with repeated measures

To account for both the hierarchical design and repeatedumements within this study, we fitted the log linearcamdulative logistic, mixed effects

model as defined in eEquation 3Equation 4:

log(yijt) = a+ Xijtf + Zijtdi,
Equation 3

logit(Pr [Yijt< k]) = ak+ Xijtf + Zijtdi.

15



Equation 4

These are very similar to Equation 1Equation 2, anddt) flae mathematical representation only requires the andifia subscriptto denote the time

element in the random effects model. See Twisk (2012) foe ohetails on this type of analysis.

Computationally, as we are treating body score as a conrf@aussian distributed variable, estimation of the coeffisiand the variance for the
replications and individuals in Equation 3 can be accompligiae@EE. However, there is no software available curyemtiich can produce a mixed
effects cumulative logistic regression model with repeatedsures where the correlation between each observapienddeon the time difference between
repeated measures.). We concluded that as we only leedréreated observations, estimation of the randomseffest more important than using GEE to
account for a time dependent correlation structuredoseore. However, a random effect term for each piginehsded instead, as it assumes the

correlation between observations is constant over time.

Small Sample Szes

To investigate the effects of small sample sizes, atedaneasures model was fitted to the data of eadhatph. This led to 12 statistical models, one
for each replication, which each consisted of 72 pigsmmetel/replication (18 pigs assigned to 1 of 4 pens), withxannten of three skin lesion
assessments each, giving a total of number of obsmmgaif 216 per model. Each GLM consisted of the same ctesrighich were equivalent to the

covariates in the final hierarchical repeated measuostel.
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3. RESULTS

For 862 individual pigs we had a measurement for at ¢eeesof the injury assessments. For body score theretweng@gs with missing data for the first
observation, seven pigs with missing data for the secoselreation and nine pigs with missing data for the thir@mlagion. For ear score there were three
pigs with missing data for the first observation, squigs with missing data for the second observation andgsOwith missing data for the third

observation.

3.1 Body Score

3.1.1 Exploratory Analysis

The plots of the kernel smooth estimators in figure 2 @) depict a cubic relationship with time. The kernel edtins of log body score are between 1 and
2 at the first examination (day 0), with a decline in log bedyre by the second examination (days 8-17), but by theettamdination (days 29-39) there is

an increase. All covariate groups mirror this pattern.

However, the slopes for each replication varied, as shiodigure 2 a), thus implying a random slope for repiicaover time was required. Figure 2 b) of
the Gaussian kernel smooth estimators for each pen wdsaidetermine whether different housing features werthwarestigating. It is clear that pigs
within pen 3 tended to have a higher body score than aimg atther three pens, which all appeared to be quitéasimhere was a difference between the

intercept and a slight difference between the slopesaich pen.
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The plots in figure 2 c) to e) further identify differeadeetween the pens. Comparing the score of the diffenembaments in figure 2 c), the difference
between the less and more enriched environments is only egitemapproximately 14 days. This implies an interadbietween time and environment.
The plot in figure 2 d) shows that pigs in the pens tdrtire of the experimental room had a consistently higher baahe $han pigs in the pens located at
the back. We also observed that pigs in pens on the riaghbsthe room had a higher body score than those in pens left tide of the room, as shown

in figure 2 e).

The plot in figure 2 f) is a scatter plot of body scorestandardised relative weight. The blue line is the kesmeloth estimator using a bandwidth of 0.75.
Less than 3% of the standardised weight values wdrereit2 or < -2, which meant there were insufficientigalto produce a reliable estimate of the
relationship between body score and relative weight. Haw#we plot suggested that for a relative weight betweamd2, the relationship was linear and

as weight increased so did log body score.

3.1.2 Inferential Analysis

Table 2 contains all the summary statistics for thedigffects (coefficient estimate, standard error, Sttslt-value and p-value) for the most appropriate
model, (iv) LLME + GEE, and the p-values for all fixeffects for the three comparison methods, (i) LLM, (ilzNMCOVA and (iii)) LLME. If a p-value
was greater than 0.05 it was not included in the téblell the statistical models the enrichment level, lacatf the pen (left/right side, front/back of the

experimental room) was significantly associated with bodyes®Relative weight was a significant component in 3 otlt@# statistical models.

The LLME + GEE model accounted for a random interceptséopes over time for pens within replications, and a Gauss®rrelation structure between

observations for each pig. There was a significant aationship with time, this can also be seen in figu(a)-(e) of the kernel estimators. The
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significant relative weight coefficient implied that atuncrease in relative weight resulted in a 0.05 in@@a$og body score, which equates to a 5%
increase in body score. On average, pigs on the right stde obom had a 0.094 higher log body score, i.e. their bodg 8@s 9.9% higher than those on
the left side of the room. Also pigs with more enrichnaamt those in pens located at the front of the experaheum had higher log body scores by

0.124 (13.2% increase in body score) and 0.09 (9.4% increase induody, sespectively.

3.1.3 Small Sample Szes

Figure 3 a) is a box plot of the coefficient estimate wigng GEE to analyse each replication; when the randautddir replication was not included,
with the fixed effect coefficient estimates under LLMESEE model (table 2) included as a red cross. The bosgoloelative weight was the only one
where the whiskers of the plot did not include zero, implyfrigiwas the only covariate with a significant assamiatvith log body score for all but one
replicate. This suggested that the coefficient estifimateslative weight should remain fairly consistentassrreplications. For pen location (left/ right,

front/back of the experimental room), and more enriched,gha coefficient estimates showed greater variance.

The median coefficient estimates were: weight = 0.0¢ht ISide of experimental room = 0.1; location to the fro@t}; and more enriched environment =
0.11. Comparing these values with the coefficients estinwdtdhe LLME + GEE model in table 2 we see that thekeesare quite similar, and
encouraging as a form of sensitivity analysis. Withme replication, there are 216 observations. If we wererforpea t-test on these 216 observations to
detect the largest effect size of 0.14 in log body scosengisg the standard deviation was 0.6 (estimated from thie dataset), then we would have

~40% power to detect this difference. This does not account for the repeated measures, which would reduce the power further.
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3.2 Ear Score

3.2.1 Exploratory Analysis

From figure 4 there is evidence of a cubic relationship betwaescore and time when comparing the proportion of piifpsam ear score of 0 with 1
and/or 2 (all plots on the left), where there is a degrgplateau, then further decrease. However, the plots cogplagi proportions observed in 0 and/or 1

with 2 (plots on the right) appear to be exponentially decaying

The plots in figure 4 show the proportional change in the gigereed within each ear score group with Gaussian kertelaésrs to convey how the

relationship between ear score changes over time foratiffousing features. In figure 4 a) the variability inghape of the relationship between ear score
and time for the different replications indicate a différgdope for each replication over time is required. E\aav, in figure 4 b) the estimators for each pen
have a similar shape, but different intercepts. Thexelaar differences in figures 4 c) and d) betweernrenrient and location next to the front or the back

of the experimental room.

3.2.2 Inferential Analysis

Table 3 shows all the summary statistics for fixed ¢$fécoefficient estimate, standard error, Studeniaude and p-value) for the cumulative logistic
mixed effects regression model with random effect fos,pliy) CLME +1, and significant p-values for fixedeafts from the three comparator methods (i)
CLM, (ii) GEE and (iii) CLME. Within each statisticenodel, ear score was shown to have a significant aggocwith the level of enrichment and the

front/back pen location.
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The CLME+1 model included random intercept and slope tepmsei within replication to account for the differenbesveen replications over time, and
a random intercept for each pig to account for theetation between repeated measures. To discuss our findieguse odds ratios (i.e.

exponential transformation of the coefficients), so weguantify the percentage increase or decrease in odtwithresult in the increase or decrease in
ear injury score. In the CLME +1 model, pigs in moractrad pens had 40% lower odds (Confidence Interval, Cl: 14%, 6BB&)ving a higher ear score

compared to pigs in less enriched pens. Similarly, ipigspen located at the front of the room had 33% lower (€id$%, 53%) of having a higher ear

score.
3.2.3 Small sample sizes

We fitted a CLME model to each replication with a randotarcept for each individual. Figure 3 b) contains the bokgflthe coefficient estimates from
the ordinal logistic regression of ear score for eaplication. The fixed effect coefficient estimates udeME+1 (table 3) are included as a red cross in
figure 3 b). There was a wide range of values for the icteits from each replication

(median coefficient estimate for more enriched environmet55; front of experimental room = -

0.21). Comparing the coefficient estimates for CLME and EHY, there was little difference between pen enrichnmeirhates (0.04), but a larger

difference between pen location estimates (0.19).

3.3 Inference method comparisons

For both types of injury score, the key associationsédxt the injury score and environmental factors weretitatig significant across all four statistical

models. Although, the magnitude of the relationship and tleetdn was not always the same between the most appeogtagistical model from
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approach (iv), and the other three statistical modelsgumiethods (i) to (iii)). The model via approach (iii) fothbojury scores provided no insight into

changes in injury over time, as this information was remewi®eh summarising the injury scores.

Table 2 details the level of association between bodesoat the environmental factors for each inferential metyoproach (i), the LLM, did not
account for the repeated measure correlation or rantfenoise and there was an additional significant assioci between body score and tail injury.
Whereas for approach (ii), the MANCOVA, which only acdeuaifor repeated measurements, there was a signifisaatiation between body score and
sex. Neither of these associations were evident in theraxgig analysis or in the most appropriate approachHieyvever, the association between body
score and weight was not statistically significarepproach (iii), the LLME model, but the evidence from expgtosaanalysis and most appropriate model

indicated there was a relationship between these tvables.

In table 3 the statistical models from methods (i), CLM] éi), GEE, did not account for the random effeaftpen within replication that led to high order
degree polynomials with the day, 7 and 5 respectively. Thasew evidence in the exploratory analysis or the firadt appropriate model (CLME + 1),

that this type of association between ear scordiarawas valid.

4. DISCUSSION

Comparing models where each incorporated different aspettte study design demonstrated how important using the most apfedpferential analysis
is when producing valid results. By appropriately accouritingll sources of variation within the multilevel struiet of the data (i.e. pens within

replications) and considering the potential time-dependerglation between observations, we increased the likelibbatentifying the true associations
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between the covariates and injury scores. We also finatdhere was a strong agreement between exploratoigfanehtial analysis, and associations

seemed to be plausible.

In the most appropriate model for the data (repeated mesasnixed model), the strong significant association oéed body injury score with the non-
linear time component is suggestive of a complex relationgtipden behaviour and time. This observation was onlyitgedsecause of the repeated
observations within pigs, and further validated by théa&{ions of the study. Although the variation in the intesessment interval time increased the
statistical difficulty of the analysis, it did meantliaere was more information available about changesgury score over a wider range of interval
differences. Ear and body injury score were both associwsith the enrichment level and front location of pemiwithe experimental room, although the
direction of this association changed for both covariategdes injury scores. More enriched pens (coef. e€.54; p = 0.005) and pens at the front of the
experimental room (coef. est. = -0.4, p = 0.02) were botbceded with a reduction in ear score, whereas thos®re enriched pens (coef. est. = 0.09, p =
0.02), and pens at the front of the experimental room (esef= 0.11, p = 0.003) had a higher body score. Body scoralseassociated with weight and
pen location on the right side of the experimental room, satlathweight increased so did body score (coef. es5s < 0.001), and those pigs in pens

on the right side of the experimental room also had a hlgyay score (coef. est. = 0.08, p = 0.03).

In this study, we investigated the impact of fitting statid models that account for none, some and all of the knbwetsral features of a multilevel
dataset. We also analysed the effect of small sagipé upon the most appropriate model. Similar investigatmmparing inferential analyses have been
conducted in human and non-human medical literature (ldl, €998; Wang and

Goonewardene, 2004), though this is the first example to the duthovdedge in animal welfare.
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In using an analytical approach that did not match tnystiesign (approach (i): CLM), variance within the ddttss was associated with either the
hierarchical structure or the correlational structure betwepeated observations was not accounted fa approach (CLM) led to predictions of a
complicated relationship between ear injury score and tiritie,a 7-degree polynomial predicted to describe théioekhip. For body score, the CLM
predicted a cubic (i.e. 3degree polynomial) relationship with,tjost as was predicted by the most appropriate mod&lE3il). The high degree
polynomial relationships predicted here result from poor estimafigariance, due to the models attempting to explairatian in the data using only the

covariates, without the underlying hierarchical structuo®acted for.

Including the correlation of the repeated measurementgpfmoach (i) via MANCOVA for body score and GEE for seore did increase the p-values, but
it did not account for the substantial variation causethéyandom effects. Hence, there was an additionaloe&hip between body score and sex, and the
association between ear score and day was now a 5-gedyaemial. One substantial drawback back with MANCOVA isdtniet format required of the
data, i.e. equally spaced repeated measures with somgiiglues. Using GEE analysis is more flexible #edabservations do not necessarily have to be
equally spaced. However as the correlation coefficierttgdam repeated measurements of ear score weresalhbes0.3, and the differences between the
estimators for replications and pens from the plofgyiure 3 a) and b) appeared quite high, this suggested ttlemaeffects terms for replication and pen
were more important than accounting for the conaagtructure between repeated measurements. By ramdiche study, we were able to gain insight

into differences between pens, which we had not caregider inclusion in our experimental design prior to condgdthe study; in particular, this would
have been beneficial for the location of the pens withéneixperimental room. Although we accounted for differemtaoise level with left/right side
counter-balancing of the treatments, and accountguobtential differences between pens at the front (theadoor) versus at the back of the room with

front/back counter-balancing of treatments, we did otaite the pens, which would have allowed us to accoutitéardditional locational differences
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detected in the data. Although we were unable to fullja@xphe reason for differences between pen locatigiinathe experimental room, we were able
to identify that pen location was a source of variatioth\&e could therefore statistically remove any undueémite this was having on other covariates
within the model. Differences observed between replicationld be related to weather conditions, handlers angt other features not measured as part
of this study. Despite being unable to quantify all vasiatietween replications, we believe that replication on déner sites would help to build up a

more general picture across contexts.

Summary measures of both body and ear score were uapgrioach (i), which resulted in lost information abdw hature of the relationships of body
and ear score across time. Using this approach, weumeat#e to identify a significant association betweedybscore and weight via the

LLME model, but we detected a significant relationship betvesgrscore and weight using the CLME, as compared fintile@ppropriate model.

In the final approach (iv) for body score and ear s¢bege was evidence of a cubic relationship with time for bythy scores. However, the direction of
the coefficient estimates for day, daynd day differed between body and ear injury scores. For body scihre coefficients for time were positive for day
and day and negative for ddywhereas for ear score they were negative for day ayichdd positive for day This result implies that the underlying

behaviour indicated by proxy from these injury scores changediowerFor example, the initial decline in scores cdiddssociated with pigs becoming

acquainted with one another as a hierarchy within a psrestablished within the first week (Barnett et al94t RArey, 1999).

In both the final ear score and body score statisticalats there was a significant association with penitmedfront/back of the room) and enrichment
level (see section 3.2.2). Pigs in pens located at ¢iné &f the room had lower odds of having a higher ear sk (8), but higher odds of a higher body

score (table 2). Pigs in more enriched pens had loaresaares (as described in section 3.2.2, table 3% r&ult supports previous findings that
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aggressive events are reduced in larger pen size(fetaa., 1991; Turner et al., 2000). Whereas the LME E @Bdel for body score implies that more

enriched pens resulted in higher body injury scores.

Finding clear differences in the predictors for ear asdlscores lends support to the hypothesis that they hdgeedifunderlying causes. Injuries to the
ear are mainly received during aggressive interactiom&{bhe, 1985). Injuries to the body on the other hand, whitstiad through aggression, can also
be the result of increased activity and play (Munsterhglal. 2009; Camerlink et al., 2013). Unfortunately, as tadre docked at birth we were not able
to use tail injury as another comparator, although rebearggests that the majority of tail injuries reflectlesaiory motivation rather than aggression
(Taylor et al., 2010). Applying a similar study to undocked pigy provide further detailed insight into aggression and tterlying motivating
behaviours that lead to injuries. Statistical techniqued ts determine the validity in medical screening test) as a receiver operator curve (ROC)
analysis (Fawcett, 2006) or Bland-Altman test (Bland &adn, 1986), may be used to compare indicators of aggrassigbermine if they are a measure

of the same quantity.

Whilst the final model selected is appropriate for the expartal design, it is not perfect. There are currentlgeweloped statistical methods available to
analyse categorical outcome variables with a time depecderelation structure between repeated measuresithierarchical model (such as the
random effects of replications within pens describatiiwisection 2.1). As such, we could not account fdn Hug correlational structure and hierarchy of
the study design within current statistical methodology. Onétgessolution could be to develop a statistical model wifrobit link rather than a logit

link, as the probit link is associated with the Gausdiatribution, and it may be easier to define a time depe¢maerelation structure with this compared

to the logit link. However, the interpretation of the proioik lcan be difficult as there are no direct interpiete of the coefficients, instead it is necessary
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to refer to the marginal effects of the regressors I($@o (1994) for more details), and the estimation otdedficients would be computationally

intensive.

Differences between the results of the four inferentethmds highlight the importance of initial exploratorylgsia in determining whether resulting
significant associations are realistic, particularlabh$our methods used are technically appropriate, alb#it wairying degrees of fit to the experimental
design. Strong evidence of a relationship in the explorat@lysia should translate to a significant associatioemes! within the inferential analysis.
Although measures were taken into account for layothegxperimental room, it was not possible to completadgumnt for the extent of this effect, and it

was through exploratory analysis that we were providéld gvieater insight into the magnitude and nature of tleeteff

By analysing each replication separately, we weretaldemonstrate how sample size affects the final coeftieistimates. The decrease in data resulted
in insufficient power to detect significant associatiaigiough the calculated medians of almost all the r&jdias’ coefficient estimates were consistent
with our full final models. The results clearly demonstithatg analysis of small sample sizes may lead inyastis to believe there was no association
between the indicators for aggression and covariateseafércould be the study is under-powered to detect thet sife (i.e. the conclusion would be a
type 2 error). As a simple demonstration, we perforenpdwer calculation to detect a mean difference in boahesaf 0.18 and standard deviation of 0.6,
based on summary statistics of enrichment level in ttieviieek. The power calculation found that to detect sudifference with 80% power at the 5%

level of significance, a sample size of 176 pigs (total as8)gned to each enrichment level was required.

This study demonstrates through examples, how the tyipdioator measured, the sample size and choice of staliatialysis can affect model outputs
and conclusions drawn. We also highlight the importancesiolg an appropriate indicator to reflect the behaviour ungestigation. The correct

inferential analysis is important for meaningfuluis, which are not only plausible, but also supported byxplratory analysis. To ensure the quality of
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animal science reports it is vital that a study cdssian appropriate sample size, with statisticalyasmabppropriate for the study design. These findings
provide further support for the ARRIVE guidelines, but we fleat aidditional steps may improve the quality of resear@mbyring studies are designed
based upon the inferential analysis best equipped toeantl@/research question. It may be valuable to corfsili@ning similar procedures as in medical
trials with the formulation of a protocol and detailed duentation of any unexpected and additionally planned deviatidgmnsh may subsequently affect

the inferential analysis. This way, while best lpi@ins may still go awry in practice, there will be aclplan to ensure that robust and appropriate analysis

of the data can still be conducted.
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FIGURE LEGENDS

Figure 1: The six-point scaling system used to assess injurigig®body areas and outline of body areas for injury scoriag, Snout, Shoulders, Legs,

Back, Flanks, Hind quarters and Tail.
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Score | Scaling System

0 Noinjuries.

Tail
1 One small superficial lesion. | e
< 2 ; . Hindqueirter
2 More than one small, superficial lesion; or just one red

(deeper than score 1) butstill superficial lesion. Shoulder

3 One or several big and deep lesions. If deep, only one

single lesion. If not so deep. several red lesions.

4 One very big. deep and red lesion. Or many deep. red
lesions.
5 Many, very big, deep andred lesions covering the skin

ared.

Figure 2: Plots of the log transformed body score by day wittaagSian kernel smooth estimator with a bandwidth of 18)foeplication; b) pen; c)
enrichment; d) location to the front or back of the expenit@l room; €) location on either side of the experimeotah. The light grey area depicts the
time period the second injury assessments were gathénedings gathered after this period are the third injurgsssients and all points before are the
first; f) Plot of the pig's relative weight for eachnpeithin replication by log body score with a Gaussiam&esmooth estimator with bandwidth of 4. The

grey area of the plot indicates the region where 95% ofateeisl located, and where the kernel estimator withbst reliable.
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CCEPTED MANUSCRIPT
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Figure 3: a)Box plot of the fixed effect coefficient estimates floe tog linear regression model for body score for eactcegjan. The red crosses
represent the fixed effect coefficient estimatesfierltLME + GEE from table 2. b) Box plot of the fixed céa#nt estimates from the ordinal logistic

regression of ear score for each replication. Theresses represent the fixed effect coefficient estgrfarethe CLME +1 in table 3.cross.
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Figure 4: Left plots: observed proportion with an ear score ofdHA. Right plots: observed proportion with an ear scof#lond 2, with Gaussian

kernel estimators with a bandwidth of 15 for
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a) replications; b) pens; c) enrichment; or d) locatthe front or the back of the experimental room. The tigky area depicts the time period the second
injury assessments were gathered, all injury assessethiesred after this period are the third injury assesss and all injury assessments before are the

first.
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Table 1: Types of data that can be analysed using different infener@thods, where C represents continuous data and Oerggresdinal data.
MANCOVA=Multivariate Analysis of Covariance; GLM=Geradised linear model; LME=Linear mixed effects model; GEeneral Estimating Equation
model.

Inferential Method
Data MANCOVA GLM LME GEE LME + GEE
Univariate coO
Multivariate C
Repeated CO
Hierar chical CcoO
Repeated + Hierar chical C
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Table 2. Summary statistics for inferential analysis of Bodyi® via the: log linear mixed effects model for repeatedsures (LLME + GEE); linear
mixed effects model of pig’s mean log body score (LME);tivailiate analysis of covariance (MANCOVA) of log bodyose, and a log linear regression
model (LLM). Wheren is the number of pigs/body score assessngeistthe parameter estimatE is the standard errorjs the Student’s t test statistic
andp is the probability value associated with each covaridg is the day within the trial that observations were réedyM or e Enriched refers to pens
that had more enrichment (compared with Less Enrictlhextgtion: Right refers to pens on the right side of the room (compared toquethe left side of
the room);L ocation:

Front refers to pens at the front of the room (compared to aethe back of the room).

LLME + GEE LLME | MANCOVA LLM
n n

Pigs 862 862 855 862
Body Score 2565 862 2550 2556

B SE t p p
Day 5.87 2.47 2.38  0.0173 < 0.0001
Day? 11.45 2.35 4.87 <0.0001 < 0.0001
Day® -6.39 1.30 -4.93 <0.0001 < 0.0001
More Enriched 0.09 0.04 2.40 0.0224 0.0151 0.0003 0.0003
L ocation: Right | 0.08 0.04 2.26 0.03Q7 0.0109 0.0018 < 0.0001
Sex 0.0041
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Weight 0.05 0.01 3.41 0.00Q7 0.0278 0.0013

L ocation: Front 0.11 0.04 3.16 0.0034 0.0011 0.0003 < 0.0001

Table 3: Summary statistics for inferential analysis of Eaor@ via the: cumulative logistic mixed effects modehw#p, pen and pig random effects
(CLME + 1); cumulative logistic mixed effects model witlp r@nd pen random effects for summary ear score (CLEUE)ulative logistic regression
model for repeated measures (GEE); the cumulative logegiession model (CLM). Wherg:is the number of pigs/ear score assessrfantthe
parameter estimat&E is the standard errarjs the Student’s t test statistic gmis the probability value associated with each covariBggy is the day
within the trial that observations were recordddyr e Enriched refers to pens that had more enrichment (compared with Enriched);. ocation: Front
refers to pens at the front of the room (compared to gehs dack of the room).

CLME +1 CLME GEE CLM
n n
Pigs 862 862 862 862
Ear Score 2572 862 2572 2572
B SE t p p
Day 51 6;3 5.75 -8.99 < 0.0001 <0.0001] < 0.0001
Day? 31.30 5.74 5.45 < 0.0001 <0.0001| < 0.0001
Day® 13_5'6 6.51 -2.08  <0.0369 0.0453 0.0003
Day* <0.0001| < 0.0001
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5

Day

6

Day

7

Day

More Enriched
Weight

L ocation:
Front

-0.51

-0.40

0.18

0.18

-2.79

-2.25

0.009

0.024

3

7

0.0131
0.0302

0.0328

0.0194

< 0.0001

< 0.0001

< 0.0001

0.0255
< 0.0001

< 0.0001

< 0.0001
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