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  Data archiving statement: 

Data deposited in the Dryad repository: http://dx.doi.org/10.5061/dryad.s156b. The data package 

contains the raw data at the objects level, as well as all distance measures between sites and additional 

meta-data. In addition, the data package contains all the R code needed to reproduce the results. The 

raw LandMap images are tied under a CEDA academic licences agreement 

(http://licences.ceda.ac.uk/image/data_access_condition/landmap.pdf) and thus could not be 

deposited. For accessing the raw images contact: support@ceda.ac.uk. All the details on the dataset 

are in: http://catalogue.ceda.ac.uk/uuid/51c4273d47ef0130c422eafb2f99d4fe. The information 

regarding date, X and Y centroid and UK 100 km grid reference supplied in SI1 is required to identify 

the relevant tiles.   

 

ABSTRACT 

1. The ability to provide reliable projections for the current and future distribution of land-

cover is fundamental if we wish to protect and manage our diminishing natural resources. 

Two inter-related revolutions make map productions feasible at unprecedented 

resolutions - the availability of high-resolution remotely-sensed data and the development 

of machine-learning algorithms. However, ground-truthed data needed for training 

models is in most cases spatially and temporally clustered. Therefore, map production 

requires extrapolation of models from one place to another and the uncertainty cost of 

such extrapolation is rarely explored. In other words, the focus has mainly been on 

projections, and less on quantifying their reliability.  

2. Using the concept of ‘forecast horizon’, we suggest that the predictability of land-cover 

classification models should be quantitatively explored as a continuum against distances 

measured along multiple dimensions – space, time, environmental and spectral. Focusing 

on ten agricultural sites from England and using models specifically designed to predict 

multivariate decay-curves, we ask: how does a model’s predictive performance decay 

with distance? More specifically, we explored if we could predict the proficiency (kappa 

http://dx.doi.org/10.5061/dryad.s156b
http://licences.ceda.ac.uk/image/data_access_condition/landmap.pdf
mailto:support@ceda.ac.uk
http://catalogue.ceda.ac.uk/uuid/51c4273d47ef0130c422eafb2f99d4fe
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statistics) of a model trained in one site when making predictions in another site based on 

the spatial, temporal, spectral and environmental distances between sites.  

3. We found that model proficiency decays with distance between sites in each dimension. 

More importantly, we found for the first time, that it is possible to predict the 

performance a model transferred to or from a novel site will have, based on its distances 

from known sites. The spatial distance variables were the most important when predicting 

model transferability.  

4. Exploring model transferability as a continuum may have multiple usages including 

predicting uncertainty values in space and time, prioritization of strategies for ground-

truth data collection, and optimizing model characteristics for defined tasks.  

KEY WORDS: 

Signature extension, habitat mapping, remote-sensing, earth-observation, random forest, 

species-distribution models, community similarity, uncertainty, forecast horizon, predictive 

ecology 

 

INTRODUCTION 

The ability to provide reliable predictions for the current and future distribution of land-

covers, habitats, species and communities is fundamental if we wish to protect and manage 

our diminishing natural resources. Thus, in recent years there has been a surge of interest in 

developing the scientific backbone of predictive ecology. Among others, predictive ecology 

is explored in relation to the type of predictions (Mouquet et al. 2015), the type of models 

(Evans et al. 2013; Urban et al. 2016), model complexity (Wenger & Olden 2012; Evans et 

al. 2013) and the various potential sources of uncertainty (Petchey et al. 2015; Cabral et al. 
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2016; Alexander et al. 2017). However, we are still far from understanding the limits by 

which we can predict, project and forecast various quantities over various dimensions.  

To better understand predictability in space and time, Petchey et al. (2015) suggested the 

‘ecological forecast horizon’ as a unifying concept and defined several terms to facilitate 

communication. First, ‘forecast proficiency’ (FP) defines the quantitative measure by which 

we assess the performance of the model in terms of accuracy and precision. Second, ‘forecast 

proficiency threshold’ is the value of the FP above which the predictions are still useful and 

below which they are not, moving from a qualitative description of models as either ‘good’ or 

‘bad’ towards task-oriented decisions. Finally, ‘forecast horizon’ describes the distance along 

a certain dimension (e.g., temporal, spatial) at which FP falls below the FP threshold. That is, 

we should explore predictability using quantitative methods as continuous decay curves 

against distances measured along multiple dimensions. However, such an approach requires 

knowing the true state of the system at the projected set of conditions. Indeed, Petchey et al. 

(2015) claim that forecast horizon can ‘be applied in any situation where the value of a 

variable is predicted, and there is knowledge about the known or assumed true value of that 

variable’. Here, we follow the ‘gold standard’ suggested by Pennekamp et al. (2016) and ask 

whether FP is predictable even in the lack of knowledge of the true value and when FP is 

likely to simultaneously decay along multiple, potentially interacting distance dimensions.  

As competition for land increases on a global basis, there is a growing need for 

habitat/land-cover (H/LC) maps to guide land-use planning: where does habitat need to be 

protected, and where can it be developed? At large spatial scales, valuable habitat is often 

“spared” through protected area status, but at finer spatial scales, land for “sparing” vs land 

for “sharing” requires knowing in detail its characteristics (Shackelford et al. 2015), 

including ecosystem services provisioning (e.g., Koschke et al. 2012), natural capital 

assessment (Brown et al. 2016) and species’ distributions (Thuiller, Araujo & Lavorel 2004). 
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At even finer spatial scales, habitat patches – e.g. hedgerows – may need to be mapped to 

ensure they can be protected under various laws (EU 2007) due to their role in maintaining 

landscape connectivity. Finally, reliable H/LC maps are essential for projections of land-

cover/land-use change under various scenarios, since inaccuracies in the base map may affect 

models’ outcomes (Alexander et al. 2017).  Given the increasing need for reliable H/LC 

models, our aim here is to explore the distance decay of their FP. 

In recent years, two developments have been revolutionising the production of H/LC 

maps. First, open access to remote-sensing data facilitates the production of thematic and 

high spatial resolution maps over wide extents (Xie, Sha & Yu 2008). Second, the increase in 

computational power allows machine-learning algorithms to produce reliable rule-sets that 

can classify H/LC for increasingly large datasets (Gong et al. 2013). The limiting factor is 

now arguably the availability of the ground-truthed data required to train and validate the 

models (Knorn et al. 2009; Heipke 2010). Thus, to fully realize the potential of the data 

revolution need to optimize the usage of the limited and expensive ground-truthed data.    

If the limiting factor in H/LC modelling is the ground-truthing data, it raises a key 

question that relates directly to the concept of the forecast horizon: to what extent can models 

trained on data from one location be applied outside its current training extent? To address 

this question requires data from a new site. But if new data is not available, the assumption is 

often made that models will perform similarly in new sites to the original one. For H/LC 

classification models, this assumption was often found to be false (Pax-Lenney et al. 2001; 

Knorn et al. 2009). For example, Olthof, Butson and Fraser (2005) found that model 

proficiency when the inter-sites distance was between 1500-2000 km was 50% of the 

proficiency when the distance was smaller than 500 km. If indeed transferability of models 

carries a FP cost, then we regularly over-estimate the accuracy of H/LC maps because 

ground-truthed data is typically spatially clumped. In fact, Brenning (2012) suggested 
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integrating model transferability into FP assessment as a way to control for spatial 

autocorrelation between the training and validation datasets.   

Model transferability has also been explored for species distribution models (SDMs). 

SDM transferability studies can shed light on transferability of H/LC models since the two 

rely on similar machine-learning algorithms and since SDM can be regarded as a 

classification problem with 2 classes. Similar emphasis on spatially-structured cross 

validation was suggested for SDMs as well as H/LC models (Wenger & Olden 2012). 

Furthermore, multiple studies of the transferability of SDMs found reduced FP of models 

transferred spatially (Randin et al. 2006; Wenger & Olden 2012; Wang & Jackson 2014) or 

temporally (Tuanmu et al. 2011; Huang, Frimpong & Orth 2016). For SDMs, transferability 

studies mainly focused on the trade-off between model complexity and transferability. In 

particular, whether more complex models (e.g., Random Forest and Artificial Neutral 

Networks) which can identify complex (but true) rules that boost the FP at the source site, 

produce classification errors when transferred because of the specifics of the training site. 

SDM transferability studies therefore mainly focused on the choice of algorithm, on the 

number of training variables, and on the size of the training set, treating transferability as a 

property of the model/algorithm. 

Whilst the choice of model clearly affects model transferability, we suggest that 

transferability should predominantly depend on the similarity between the source site (where 

the model is trained) and the target site (where the model is predicting). If the source and 

target site are different from one another, transferability should be low, while if the two sites 

are similar, transferability should be relatively high. To our knowledge, no SDM studies have 

explicitly considered the effect of the distance between sites on model transferability and 

only a handful of papers have done so for H/LC classification. 
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Here we quantitatively examine the decay of FP with the spatial, temporal, spectral and 

environmental distance between sites. Specifically, we ask the following questions: 

1. How does FP decay with spatial, temporal, spectral and environmental distances and 

what is the relative importance of these dimensions? 

2. Can we predict the FP of models in novel sites using known decay curves? 

We focus on the transferability of H/LC models in ten agricultural sites located in central 

and eastern England, UK. Providing high spatial resolution maps within UK agricultural 

landscape is of great importance with respect to habitat fragmentation, diversity and 

sustainability (Benton, Vickery & Wilson 2003; O'Connell, Bradter & Benton 2015). The 

coverage and spatial distribution of land-cover classes in intensively managed agricultural 

landscapes can have direct and indirect consequences on ecosystem service delivery and 

sustainability (Benton 2007). As traditional surveying at regional scales is impractical, 

remote-sensing based classification models is the only feasible option to delineate such land-

covers at the required extent.      

METHODS: 

Study sites 

Ten sites were selected in the UK (Fig. 1a) based on access to ground validation data from 

previous studies (Relu 2011; O'Connell, Bradter & Benton 2015). Sites varied in size from 

1197 - 15136 ha and were located in intensively-managed agricultural landscapes which were 

primarily dominated by arable crops and permanent grassland (Fig. 1c). The cropped areas 

were further divided into un-ripened cereal crops, ripened cereal crops, grass and scrub. The 

non-cropped habitat included trees, hedges, and field margins. We further classified two 
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additional classes, sparse (fallow or sealed surfaces) and shadow, for a total of nine land-

cover classes (Fig 1b). 

Data 

Colour Infra Red (CIR) aerial photography (CEDA 2014) was acquired for each site 

(acquisition dates: 2006 to 2010 ; spatial resolution: 0.5m). Data pre-processing was in 

accordance with O'Connell, Bradter and Benton (2013). Once pre-processed, we applied a 

segmentation procedure in eCognition (Trimble 2013) to spatially aggregate pixels with 

similar spectral, textural and geometric properties into objects. A total of 66 spectral variables 

(Table S1) were created for each object along with 31 environmental variables covering soil 

maps, topographic properties and climatic conditions. The ground-truth data of the nine land-

cover types covered 6.5% of the total population of objects and was assessed using a 

combination of auxiliary data from previous studies and visual interpretation. A full 

description of the data preparation is given in Appendix S1 in Supporting Information while 

Table S1 provide a full list of object-scale variables.  

Local H/LC classification models 

We used Random Forest (RF, Breiman 2001) for the H/LC classification models. RF takes as 

input a set of training objects, representing a predefined and finite set of classes, along with 

relevant explanatory variables. The algorithm then ‘learns’ the rules by which the explanatory 

variables distinguish between the different classes. We refer to the site from which the 

training objects are taken as the source site (Sk). Once a model is trained, it can be used to 

predict the classes in any other site, referred here as the target site (Tj), such that a full 

process of training and predicting can be listed as SkTj. After predicting, FP is assessed by 

various proficiency indices that compare the predicted class to the training data (when the 
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source and target sites are identical, i.e., SkTk) or to external validation data (when the source 

and target sites differ). 

For each site we trained a RF model using 1,000 classification trees with the package 

randomForest in R (R Core Team 2016), with 72 object-level variables as explanatory 

variables (Table S1). We then estimated FP within each site (i.e. the 10 SkTk pairs), using 

unweighted kappa statistic (Appendix S1). Next, we used the local model to predict all the 

objects in all other sites, and quantified kappa separately in each target site. This yielded a 

total of 90 observed FP for models trained in source site k and applied in target site j (all SkTj 

where k് j). Since model transferability is not necessarily symmetrical, FP of SkTj may differ 

from the FP of SjTk (Randin et al. 2006). We explored the symmetry property by calculating 

the Pearson correlation coefficient between SkTj and SjTk  (for all k് j pairs). We calculated 

the coefficient 500 times, each time randomly allocating the sites of each pair to either k or j. 

We repeated all RF models 30 times and took the mean kappa for the symmetry analysis.  

Distance measures between sites 

For each pair of sites, we calculated various measures of the spatial, temporal, spectral and 

environmental distances. We calculated spatial distance as the Euclidian distance between the 

sites’ centroids. Temporal distance was first calculated as the total number of days separating 

the dates in which the sites were ground-truthed (hereafter, the ‘absolute-days-apart’). 

However, since two images taken in the same season but different years may be more likely 

to resemble each other than two images taken at different seasons in the same year, we 

calculated the days apart as the minimum time between images in Julian days, ignoring years 

(the ‘seasonal shift’).   

As mentioned above, spectral and environmental variables were collected at the object 

scale. However, to assess model transferability they needed to be aggregated at the site-scale 
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and translated to distance measures. Since not all variables can be aggregated using a single 

methodology we utilized five different complementary methods, each suitable for different 

types of object-level variables and each capturing a different property:  

a) Bray-Curtis dissimilarity for categorical data (e.g., soil-type cover).  

b) Differences in the mean values of additive variables such as Normalized Difference 

Vegetation Index (NDVI).  

c) Difference in within-site heterogeneity of object-level variables (e.g., slope).  

d) Differences in within-sites change of variable values within a predefined Euclidian 

distance range (done separately for 0-100 m, 300-400 m and 800-1000 m distance ranges)  

e) The Gower dissimilarity (Podani 1999) between two objects randomly selected in two 

sites, either non-stratified or stratified according to Natural England's provisional 

agricultural land classification (Natural England 2013) .  

 

Detailed descriptions of methods a-e are given in Appendix S2. In total, we created 68 

distance measures between each pair of sites (1 spatial, 2 temporal, 27 spectral and 38 

environmental, Table S2). The distance measures allowed exploring model transferability as 

a continuum with SkTk pairs taking a distance of zero (with the exception of mean Gower 

dissimilarity).  

Modelling the distance-decay curves 

We expect kappa rates to decay non-linearly with the distance measures. Kappa is also 

bounded between -1 and 1 (with 1 representing full agreement) and thus may be asymptotic 

with distance. In many ways kappa therefore resembles community similarity indices, and so 

we modelled the decay curves using Generalized Dissimilarity Models (GDM, Ferrier et al. 

2007), an extension of matrix regression that accounts for curvilinear relationships between 
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response and explanatory variables and for the bounded and asymptotic nature of 

dissimilarity indices. Since GDMs were designed to model dissimilarity values bounded 

between 0 and 1 (with 1 representing full disagreement), we transformed kappa prior to 

analysis: Kappatrans = (1-Kappaorig)/2 and back-transformed after predicting. To measure the 

goodness of fit of the GDM model, we used the percent of null deviance explained (Ferrier et 

al. 2007). We kept the default settings of the package gdm in R (R Core Team 2016) for all 

GDM analyses. 

Question 1: The shape of the decay curves 

To explore the general shape of the kappa decay curves we first fitted a full GDM model, 

with the 68 distance measures. Note that for a given k and j, the 68 distance measures are 

identical, regardless of which site is used as source and which as target. However, each pair 

of sites was included once as SkTj and once as SjTk due to the potential non-symmetry of 

observed kappa. We also included the 10 SkTk pairs for a total of 100 pairs of sites. We 

repeated the GDMs separately for each of the 30 RF runs. We fitted a linear mixed effects 

model of the observed vs. the mean predicted kappa (as a fixed factor) and the IDs of the 

source and target sites as random factors and kept the marginal R2 as suggested by Nakagawa 

and Schielzeth (2013). We explored the change in kappa with all distance measures that were 

retained in at least 4 out of 30 GDMs. 

In addition to the full model, we fitted 14 additional GDM models, in which we used a 

subset of the distance measures. 4 of the 14 GDMs included distances measures only along 

one dimension (e.g., spatial), 6 along two dimensions (e.g., spatial and temporal), and 4 along 

three dimensions (e.g., everything but spectral). Thus, the 15 model generates a nested 

design, which we used to explore the relative effect of spatial, temporal, spectral and 

environmental distances on the decay curve (Appendix S3). We repeated all GDM analyses 
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separately for each of the 30 RF runs and ranked the GDM models based on the mean percent 

deviance explained over all 30 runs.  

 

Question 2: Predicting model proficiency in novel sites 

To explore if the decay curves can predict the FP of models in novel sites, for each SkTj we 

needed to compare the predicted kappa to the observed, when at least one of the sites is set 

aside and not included in the GDM analysis. Thus we can further distinguish between two 

sub-questions (see Appendix S1 for more details):  

 Source sites are novel: if k is a novel source site, we can explore our ability to 

predict the FP that a model trained in k will have in any other site. This can then be 

used to prioritise sites for ground-truthing based on their ability to predict in other 

sites. Here, we are predicting the ability of the novel site to forecast.  

 Target sites are novel: If j is a novel target site, we can explore our ability to predict 

the FP that a classification model trained in any other site will have in site j. This can 

then be used to map the maximal FP across the entire extent (i.e., uncertainty maps). 

Here, we are predicting the ability of a site to be forecasted.  

To answer these questions focusing on site z as the novel site, we first removed from the 100 

pairs of sites all 19 pairs in which site z was either a source, a target, or both. We then fitted a 

GDM for the remaining 81 pair using all 68 distance measures. Next we used the GDM 

model to predict the kappa for the 19 pairs. Note that the predicted kappa for SjTz and SzTj is 

identical, yet the two questions differ since the observed kappa of each pair is not necessarily 

identical. We repeated the above procedure for all sites separately for each of the 30 RF runs 
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and took for each pair the mean predicted kappa over all runs. We fitted a linear mixed effect 

model of the observed vs. predicted kappa as described above.  

RESULTS 

The data and R codes required to reproduce our results was submitted to Dryad (Gavish, 

Benton & O'Connell 2017). We observed a drop in FP (measured by kappa values), whenever 

a model is transferred from a source site to a different target site. The observed self-kappa 

had a mean of 0.780 (±0.033 S.E) and ranged between 0.727-0.821, while the observed 

transferred-kappa had a mean of 0.360 (±0.004) and ranged between 0.124-0.676. The 

transferability of sites was not entirely symmetrical, although a clear trend was observed 

between SkTj and SjTK (Fig. 2) with mean Pearson correlation coefficient of 0.67±0.01 (sd).   

Question 1: The shape of the decay curves 

The GDM analysis that included all 68 distance measures accurately predicted kappa (Fig. 

3a, marginal R2=0.94). Among the 68 distance measures, the GDM identified 26 measures as 

important in at least 4 of the 30 runs, including the spatial distance, the two temporal 

distance, 13 spectral measures and 10 environmental measures (Table S2). The clearest decay 

curves were observed against the spatial distance and the absolute-days-apart, with less clear 

trend against the seasonal-shift (Fig. 4). For these 3 distance measures we found clear decay 

curves of class level accuracies for some but not all of the thematic classes (Appendix S4).  

Class level accuracies did not change in a systematic manner with the number of objects in 

the ground-truth data of the target site, suggesting that class imbalance had little effect on the 

kappa decay curves (Appendix S4).  

For the spectral distance measures (Fig. 4 and Fig. S1), the GDM models retained various 

distance measures based on the object-level reflectance in red and Near-Infra-Red (NIR). 
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This included changes in mean values (method b) and differences in within-site heterogeneity 

(method c). Interestingly, the objects within each site were created from multiple pixels, and 

we found that differences in within-object heterogeneity (based on method b) in various 

variables (red, NIR, Canny edge detection, EVI2, see Table S2) also affected model 

transferability. Finally, the GDM flagged two of the Gower-based measures (method e) as 

important: those stratified by Natural England's provisional agricultural land classification 

grades 2 (“Very-Good”) and 4 (“Poor”) (Natural England 2013).  

The 10 environmental distance measures (Fig. 4 and Fig. S2) included difference between 

sites in the standard deviations of rainfall in March, June and August, and the number of 

growing days (method b). In addition, the GDM retained the difference between sites in the 

relative cover of different soil types (method a). Finally, difference between sites in spatially 

structured heterogeneity (method d) of various topographic object-level variables (e.g., slope, 

elevation) were identified as important.  

The nested GDM analysis (Fig. 5, Appendix S3) revealed that the GDM that included all 

68 distance measures explained the highest percent of null deviance (94.20% ±0.02 S.E). The 

analyses identified the spectral dimension as the most important, followed closely by the 

environmental dimension, with the temporal and spatial dimensions lagging behind, though 

still performing well (73.38%±0.28 for the temporal-only GDM). These results suggest that 

GDMs provide a good modelling framework to explore model transferability, and that model 

transferability is related to the various distance measures.  

Question 2: Predicting model proficiency in novel sites 

The GDMs fitted when excluding one site explained on average 95.01% (±0.20 S.E) of the 

null deviance. There was a strong correlation between the observed and predicted kappa, both 

when the novel sites where source (Fig. 3b) and target (Fig. 3c). In both cases, the linear 
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mixed effect model returned significant results for the fixed term with marginal R2 of 0.68 

and 0.61 when the novel sites where source or target, respectively.  

DISCUSSION 

The ”big data” revolution provides the potential for spatially explicit environmental data to 

become available in unprecedented ways through remote-sensing and data analytics. Such 

data can revolutionise our ability to manage our increasingly pressured environment in order 

to preserve ecosystem services as competition for natural resources intensifies. However, 

complex models applied to complex remotely sensed data requires detailed ground-truth data 

for training, which is expensive to collect. It is therefore vital that we understand the 

consequences of extrapolating such models across landscapes. If model transferability is low, 

it implies that our ability to use remotely-sensed data, in the absence of ground-truthed data, 

will also be low, providing a significant constraint on the ability to realise the potential of 

increased availability of imagery.   

In this study, we found that FP decayed with the spatial, temporal, spectral and 

environmental distance between source and target sites (Fig. 4). Importantly, we also found 

that the decay curves can be used to predict the proficiency cost when transferring a model 

from one site to another, even if one of the sites is completely novel (Fig. 3). Finally, we 

found that among the various sets of distance measures, those based on spectral variables are 

the most important to predicting model transferability (Fig. 5). Our results provide some 

positive reassurance: models can provide predictive ability in novel landscapes, away from 

the place and time where they were trained. But perhaps more importantly, their proficiency 

is likely to be estimable; allowing for the provision of both spatially-explicit H/LC data and 

its certainty to be incorporated into land-management decisions, when field survey data may 
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not be available (Cabral et al. 2016). Although we have focused on H/LC classification, we 

suspect our results will broadly apply for SDMs.  

In this paper, we integrated knowledge and methods from two interrelated disciplines: 

remote-sensing and ecology. From remote-sensing we took the quantitative approach that 

explores model transferability as a continuum against spatial, temporal or spectral distances 

(Pax-Lenney et al. 2001; Olthof, Butson & Fraser 2005; Knorn et al. 2009; Laborte, 

Maunahan & Hijmans 2010; Verhulp & Van Niekerk 2016). From ecology, we took 

knowledge on the shape of the decay curves and the statistical tools appropriate for exploring 

them (Nekola & White 1999; Ferrier et al. 2007; Rocchini 2007). Combined, the exploration 

of model transferability with GDM can prove to be an important contribution to the growing 

tool-box of predictive ecology.  

The shape of the decay curves 

Among the various distance measures, the clearest decay curves were observed against the 

spatial distance and the absolute days apart temporal distance (Fig. 4a,b, respectively). In 

fact, spatial distance plus the two temporal distance measures were enough to explain around 

80% of the null deviance of model transferability (Fig. 5, Appendix S3). The strong effect of 

spatial and temporal distances on model transferability are in accordance with other works on 

signature extension (in remote-sensing, the process of increasing the spatial and temporal 

range over which a model can be used to classify data without significant loss of FP; Olthof, 

Butson & Fraser 2005; Laborte, Maunahan & Hijmans 2010; Verhulp & Van Niekerk 2016).  

Although the decay patterns against the spatial and temporal distances were very clear, we 

found that model transferability is best predicted by the spectral distance between sites (Fig. 

5). We had more environmental distance measures than spectral ones, so it is unlikely to be 

simply an effect of the number of variables. Equally, although all of the spectral variables and 
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many of the environmental variables were measured at the object level (unlike the spatial and 

temporal distances), there was no one-to-one relation between the variable importance in the 

RF and selection in the GDMs. For example, the object-level reflectance in the Green band, 

which was identified as the most important object-level variable in most RF models, was only 

retained by the GDM once (out of 30 runs). Thus, our results suggest that the variables that 

are important when fitting a model are not necessarily the ones needed to understand its 

transferability. 

Implications to the forecast horizon concept 

We have found that model transferability is better predicted when exploring concurrently 

multiple distance measures from multiple dimensions (Fig. 5). In such a context, it is difficult 

to consider a single forecast horizon. For example, focusing on Fig. 4a and arbitrarily 

deciding on a FP threshold of kappa=0.5 suggest a forecast horizon of approximately 50 km. 

However, the results of 50 km is conditioned upon the distance measured along other 

dimensions. For example, sites 50 km apart are expected to have kappa > 0.5 if they are less 

than 90 days apart, but values drop sharply if the temporal distance is larger (Fig. 5b). In that 

respect, statistical tools such as GDMs can provide predictions for a wide range of 

combination of distances along multiple dimensions.  

In fact, we used here the GDMs to test the ‘gold standard’ of model predictability 

(Pennekamp et al. 2016) by applying the models to situations different from what they were 

trained for, along multiple dimensions and by keeping the training and testing data 

independent. That is, by setting each time a different site aside and predicting its proficiency 

as a novel target or source we extrapolated the complex proficiency decay along multiple 

dimensions to novel combinations of conditions. The importance of keeping to this ‘gold 

standard’ becomes clear when comparing the predictive abilities of the GDM when the sites 
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are not set aside and when they are set aside (Fig. 3). If we had not kept to the ‘gold standard’ 

we would claim that the predictability of model proficiency is considerably higher than it 

actually is. Nonetheless, we found that the transferability of models to or from novel sites is 

somewhat predictable (Fig. 3b,c). While such results are encouraging, we also found 

considerable decrease in FP with distance (Fig. 4), suggesting that for our case-study, H/LC 

maps do not possess high levels of transferability. This leads to a primary question: what is 

the value of a classification model that has relatively low accuracy?  

Clearly the answer is context dependent, but being able to create a map and being able to 

estimate its uncertainty, is likely to be of utility in some situations where decisions need to be 

made in the absence of better information. Our models focused on land-cover classes that 

maintain biodiversity connectivity. Whilst a transferred model with low kappa may not be 

enough to make explicit decisions on conservation priorities in novel landscapes (i.e., 

ensuring maximum connectivity by protecting specific objects), it may be enough to monitor 

the overall connectivity of the landscape in relation to other landscapes or as part of a 

national monitoring system.  

Why explore model transferability? 

We see several potential usages of exploring transferability in conservation and management 

of land-covers, habitats and species:  

i. Mapping uncertainty: we can predict the FP that each known site will have in any 

novel site. Therefore, we can map classification uncertainty and identify areas for 

which we currently cannot provide a reliable classification model.  

ii. Uncertainty of future projections: Future projections based on climate/land-use change 

scenarios are usually not accompanied with any estimate of proficiency. A GDM 
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exploring transferability of models trained at different times for a single site may be 

extrapolated to provide uncertainty levels to future projections.  

iii. Optimize the collection of survey/ground-truthing data: In habitats and regions 

throughout the world where extensive ground-truthing over large areas is prohibitive 

due to financial, legislative or environmental barriers, understanding when predictive 

performance declines can aid in the design of optimal data-collection, via the selection 

of sites where data has the greatest utility in prediction.  

iv. Averaging of local models to optimise model performance in novel sites: utilising the 

combined predictive performance of local models in novel sites using kappa 

weighting. It is possible therefore to give higher weights to sites that are likely to 

provide more accurate classification in the novel site.  

v. Comparing classification algorithms: much on the work in the SDM literature has 

focused on the trade-off between model complexity and model transferability. The 

forecast horizon concept puts this trade-off on a continuum, in which a more complex 

algorithm starts at higher proficiency but decays fast, while simpler algorithms start 

with a lower proficiency but decay slower. If different algorithms decay differently, 

we can select the best algorithm for a given task, or use the predicted performance as 

weights.    

vi. Variable selection: Traditionally, variable selection methods prioritise variables that 

increase local FP. However, some explanatory variables that play little role in 

maximizing local FP may be fundamental to model transferability. On the other hand, 

some variables may be very important for the local FP, but may reduce the 

transferability of the model. Comparing the decay curves with and without certain 

variables may help identify such variables.   
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Conclusions 

We show that model transferability declines with spatial, temporal, spectral and 

environmental distance. This potentially means that any classification, which is trained on a 

subset of data that is not fully representative of an area’s variance, may potentially be error 

prone. For example, maps based on spatially-clumped ground-truth data may have larger 

errors between the clumps than within them. Whilst this may be difficult to avoid, we show 

how, in principle, it would be possible to produce spatial maps of prediction uncertainty as 

well as H/LC classification. Reliable H/LC maps over wide extent at fine resolution is often a 

pre-requirement of science-based conservation and management. However, ecological field 

data is increasingly a limiting factor in producing H/LC maps, so it is unavoidable to 

extrapolate classifications beyond the area of ground-truthed data. Here we demonstrated the 

predictive ability and therefore the proficiency costs of extrapolating beyond the extent of the 

original data with respect to land-cover classification.  This may assist in making informative 

decision when extrapolation is needed, through facilitating the development of methodologies 

and protocols for wide-scale H/LC mapping in conservation and environmental resource 

management. More specifically, exploring model transferability as a continuum may open 

new possibilities of mapping uncertainty, optimising site selection and selecting the optimal 

algorithm for a given task and environment.  
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Figure legends: 

Figure 1: (a) The location of the 10 sites in the UK. (b) the class hierarchy used in this 
manuscript. (c) enlarged site 10 with colour infra-red imagery (CIR) where pink/red 
represents areas of high chlorophyll content and green represents areas of sparse vegetation 
or low chlorophyll content (© GeoPerspectives supplied by Bluesky 2017). (d) enlarged 
section of c, with training objects (yellow) overlaid.  

Figure 2: The symmetry of model transferability. The kappa when training a Random Forest 
model in site A and predicting in site B (SATB) against the kappa when training a model in site 
B and predicting in A (SBTA). For a given pair of sites two points are drawn, once when site 1 
is A and site 2 is B and once when site 2 is A and site 1 is B (linked by a segment). These 
point are symmetrical around the line of unity (dashed). However, transferability is not fully 
symmetrical since the points do not fall on the line of unity. The mean Pearson correlation 
coefficient is the average over 500 random selection of one point from each pair 

Figure 3: The observed kappa against the kappa predicted by the GDM model for the 100 
pairs of sites when (a) none of the sites are novel, (b) the source sites are novel and (c) the 
target sites are novel. Solid line and text are the results of a linear mixed effect model. 
Dashed line is the line of unity.  

Figure 4: Examples of the change of observed kappa with (a) spatial, (b,c) temporal, (d,e,f), 
spectral and (g,h,i) environmental distances between sites. The solid line is a loess curve (± 

confidence intervals). For the spectral and environmental distance, the Objects line describes 
the object-level variable on which the distance measure is based, while the Sites line refers to 
methods a-e in the main text. ALC G2 is the agricultural land classification grades 2.  
Additional plots are found in Figures S1 and S2. 

Figure 5: The percent of null deviance explained by each of the 15 nested GDM models. 
Bottom panel provides the sets of distance measures included in each GDM. Note the 
grouping of spectral, environmental, spatial and temporal sets of distance measures. For each 
GDM, we observed very little variance between the 30 runs (boxplot).  
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