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Feeling the shape: active exploration behaviours

for object recognition with a robotic hand
Uriel Martinez-Hernandez, Tony J. Dodd and Tony J. Prescott

Abstract—Autonomous exploration in robotics is a crucial
feature to achieve robust and safe systems capable to interact
with and recognise their surrounding environment. In this work,
we present a method for object recognition using a three-fingered
robotic hand actively exploring interesting object locations to
reduce uncertainty. We present a novel probabilistic perception
approach with a Bayesian formulation to iteratively accumulate
evidence from robot touch. Exploration of better locations for
perception is performed by familiarity and novelty exploration
behaviours, which intelligently control the robot hand to move
towards locations with low and high levels of interestingness
respectively. These are active behaviours that, similar to the
exploratory procedures observed in humans, allow robots to
autonomously explore locations they believe that contain interest-
ing information for recognition. Active behaviours are validated
with object recognition experiments in both off-line and real-
time modes. Furthermore, the effects of inhibiting the active
behaviours are analysed with a passive exploration strategy. The
results from the experiments demonstrate the accuracy of our
proposed methods, but also their benefits for active robot control
to intelligently explore and interact with the environment.

Index Terms—Active exploration, Bayesian perception, intrin-
sic motivation and shape recognition.

I. INTRODUCTION

TOUCHING and feeling are processes that allow intelli-

gent autonomous robots to understand and interact with

their surrounding environment. Even though these are easy

tasks performed day to day by humans, they represent complex

processes for autonomous robots. Advances in technology

have shown great progress in the development of touch sensors

that mimic receptors and functionalities of human hands and

fingers for multiple applications [1], [2], [3]. However, humans

not only touch but also feel, purposefully moving their hands

and fingers through exploratory procedures to enhance the

perceptual characteristics of what is being touched [4], [5].

For that reason, investigation on computational algorithms that

allow autonomous robots to explore, perceive and feel what

they are touching is essential to understand the state of their

surrounding environment.
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In this work, we present a novel approach for object

exploration and recognition, that allows a robotic hand to

autonomously inspect interesting object locations that provide

better information to improve perception. Our approach is

composed of a Bayesian formulation for perception of touch

and two active exploration strategies. For perception of robot

touch, we use a probabilistic Bayesian formulation which has

shown to be accurate for perception using a fingertip sensor

and various stimuli [6], [7], [8]. This probabilistic formulation,

together with a sequential analysis method, allows robots

to autonomously accumulate evidence and make decisions

about the objects being explored. Furthermore, probabilistic

approaches offer to robotics not only a robust platform to

deal with sensor noise and environment dynamics, but also

to handle the uncertainty, present in the measurements, to act

accordingly in unstructured environments [9], [10].

We investigate active strategies to purposefully move a

robotic hand for exploration of object locations that contain

low and high levels of interestingness. We propose the inte-

gration of our perception method with two active exploration

methods; familiarity and novelty behaviours. They allow to

intelligently control robot movements, seeking better object

locations that improve perception during an exploration task.

These methods extend our previous study on active exploration

of object shape [11]. The familiarity and novelty behaviours

are inspired by intrinsic motivation research in psychology and

neuroscience, which has been demonstrated to be primordial

for cognitive development and engagement of humans to ex-

plore and manipulate their environment [12], [13], [14]. Also,

our methods mimic the observed results from investigations on

perception, which have shown that humans not only touch, but

also feel by actively exploring their environment [15], [16].

Validation of our methods is performed with exploration and

recognition of object shape experiments in off-line and real-

time modes. For this process, multiple datasets composed of

touch and proprioceptive data are collected from real objects

for training and testing. In off-line mode validation, multiple

testing datasets are constructed with real data. For real-time

validation, a three-fingered robotic hand and a positioning

robot are employed. We also analyse the effects on the

object exploration task, when the robot movements are not

controlled by sensory feedback. The results demonstrate that

knowing where to explore to reduce uncertainty, improves the

perception accuracy over a random exploration behaviour. Fur-

thermore, we observe that the exploration of object locations

with high levels of interestingness, identified by the novelty

exploration behaviour, allows the robot hand to achieve a better

trade-off between perception accuracy and reaction time.
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Overall, our work provides a novel approach that, com-

posed of a Bayesian formulation and two active exploration

behaviours based on intrinsic motivation models, offers mul-

tiple benefits to develop autonomous robots capable to mimic

the human behaviour for tactile exploration tasks.

This paper is organised as follows: First, a description of

related work is presented in Section II. Second, our proposed

methods for tactile exploration and recognition are described

in Section III. Third, experiments and results are presented in

Section IV. Fourth, Section V presents the discussion of our

work. Finally, conclusions are presented in Section VI.

II. RELATED WORK

Exploratory procedures employed by humans using their

hands and fingers have inspired the investigation of methods

for perception and exploration in robotics. One of the first

tactile robot systems, built with one finger sensor, proposed

a basic set of features required for object recognition, for in-

stance, compliance, texture, edges, contours and corners [17],

[18]. Identification of these tactile features has been stud-

ied using different approaches. Model-based and template

matching methods have been used for object recognition from

multiple sensory inputs, e.g., touch and vision [19], [20].

Normally, these methods directly compare an input dataset

with a codebook, and without using an uncertainty measure

or selection of relevant features, which reduces the accuracy,

speed and reliability of the recognition task. A neural network,

trained with tactile images from a robotic gripper, allowed

the recognition in off-line mode of a limited number of

objects [21]. Tactile and force features were used for object

exploration using rolling and sliding processes [22]. However,

these exploration methods were limited to a fixed number of

steps without adaptability for exploration of new object shapes.

Other computational methods such as principal component

analysis (PCA), image moments and self-organising maps

(SOM) allowed to recognise objects using a predefined and

fixed sequence of exploration contacts with low recognition

accuracy [23], [24]. The main drawback of previous works

is their lack of perception and decision methods, which play

a key role to achieve autonomous robots that intelligently

explore and interact with their environment.

A study on geometric constraints showed how a robot arm

was capable to choose the set of exploration movements to

recognise an object [25]. However, this work was limited

to fully known object models. An approach based on the

generation of curves, that represent the optimal path for object

exploration, also required full knowledge of the object [26].

Tactile images and haptic information have been widely used

with multi-layer neural networks to explore and recognise

object shape [27], [28], [29]. Unfortunately, these works are

bounded by prior knowledge of object geometry and size, as

well as by black box models generated by neural networks.

Probabilistic methods have also been studied in multiple

robotic applications, offering a robust framework for learning,

perception, control and interaction [30], [31]. Probabilistic

representation of tactile data and point clouds allowed the

recognition of household objects in off-line mode using a

fixed sequence of contact locations for exploration [32], [33].

The bag-of-features approach has been employed in differ-

ent scenarios for tactile perception and identification, e.g.,

object identification with a tactile gripper [34]. However,

this method requires the exploration of the complete object

by the gripper, rather than autonomously deciding where to

explore to improve both, the time to finish the task and the

computational cost. Accurate touch and object recognition

were achieved using Gaussian Processes (GP) and Deep

Learning techniques with a robot interacting with humans

and their environment [35], [36]. Despite the high accuracy

achieved, this method required a fixed sequence of tactile

contacts, with no autonomous decision for exploration of better

object locations to reduce uncertainty as humans do. Active

sensing, together with Bayesian formulations, have allowed

a biomimetic fingertip sensor to explore better locations for

perception, tracing and extracting object shapes in off-line and

real-time modes [37], [38]. An active sensing method with

a probabilistic approach allowed a vision system to look to

specific areas in the visual scene with higher saliency [39].

Research on cognitive robotics has shown that perception

methods, together with intrinsic motivation models, have the

potential to develop robots that intelligently explore their

environment seeking interesting information that allow them

to improve their knowledge [40], [41].

An intrinsically motivated robot, integrated with a novelty

model and rewards, using vision and touch sensing, learned to

observe towards salient or interesting stimuli while neglecting

unimportant inputs [42]. Cognitive architectures for active

exploration, learning, information-seeking and attention with

computational agents, were proposed with multiple intrinsic

motivation models, e.g., information gain, predictive novelty,

distributional surprise, distributional familiarity [43], [44],

[45]. Learning of robot skills was investigated with intrin-

sically motivated movements, allowing a robot to explore

interesting stimuli while maximising visual and tactile per-

ception [46], [47]. Active exploration and intrinsic motivation

allowed a robot to learn inverse models and motor primi-

tives [48], [49]. This work also showed the benefits of actively

selecting goals, based on maximal improvement, rather than

following a random selection or passive approach.

We propose a novel method for object recognition through

the intelligent exploration of interesting locations that per-

mit to improve tactile perception. Our approach, composed

of a Bayesian formulation together with active exploration

behaviours inspired by intrinsic motivation models, overcomes

some of the limitations observed in previous works for object

recognition, such as constraint to object geometry and size, and

predefined sequence and locations of exploration contacts. A

detailed description of our method is presented in Section III.

III. METHODS

A. Robotic platform

In this work we use a robotic platform composed of a

three-fingered robotic hand and a positioning robotic table (see

Figure 1). They are used for systematic data collection and im-

plementation of our proposed method. A detailed description

of these robots is presented in the following sections.
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Fig. 1. Exploratory robotic platform. (A) Three-fingered robotic hand,
composed of 4 degrees of freedom and integrated with tactile and strain
sensors. (B) 4 degrees of freedom (x, y, z, yaw) positioning robotic table.

1) Dexterous robotic hand: The three-fingered robotic

hand, from Barrett Technology Inc., has 4-DoF; 1-DoF in each

finger to perform opening and closing movements, and 1-DoF

for spreading the fingers around the palm (see Figure 1A).

This robotic hand is integrated with tactile and force sensors.

Each finger is composed of 22 taxels (tactile elements), whilst

the palm contains 24 taxels of 12 bit resolution each. The

strain sensors, located in the base of each finger, permit to

detect a contact force to safely stop a finger movement once

a force threshold is exceeded. It is also possible to acquire

proprioceptive information from the joint angles of the fingers

and the spread motor in real-time. The information provided by

touch and proprioceptive sensors, available in the robotic hand,

is essential for safe and robust robot exploration, perception

and interaction with the environment.

2) Positioning robotic table: An exploratory positioning

robotic table was built in our laboratory using commercial

motors from Newmark Systems Inc. This positioning robotic

table, composed of 4-DoF, permits to perform precise ex-

ploratory movements in x−,y−,z− axes, and rotations in yaw

(see Figure 1B). A controller for precise control and synchro-

nisation of robot movements was designed and implemented

in a ChipKit Uno32 board with a PIC microcontroller.

Both robots, the three-fingered robotic hand and the posi-

tioning table, were integrated to obtain an 8-DoF exploratory

robotic platform. This configuration permits to achieve a large

set of exploration movements: 1) opening and closing the

fingers; 2) spreading the fingers around the palm; 3) rotation of

the wrist (yaw); and 4) displacements in x−,y−,z−axes of the

robotic hand in the working space. Furthermore, this robotic

platform permits the exploration and manipulation of a large

variety of objects by precisely synchronising and controlling

the robotic fingers and movements of the positioning table.

For control of robot movements, during data collection and

testing of our methods, we developed a set of control and

synchronisation modules using C++ programming language

and the ‘Yet Another Robot Platform’ (YARP) library, which

has shown its potential for the design and implementation of

robust robotic systems in multiple applications.

triangle cylinder ball 1

ball 2 box 1 box 2

Fig. 2. Objects used for data collection, training and testing our methods for
perception and exploration. Proprioceptive information from the robotic hand
was collected during the exploration of each object shape.

B. Data collection

Our work is focused on perception and active exploration

behaviours for recognition of object shape using a robotic

hand. For this purpose, we collected position and orientation

data from the robot hand during the exploration of multiple

objects. For data collection we used six objects labelled as

triangle, cylinder, ball 1, ball 2, box 1 and box 2 (see Figure 2).

Each object was placed and firmly attached on a fixed base,

one at a time, in a target position for robot exploration. The

robot hand was rotated in yaw, by the robotic table, following

a circular trajectory around the object being explored to collect

position and orientation data from the three robotic fingers and

wrist (see Figure 3). This process was performed as follows:

First, the robotic hand was located in a home position. Second,

the hand was moved to the target position for exploration of

an unknown object. Third, the robotic fingers started to move

to make contact with the object. Then, they stopped as soon

as a contact was detected, by exceeding a predefined tactile

pressure and force thresholds, to avoid any damage to the hand

and object. Next, the fingers were kept in contact with the

object for 1 sec, giving enough time to collect 50 samples of

position and orientation information from the fingers and wrist.

Once the data were collected, the fingers were opened to reach

again the home position, rotate the wrist and collect data with

a new position and orientation of the robotic hand.

A sequence of 30 rotations and tactile contacts around

each object was performed with rotations of 12 degrees steps,

thereby exploring the complete object. Figure 3 shows an

example of the robotic hand exploring two objects at four

different orientations. The data collected from each tactile

contact for each object were stored in matrices composed of

50 sensor samples (rows) from 5 motors (columns) (50×5

matrix); the first three columns are the positions of contacts

detected by the finger 1, finger 2 and finger 3, the fourth

column is the value of the spread motor that controls the

separation distance between fingers, and the fifth column is

the angle orientation value of the wrist that rotates to perform

the complete exploration of each object. The systematic data

collection process was repeated ten times per object, forming

five datasets for training and five datasets for testing our

methods for object exploration and recognition.
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Fig. 3. Data collection through rotations of the robot hand around each object.
We show two objects being explored with 4 out of a total of 30 exploration
contacts. Position and orientation data are collected during the exploration
process to train and test our methods.

C. Bayesian perception of touch

Probabilistic models offer a flexible approach for develop-

ment of robust applications in robotics –for instance, percep-

tion and learning through interaction with the environment. In

this work, we use a Bayesian formulation that, together with

a sequential analysis method, provides an accurate framework

for perception and exploration of object shape using position

and orientation information from a robotic hand.

Bayesian update: our Bayesian formulation recursively es-

timates the posterior probabilities from the product of the prior

probabilities and likelihoods. Automatic stop of the estimation

process, to make a decision about the object being explored,

was controlled by a sequential analysis method which uses

a belief threshold crossing approach. The formulation of the

Bayesian approach is as follows:

P (cn|zt) =
P (zt|cn)P (cn|zt−1)

P (zt|zt−1)
(1)

where P (cn|zt) is the posterior probability. The prior and

likelihood are represented by P (cn|zt−1) and P (zt|cn) respec-

tively. Proper normalised probabilities in [0, 1] are obtained

with the marginal probability P (zt|zt−1). The object class

to be estimated is defined by cn ∈ C = 1, 2, . . . , N with

N = 6, and where each class cn is composed of position and

orientation information from the object being explored. The

observations from the robotic hand are represented by z. The

exploration time t is the sequence of contacts performed by the

robotic hand on each object. Each component of the Bayesian

formulation is detailed in the following paragraphs.

Prior: an initial uniform prior probability is assumed for all

the test objects to be explored. The initial prior probability for

an object exploration process is defined as follows:

P (cn) = P (cn|z0) =
1

N
(2)

where cn is the object class, z0 is the observation at time t = 0
and N is the number of test objects used for exploration.

Measurement model and Likelihood estimation: position

and orientation information, from Mmotors motors of the

robotic platform, are obtained for each contact performed

during the object exploration task. In this work, we use

Mmotors = 5; four motors from the robotic hand (control

of fingers positions) and one motor from the robotic table

(control of hand orientation). From each contact we obtain

a time series with Nsamples = 50 for each motor. This

information is used to obtain the measurement model with

a nonparametric estimation method based on histograms. The

histograms are uniformly constructed by binning robot contact

information into bins b (interval position within a histogram)

with Nbins = 100 intervals. We use these histograms to

evaluate a contact zt performed by the robotic hand at time t,

and estimate the likelihood of a perceptual class cn ∈ C. The

measurement model is formulated as follows:

Pm(b|cn) =
hm,n(b)∑Nbins

b=1 h(b)
(3)

where hm,n(b) is the sample count in bin b for motor m

over all training data in class cn. The values are normalised

by
∑Nbins

b=1 h(b) to have proper probabilities that sum to 1.

Thus, the likelihood of the contact zt at time t by evaluating

Equation (3) over all motors and samples is as follows:

logP (zt|cn) =

Mmotors∑

m=1

Nsamples∑

j=1

logPm(sm(j)|cn)

MmotorsNsamples

(4)

where sm(j) is the sample j in motor m, and P (zt|cn) is

the likelihood of the measurement zt given a perceptual class

cn. Properly normalised values are ensured with the marginal

probabilities conditioned from the previous contact as follows:

P (zt|zt−1) =

N∑

n=1

P (zt|cn)P (cn|zt−1) (5)

Stop decision for object recognition: the accumulation of

evidence with the Bayesian update process stops once a belief

threshold is exceeded, making a decision about the object

being explored. Thus, the object perceptual class is obtained

using the maximum a posteriori (MAP) estimate as follows:

if any P (cn|zt) > βthreshold then

ĉ = argmax
cn

P (cn|zt)
(6)

where the object estimated at time t is represented by ĉ. The

belief threshold βthreshold permits to adjust the confidence

level for the decision making process. We used a set of belief

thresholds βthreshold = {0.0, 0.05, . . . , 0.99} to observe their

effects on the accuracy of the object recognition process.

D. Active exploration behaviours

We integrated our Bayesian formulation for perception

together with active exploration behaviours. These behaviours

allow to observe the effects, in perception accuracy and

reaction time, when the robot hand is purposefully guided to

explore interesting object locations that improve perception.

We also implement a passive exploration behaviour to compare

its performance with our proposed active exploration methods.
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1) passive exploration: Passive exploration is defined in

this work as the exploration of object locations that are not pur-

posefully selected, but instead, they are randomly chosen from

a uniform probability distribution. These locations, defined as

sensorimotor states (SM), represent the angle orientation for

exploration of specific object locations. The passive behaviour

for object exploration is perform as follows:

apassive = Random(SM(t)) (7)

where apassive is the action chosen, from the random selection

of the SM states at exploration time t, to control the move-

ments of the robot hand.

2) active exploration: For the active exploration, we de-

veloped two novel computational methods; familiarity and

novelty exploration behaviours. These methods are inspired

by the intrinsic motivation approach, which has shown to

be primordial to engage humans to explore, interact and

manipulate their surrounding environment [12], [13].

The familiarity and novelty behaviours allow to actively

control robot movements, for exploration of better locations

that improve object perception [48], [49]. The familiarity

behaviour actively seeks object locations that provide low

levels of interestingness, while the novelty model guides the

exploration towards object locations with high levels of in-

terestingness. Here, we propose an interestingness method for

intrinsic motivation that, inspired by the predictive knowledge-

based motivation models [44], [45], predicts the sensorimotor

states (SM) for future events, based on the product of past and

current prediction errors as follows:

I(SM(t)) = eI(t− 1) · eI(t) (8)

where I(SM(t)) is the level of interestingness for the sen-

sorimotor states SM at time t, while eI(t) and eI(t − 1)
are the prediction errors from current and past times t and

t− 1. From Equation (8), it comes naturally to use the lowest

and highest prediction errors to model intrinsic motivation for

familiarity and novelty behaviours [13], [43]. The prediction

error eI(t) is defined as the distance between the posterior

from the Bayesian update, which contains the probability of

each orientation for each object class at time t, and the belief

threshold used to make a decision as follows:

eI(t) = P (cn|zt)− βthreshold (9)

From Equations (8) and (9) it is possible to define

exploration behaviours to actively control the robot hand,

based on the selection of either SM states with low (famil-

iarity) or high (novelty) levels of interestingness as follows:

afamiliarity = argmin
SM

I(SM(t)) (10)

anovelty = argmax
SM

I(SM(t)) (11)

where afamiliarity and anovelty are the selected robot ac-

tions with low and high levels of interestingness for object

exploration. This approach, together with the Bayesian for-

mulation, is repeated until the belief threshold used to make

a decision about the object being explored is exceeded. This

Object detection and
data collection

Sensory
layer

proprioceptive
information

Perception
layer

Decision making
maximum a posteriori

Decision
layer

posterior
probability

Belief threshold
exceeded?

active exploration of next object locations
with low and high levels of interestingness

locations
for exploration

Active control
layer

Bayesian perception

No

Yes

action selection

object interaction

Familiarity and novelty
exploration behaviours

Fig. 4. Flowchart for active object exploration using probabilistic perception
and intrinsic motivation. The three-fingered robot hand is actively controlled
to explore locations with low (familiarity) and high (novelty) interestingness
levels to improve perception. The exploration and perception processes are
repeated until a predefined belief threshold is exceeded, to make a decision
about the object being explored.

process is described in the flowchart of Figure 4, composed of

four layers; sensory, perception, decision and active control.

IV. RESULTS

For validation of our methods, various experiment for object

exploration and recognition were implemented in both off-line

and real-time modes. In off-line mode we used the datasets

obtained from the data collection process, while in real-time

mode we used the robotic platform described in Section III-A.

These experiments are described in the following sections.

A. Off-line object exploration

We implemented an object exploration and recognition

task in off-line mode using active and passive exploration

behaviours. For training and testing the proposed methods, we

employed ten datasets (five for training and five for testing)

obtained from the data collection process in Section III-B.

1) Passive object exploration: For object recognition with

passive exploration behaviour, the Bayesian formulation per-

formed a random selection of object locations for exploration.

In this experiment, data collected from objects in Figure 2

were used. The decisions made by the perception method were

controlled by the belief thresholds βthreshold = {0.0, 0.05, . . . ,

0.99}, to observe their effects in accuracy and reaction time. To

ensure robustness in results, the recognition task was repeated

10,000 times for each belief threshold value, and randomly

selecting the initial location for exploration.

The red colour curve in Figure 5A shows the recognition

accuracy for passive exploration, where the solid and dashed

lines are the mean and standard deviation over all test objects.

We observe that the mean error decreased for large belief

thresholds, which shows that accumulation of evidence allows



6 FOR SUBMISSION TO IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

belief threshold

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

m
ea

n
 p

er
ce

p
ti

o
n

 e
rr

o
r 

(%
)

0

5

10

15

20

25

30

35

40

45

50
Perception vs belief threshold

passive exploration
familiarity exploration
novelty exploration

(A)

belief threshold

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
e
a

n
 r

e
a

c
ti

o
n

 t
im

e
 (

#
 c

o
n

ta
c
ts

)

0

2

4

6

8

10

12

14

16

18

20
Reaction time vs belief threshold

(B)

Fig. 5. Mean (solid lines) and standard deviation (dashed lines) results from
the exploration of all test objects in off-line mode. (A) Perception against
belief threshold for passive and active exploration, where the latter implements
the familiarity and novelty behaviours to explore locations with low and high
levels of interestingness. The highest recognition accuracy is achieved by the
novelty behaviour. (B) Reaction time was not drastically affected, showing
similar results for both passive and active exploration behaviours.

to improve perception. However, the smallest error of 12.5%

obtained with the highest belief threshold is large compared to

the results achieved by active exploration behaviours described

in next paragraphs. The reaction time or number of contacts

required to make a decision, gradually increased to a maximum

of 9 contacts per decision for large belief thresholds as shown

in Figure 5B (red colour curve). These results were obtained

by averaging all perceptual classes for each belief threshold.

2) Active object exploration: For active exploration, we

implemented an object recognition task with both familiarity

and novelty exploration behaviours. The objective is to control

the robot exploration movements towards object locations with

different levels of interestingess to improve perception. To

ensure robustness of the experiment, the task was repeated

10,000 times for each belief threshold in βthreshold. Fur-

thermore, the initial location for exploration was randomly

selected, and then the exploration was controlled by the

familiarity and novelty behaviours.

The familiarity exploration behaviour was implemented

using the Bayesian formulation together with the exploration

strategy described by Equations (8),(9),(10). This approach

actively selects familiar locations for exploration that represent

low levels of interestingness. Black colour curves in Figure 5A

show the mean (solid line) and standard deviation (dashed

line) results. A decreasing perception error for large belief

thresholds is observed, achieving the smallest error of 5%

with βthreshold = 0.99. The results show an improvement over

the random selection (passive exploration) of object locations.

However, the reaction time was affected by the familiarity

behaviour, requiring a larger number of contacts to make a

decision (see black colour curve in Figures 5B).

The object recognition task was repeated using the novelty

exploration behaviour. This approach, described by Equa-

tions (8),(9),(11), selects object locations that contain high

levels of interestingness for exploration. The mean (solid line)

and standard deviation (dashed line) results are shown by the

green colour curves in Figure 5A. These results present the

improvement in perception accuracy, achieving the smallest

error of 2% with βthreshold = 0.99. It is important to observe

that the reaction time was not largely affected compared to the

results from the familiarity behaviour. A maximum of 9 sensor

contacts were required to make a decision for the highest

perception accuracy (green colour curve in Figure 5B). These

results show that exploring high interesting locations not only

improve the recognition performance, but also provide a better

exploration and exploitation trade-off, ensuring high accuracy

without significantly affecting the decision making time.

B. Real-time object exploration

Validation in real-time mode with an object recognition task

using the robot platform described in Section III-A. In these

experiments, we used the test objects shown in Figure 2.

1) Passive object exploration: For object recognition with

passive exploration behaviour, the robot movements were con-

trolled by random selection of locations for exploration around

the object. All the test objects were placed on a table, one at

a time, for exploration and recognition using the following

process. First, the robot hand was moved from its home

position to a predefined location to start the object exploration.

Second, the robot made a contact on the object to build an

initial belief of the object being explored. Then, the posterior

probability was estimated using our Bayesian formulation.

This process was repeated by the robot, selecting random

object locations and accumulating evidence from the object.

The exploration task was stopped once the updated posterior

probability exceeded a belief threshold, allowing the robot

to make a decision and recognition of the explored object.

This experiment was performed using the belief thresholds

βthreshold = {0.0, 0.05, . . . , 0.99} to control the accumulation

of evidence and evaluate the effects on perception accuracy

and reaction time.

Perception accuracy results are shown by the black colour

bars in Figure 6A for three different belief thresholds. We

observe that the object recognition error, for the task described

in the previous paragraph, is gradually improved with 28.50%,

18.30% and 10.0% errors for belief thresholds of 0.0, 0.5 and

0.99 respectively. The corresponding reaction times to make a

decision are shown in Figure 6B. This result shows that 2 and

15 tactile contacts were employed by the robot hand to achieve

the largest and smallest perception errors of 28.50% and 10%.

The recognition accuracy for each object using βthreshold =
0.99 is presented by the confusion matrix in Figure 6C.

2) Active object exploration: The object recognition task

was implemented using the familiarity and novelty behaviours.

These approaches actively explored an object by intelligent

robot movements towards object locations that represent low

and high levels of interestingness. Active exploration differs

from passive exploration, described in the previous paragraph,

in the method for selection of object locations for exploration.

The familiarity exploration behaviour allowed the robot

hand to estimate the object locations with low levels of

interestingness. These locations were used to actively control

the movements of the robot for the object exploration task.

The exploration process was repeated until the belief threshold

value βthreshold = {0.0, 0.05, . . . , 0.99} was exceeded by

the posterior probability. The novelty exploration behaviour

allowed the active controlled of the robot hand movements

towards object locations with high levels of interestingness.



U. MARTINEZ-HERNANDEZ et al.: FEELING THE SHAPE: ACTIVE EXPLORATION BEHAVIOURS FOR OBJECT RECOGNITION 7

Similar to the familiarity model, the posterior probability

was recursively updated until the belief threshold was ex-

ceeded, and then, making a decision about the object being

explored. These experiments with both familiarity and novelty

exploration behaviours were performed in real-time mode

using the test objects shown in Figure 2 and three belief

thresholds (0.0, 0.5, and 0.99).

Perception accuracy results for object recognition using the

familiarity and novelty exploration behaviours are shown by

the grey and white colour bars in Figure 6A. We observe that

perception with the familiarity approach achieved errors of

24%, 12.2% and 4% for belief thresholds of 0.0, 0.5 and 0.99.

These values were improved by the novelty approach which

achieved errors of 13.3%, 9.8% and 1%. On the one hand,

both active exploration behaviours were able to obtain better

perception accuracy over the passive approach. On the other

hand, the familiarity and novelty behaviours slightly increased

the reaction time with a mean of 16 sensor contacts needed

for the highest perception accuracy (see Figure 6B).

The recognition accuracy for individual objects using active

exploration behaviours is presented by the confusion matrices

in Figures 6D,E. The smallest error in object recognition

was achieved by the novelty exploration behaviour, whilst

the passive approach obtained the largest error. The blue

colour region around each object shown in Figure 7 shows the

locations explored by the robot hand. These regions represent

the object locations with low and high levels of interestingness,

estimated by the familiarity and novelty behaviours. The

results from all the experiments presented in this section show

the benefits of actively controlling the robot hand towards

interesting locations for exploration. Furthermore, we observed

that exploration of high interesting locations, with the novelty

behaviour, allowed to achieve higher accuracy for object

recognition in both off-line and real-time modes.

V. DISCUSSION

An investigation of novel perception and exploration meth-

ods for object recognition with a robotic hand was presented in

this work. First, we demonstrated how probabilistic perception

methods benefit object recognition tasks by the accumulation

of evidence and dealing with uncertainty present in the en-

vironment. Second, we showed that integration of familiarity

and novelty behaviours, for active exploration of interesting

object locations, provide a better trade-off between perception

accuracy and decision making time over passive exploration.

Probabilistic Bayesian perception allowed the robotic hand

to reduce uncertainty from sensor measurements, through

the iterative interaction with the object being explored. This

approach, together with a sequential analysis method based on

threshold crossing, permitted the robot to autonomously decide

whether or not the accumulated evidence was enough to make

a decision. The sequential analysis method was implemented

with a set of belief thresholds, which allowed to observe that

large amounts of evidence, intelligently accumulated during

the exploration task and controlled by large belief threshold

values, provide a gradual improvement in perception accuracy.

Passive and active exploration behaviours were imple-

mented, together with the probabilistic perception approach, to

control robot movements to explore object locations that rep-

resent different levels of interestingness. Passive exploration,

based on random selection of object locations, showed a slight

improvement in accuracy for large belief thresholds, achieving

errors of 12.5% and 10% with experiments in off-line and

real-time modes. This approach did not use any systematic

movement or intelligent decision control to decide where to

move next to explore better object locations for perception. A

gradual increment in the reaction time was observed for large

belief thresholds. This result was expected given that for large

threshold values more evidence is needed to make a decision.

Active exploration for object recognition was studied with

two approaches; familiarity and novelty behaviours. These

behaviours, inspired by the intrinsic motivation approach, were

used to control robot movements to intelligently explore object

locations that represent low (familiar) and high (novel) levels

of interestingness. Here, we defined familiarity as the locations

with low levels of interestingness, in other words, locations

that do not provide new information to improve perception (see

Section III-D). The accuracy of the object recognition task,

using the familiarity behaviour, was gradually improved in

both off-line and real-time modes, achieving small perception

errors of 5% and 4% respectively with the belief threshold

of 0.99. An expected increment in the reaction time was also

observed for large belief thresholds, increasing the number of
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Fig. 6. Perception and reaction time results, averaged over all test objects from real world experiments for passive and active exploration behaviours. (A)
Perception error decreased, achieving small values, for active exploration behaviour. Exploration of locations with high (novelty) levels of interestingness
achieved the best perception. (B) Reaction time increased for larger values of belief threshold. Similar reaction times were observed for both passive and
active exploration. Confusion matrices from object recognition results with passive (C) and active (D, E) exploration. The test objects used for the experiments
are: 1) triangle, 2) cylinder, 3) blue 1, 4) ball 2, 5) box 1 and 6) box 2. Even though improvements were achieved by all the exploration behaviours, the best
performance was obtained with the novelty approach, which explored the locations with high levels of interestingness.
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Interestingness

low high

triangle cylinder ball 1 ball 2 box 1 box 2

Fig. 7. Object locations with low and high levels of interestingness estimated from exploration experiments, using our Bayesian formulation for perception
together with familiarity and novelty intrinsic motivation models. Levels of interestingness around objects are represented by the blue colour bar. Dark-blue
colour locations provided better stimuli to improve perception accuracy over locations with white and light-blue colours.

sensor contacts needed to make a decision. Even though the

reaction time was affected, it did not change drastically with

respect to the results from the passive exploration behaviour.

The novelty exploration behaviour, in contrast to the famil-

iarity approach, controlled the robot hand to explore object

locations that represent high levels of interestingness. These

locations, estimated with the formulation in Section III-D,

provide novel information useful to improve both perception

accuracy and reaction time. High interesting object locations

could be those unknown or novel locations that have not been

explored yet. On the one hand, these locations initially present

high uncertainty, but on the other hand, they also offer a rich

source of information with the potential to help the robot

to recognise, more accurately and quickly, the objects being

explored. Results showed that intelligently exploring object

locations with high levels of interestingness, allows the robot

hand to achieve the smallest perception errors of 2% and 1%

for large belief threshold with experiments in off-line and real-

time modes respectively. Similar to previous experiments, the

reaction time was gradually increased, however, the number

of contacts needed to make a decision was smaller than the

number required by the familiarity exploration behaviour.

From the experiments we observed that, on the one

hand, active exploration improved the accuracy for object

recognition over passive exploration. On the other hand,

the novelty behaviour is the active exploration method that

achieved the best perception accuracy without largely affecting

the reaction time. First, these results suggest that passive

exploration (random selection of object locations) does not

allow to perform a systematic accumulation of evidence, which

affects the performance in accuracy and reaction time of

our probabilistic perception approach. Second, exploration of

familiar locations only (locations with low levels of interest-

ingness based on the familiarity behaviour), does not provide

new information after some time, making the accumulation

of evidence a redundant process. Therefore, intelligent control

of robot interaction with object locations that contain novel

or high interesting stimuli, offers a better exploration and ex-

ploitation trade-off for perception accuracy and reaction time.

Object recognition results from all the exploration approaches

are presented by the confusion matrices in Figures 6C,D,E,

where we observe that the best recognition accuracy is

achieved by the novelty model. It is important to note that

actively moving the robot hand provides multiple benefits not

only over the passive approach, but also, over a complete and

predefined sequence of exploration contacts, e.g., exploration

of all the positions used for data collection. These benefits

offered by the active approach are: 1) intelligent movement

decisions based on intrinsic motivation, which is primordial to

engage an agent to explore its environment, 2) small number

of sensor samples required to make a decision, 3) exploration

of object locations that improve perception to achieve high

recognition accuracy, and 4) active robot movements towards

interesting object locations that mimic the way in that humans

explore objects in their environment.

The low and high levels of interestingness estimated around

each object, employed in the recognition experiments, are

represented by light and dark-blue colour regions in Figure 7.

These regions show the result of actively controlling the

robotic hand during the object exploration task. The dark-

blue colour regions show the explored locations that, based on

the novelty behaviour, provided better information to improve

object recognition. This exploration process mimics the way

in that humans actively move their hands and fingers, looking

for better or interesting information, to reduce uncertainty and

successfully recognise multiple objects.

Our proposed methods for object exploration and

recognition using intrinsic motivation models demonstrated to

be accurate and fast, intelligently moving a robot hand around

an object. However, our method is currently limited to the use

of touch only to detect an object contact, without contributing

to the object recognition process. Also, the robot hand pose

(position and orientation) is constrained to perform a contour-

based exploration approach. All these challenging aspects are

planned to be investigated in future work.

Exploration and recognition tasks with robot hands not only

need to touch, but also to feel and search for interesting

information. For that reason, in this work we offered a

robust framework for perception and exploration to achieve

autonomous and intelligent robots capable to touch, feel and

recognise objects located in their surrounding environment.

VI. CONCLUSION

In this work, we demonstrated for the first time that proba-

bilistic perception methods, together with active exploration

behaviours, allow a robotic hand to successfully explore

and recognise objects. This process is achieved by actively

controlling the exploration movements towards interesting

object locations to improve the perception about the object

being explored. We also showed how actively exploring an
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object improves the reaction time over a passive exploration

approach. Our methods were validated with object recognition

experiments in both off-line and real-time modes using an ex-

ploratory robot platform. The results showed that our approach

has the potential to make a robotic hand capable to touch,

perceive and autonomously decide where to move next, to

extract better information in exploration and recognition tasks.
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