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Abstract

Horses were a dominant component of North American Pleistocene land mammal commu-

nities and their remains are well represented in the fossil record. Despite the abundant mate-

rial available for study, there is still considerable disagreement over the number of species

of Equus that inhabited the different regions of the continent and on their taxonomic nomen-

clature. In this study, we investigated cheek tooth morphology and ancient mtDNA of late

Pleistocene Equus specimens from theWestern Interior of North America, with the objec-

tive of clarifying the species that lived in this region prior to the end-Pleistocene extinction.

Based on the morphological and molecular data analyzed, a caballine (Equus ferus) and a

non-caballine (E. conversidens) species were identified from different localities across most

of the Western Interior. A second non-caballine species (E. cedralensis) was recognized

from southern localities based exclusively on the morphological analyses of the cheek teeth.

Notably the separation into caballine and non-caballine species was observed in the Bayes-

ian phylogenetic analysis of ancient mtDNA as well as in the geometric morphometric analy-

ses of the upper and lower premolars. Teeth morphologically identified as E. conversidens

that yielded ancient mtDNA fall within the NewWorld stilt-legged clade recognized in previ-

ous studies and this is the name we apply to this group. Geographic variation in morphology

in the caballine species is indicated by statistically different occlusal enamel patterns in the

specimens from Bluefish Caves, Yukon Territory, relative to the specimens from the other

geographic regions. Whether this represents ecomorphological variation and/or a certain

degree of geographic and genetic isolation of these Arctic populations requires further

study.
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1. Introduction

Horses were a dominant component of North American Pleistocene land mammal communi-

ties and their remains are well represented in the fossil record [1–3]. Despite the abundant

material available for study, there is still considerable disagreement over the number of species

that inhabited the continent and on the taxonomic nomenclature. More than 40 species of

Equus have been named from the Pleistocene of North America [4]. Several authors have

attempted to revise the taxonomy of this group (e.g., [4–12]), but no consensus has been

reached. The discrepancies in opinion regarding the taxonomy of North American Equus is

the result of several factors including the use of different operational species concepts, the

specimens included in the study, the choice of characters examined, and the specific methods

used to study these characters, as exemplified by the studies by Winans [4, 10], Azzaroli [11,

12], andWeinstock et al. [13].

One of the first large-scale quantitative studies of the genus Equus in North America was

undertaken byWinans [4, 10]. She conducted a multivariate analysis using linear measure-

ments of cranial and metapodial remains. Her study sample consisted of equid specimens of

Blancan to late Rancholabrean North American Land Mammal Ages (NALMA) largely from

the Great Plains and the Western United Sates, and smaller samples from Florida, and Mexico.

Winans’ approach was to identify morphological clusters in multivariate space, which she ini-

tially considered represented separate species [4], but later referred to them as species groups,

indicating that some groups may include more than one species [10]. Five species groups are

identified byWinans [10], three of which have temporal ranges that extend into the late Pleis-

tocene: Equus alaskae (Hay), 1913 (small and stout-legged species group), E. francisciHay,

1915 (small and stilt-legged species group), and E. laurentius Hay, 1913 (large and stout-legged

species group). The other two species groups are E. simplicidens Cope, 1892 and E. scotti Gid-

ley, 1900 [10].

Azzaroli [11, 12] identified ten taxa of Equus as being valid for North America during the

Irvingtonian and Rancholabrean NALMAs (middle and late Pleistocene). The material he

studied comes from different localities in the Great Plains and theWestern United Sates, with

additional specimens from Alaska, Florida, Canada, andMexico. He based his taxonomic

assignments on the recognition of what he considered diagnostic characters from a primarily

qualitative study of the morphology of the skull, dentition, and limb bones as well as overall size.

Nine of the species proposed to be valid by Azzaroli [12] have been found in late Pleistocene

localities: E. ferus Boddaert, 1785, E. niobrarensis Hay, 1913, E. lambeiHay, 1917, E. francisci

Hay, 1915, E. fraternus Leidy, 1860, E. conversidens Owen, 1869, E.mexicanus (Hibbard), 1955,

E. excelsus Leidy, 1858, and E. occidentalis sensu Merriam, 1913. The other taxon identified by

Azzaroli [12], E. semiplicatus Cope, 1892, is restricted to the early and middle Pleistocene.

More recently, Weinstock et al. [13] conducted an ancient mitochondrial DNA (mtDNA)

study and a bi-variate analysis of metapodial dimensions of Eurasian, North American, and

South American late Pleistocene equids. Most of the North American specimens studied by

these authors come from sites located in the northwest region of the continent (Alaska, The

Yukon Territory, Alberta, and Wyoming). Using maximum likelihood and Bayesian phyloge-

netic analysis, Weinstock et al. [13] concluded that only two lineages of equids, possibly each

representing a distinct species, were present in this region of North America during the late

Pleistocene. They do not assign species names to these two potential equid species and refer to

them as the NewWorld stilt-legged lineage and the stout-legged, caballine lineage.

The taxonomy of North American Equus has been in a state of flux for well over a century,

and the studies summarized above clearly exemplify this. We believe that the most productive

avenue to clarify the taxonomy and evolutionary relationships of middle and late Pleistocene
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equids is to conduct comprehensive morphological and molecular studies on the same set of

specimens in order to contrast morphological and molecular variation. Here, we undertake

such a study by conducting a morphometric analysis of the cheek teeth, using both linear and

geometric morphometrics, and analizing ancient mtDNA obtained from a subsample of the

teeth studied.

The study of the cheek teeth is important for two reasons. First, the use of the cheek teeth

has been limited in the latest morphological revisions, even though they are well represented

in the fossil record. Secondly, the dentition is one of the skeletal elements that best preserve

ancient DNA and is less susceptible to contamination by exogenous DNA [14], allowing the

opportunity for the recovery of molecular data for specimens from localities in southern

North America. Furthermore, discrimination of Equus species using the cheek teeth is of par-

ticular relevance because teeth are archives of paleobiological and paleoclimatic information.

Often techniques used to extract this information (e.g., stable isotope analysis) are destructive

and are performed on isolated teeth, which are regularly identified only as Equus sp. (e.g., [15–

19]), limiting the full potential of these studies. Refining the taxonomic assignment of isolated

cheek teeth will allow for more in depth investigations into the paleobiology and extinction of

Pleistocene North American equids.

This study concentrates on fossil material retrieved from five geographic regions approxi-

mately arranged in a north-south transect along the Western Interior of North America, from

the High Arctic of the Yukon Territory, Canada, to northeastern Mexico (Fig 1). All of the

specimens we examined are late Pleistocene in age, primarily from the mid- to late-Wisconsin

glacial stage (approximately 50,000 to 10,000 radiocarbon years BP). Below, we briefly review

some of the previous research conducted on horse remains from localities of the five geo-

graphic regions studied and discuss the species that have been identified.

1.1 Northeastern Mexico: San Josecito Cave and Cedral fossil sites

The fossil localities of San Josecito Cave (Nuevo León) and Cedral (San Luis Potosı́) are two of

the most studied late Pleistocene sites in northeastern Mexico. Stock [20, 21] considered all of

the horse remains from San Josecito Cave to belong to a single species of Equus, which he

thought was most similar to Equus conversidens Owen, 1869, but with sufficient morphological

differences to be identified as a new subspecies: E. conversidens leoni. As pointed out by Dal-

quest [9] andWinans [4, 10], Stock [20, 21] did not select a type nor publish a formal descrip-

tion; thus, the name should be regarded as a nomen nudum. Moreover, Winans [4] proposed

E. conversidens to be a nomen dubium, because she considered, in accordance with Hibbard

[7], that the convergence of the cheek tooth rows toward the rostrum seen in the holotype (one

of the main diagnostic characters for this species) was the result of a distorted restoration.

Winans [10] assigned the specimens from San Josecito Cave to her species group E. alaskae

(Hay), 1913. Contrary to Winans [4], Azzaroli [12] regarded E. conversidens as a valid species

distinct from E. niobrarensis alaskae Hay, 1913 and identified the latter as a synonym of E.

ferus Boddaert, 1785. He figured and described a partial skull from central Mexico, in which

the two tooth rows converge toward the rostrum, suggesting that the holotype of E. conversi-

dens was correctly mounted. In addition, Azzaroli [12] referred the fossil material from San

Josecito Cave to E. conversidens, further stating that this species was closely related to South

American horses, a relationship that has been suggested by other researchers (e.g., [8, 22]).

Three equid species have been recognized from the late Pleistocene deposits of Cedral, San

Luis Potosı́, Mexico, based on differences in size [23–27], metapodial proportions [24, 26], and

features of the occlusal enamel pattern of the third and fourth upper premolars [25]. The large

and medium-sized species have been tentatively identified as E.mexicanus (Hibbard), 1955

Tooth morphology and ancient DNA of Late Pleistocene horses
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(originally described by Hibbard [7] as E. (Hesperohippus) mexicanus), and E. conversidens,

respectively [23, 24, 26, 27]. The taxonomic identification of the smaller equid has been more

problematic. Alberdi et al. [23] originally identified it as Equus sp. A, whereas Melgarejo-

Damian and Montellano-Ballesteros [24] assigned it to Equus tau Owen, 1869. Recently,

Alberdi et al. [27] have designated a new species, Equus cedralensis, for this material.

1.2 The American Southwest: NewMexico, western Texas and northern
Chihuahua, Mexico

A number of important late Pleistocene fossil localities are known from NewMexico and west-

ern Texas, all of which have yielded large numbers of equid specimens, including Blackwater

Draw Loc. 1, Dry Cave, Dark Canyon Cave, and U-Bar Cave in NewMexico as well as Schar-

bauer Ranch and Quitaque Creek in Texas. Blackwater Draw Loc. 1, NewMexico, is the type

locality of the Clovis cultural complex and a large collection of bones as well as lithic artifacts

and other cultural remains have been retrieved from this site [28]. The equid material from

Fig 1. Geographic location of the fossil sites considered in the study.Northeastern Mexico: C = Cedral,
J = San Josecito Cave; American Southwest: A = Algerita BlossomCave, M = BigManhole Cave, L = Blackwater
Draw, K = Dark Canyon Cave, D = Dry Cave, X = El Barreal, F = Fresnal Canyon, G = Highway 45, Chihuahua,
I = Isleta Cave No. 2, O = Lubbock Lake, H = Nash Draw, Q =Quitaque Creek, S = Salt Creek, R = Scharbauer
Ranch, U = U-Bar Cave, V = Villa Ahumada;Wyoming: N = Natural Trap Cave; Alberta: E = Edmonton area
gravel pits,W =Wally’s Beach site; Yukon Territory: B = Bluefish Caves.

https://doi.org/10.1371/journal.pone.0183045.g001
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Blackwater Draw has been assigned to a variety of species. Stock and Bode [29] considered that

only one species, E. excelsus Leidy, 1858, was represented in the material they studied. In con-

trast, Quinn [30] identified four taxa from this locality: Asinus conversidens, Equus caballus

caballus Linnaeus, 1758, E. caballus laurentius Hay 1913, (originally described by Hay (1913)

as E. laurentius), and E.midlandensis Quinn, 1957, a new species he named based on speci-

mens from Scharbauer Ranch, Texas. Quinn [30] adhered to the proposal of dividing modern

and fossil species of Equus into four genera, which consists of Equus for horses, Asinus for Afri-

can asses and the domestic donkey, Onager for Asiatic asses, andHippotigris for zebras. Lunde-

lius [31], working with a larger sample from the Gray Sand unit of Blackwater Draw, agreed

with Quinn [30] in identifying A. conversidens, but following a broader definition of the genus

Equus he referred it to E. conversidens. In addition, Lundelius [31] reassigned the material

identified by Quinn [30] as E. caballus laurentius to E. niobrarensis Hay 1913, whereas he reas-

signed the specimens identified as E.midlandensis and E. caballus caballus to E. scotti Gidley,

1900. A few years later, Harris and Porter [22] concluded that the specimens studied by Stock

and Bode [29], Quinn [30], and Lundelus [31], with the exception of E. conversidens, appear to

be assignable to E. niobrarensis. Recently, Harris [32] has revised his opinion and now consid-

ers E. niobrarensis a junior synonym of E. scotti.

In his study of fossil Equidae from Texas, Quinn [30] also examined, among other material,

specimens from Scharbauer Ranch. Like Blackwater Draw Loc. 1, this locality has also yielded

lithic artifacts and other cultural remains [33]. Quinn [30] identified some of the equid speci-

mens he studied as A. conversidens and proposed a new species of large and stout-legged equid

which he named E.midlandensis. This latter species is not considered to be valid by various

authors. Lundelius [31] regarded E.midlandensis a synonym of E. scotti, Harris and Porter [22]

proposed that it was synonymous with E. niobrarensis, whereas Winans [4] considered it a syn-

onym of E.mexicanus, a species she thought was distinct from E. scotti. Winans [10] later pro-

posed the name E. laurentius for the species group of E.mexicanus; however, it was recently

shown that the holotype of E. laurentius belongs to a historic domestic horse and it is therefore

a junior synonym of this species [34], a conclusion that had previously been expressed in the

literature (e.g., [4, 6, 11, 12, 35]).

Dalquest [36] described an assemblage of fossils from a small tributary of Quitaque Creek,

western Texas. Most of the equid remains collected were from a species of small horse, which

Dalquest [36] identified as E. cf. conversidens based on similarities with specimens from the Val-

ley of Mexico referred to E. conversidens by Hibbard [7]. There were also some remains of a

larger horse slightly smaller than the average size of comparable elements identified as E. scotti

from the Seymour formation of Knox County, Texas, which Dalquest [36] reported as Equus sp.

In one of the first studies that applied multivariate morphometrics to fossil equids, Harris

and Porter [22] studied the equid remains from Dry Cave, southeastern NewMexico. They

concluded that E. conversidens and E. niobrarensis were represented in the material they stud-

ied and also referred some specimens to E. occidentalis sensu Merriam, (1913), E. scotti, and a

small zebrine species, which they called E. sp. A. Winans [10] studied specimens from Dry

Cave and assigned them to the small, stout-legged species group of E. alaskae and the large,

stout-legged species group of E. laurentius. Harris [32] has revised his interpretation of the

equid remains from Dry Cave and currently recognizes E. conversidens, E. scotti (which he con-

siders the senior synonym of E. niobrarensis), E. occidentalis (sensu Merriam, (1913); for the

largest specimens in the fauna), E. sp. A (a small zebrine species), and a single partial upper

tooth identified as E. francisci.

In addition to Dry Cave, there are several other cave sites from the American Southwest

that have yielded equid remains. Two of these are U-Bar Cave, located in southwestern New

Mexico, and Dark Canyon Cave, found south of Dry Cave, in southeastern NewMexico.

Tooth morphology and ancient DNA of Late Pleistocene horses
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Harris [37, 38] studied the fossil material collected from U-Bar Cave, separating it into mid-

Wisconsin and late Wisconsin ages. He listed three equid species for the mid-Wisconsin of

U-Bar Cave, namely E. conversidens, E. cf. niobrarensis, and E. cf. occidentalis, whereas for the

late Wisconsin he considered that only E. conversidens and E. cf. niobrarensis were represented

in the fauna [37]. Harris [32] maintains the same interpretation of the equid material from

U-Bar Cave, with the exception that he considers E. niobrarensis to be a junior synonym of E.

scotti. Regarding Dark Canyon Cave, Lundelius [22, 39] tentatively identified E. conversidens

and E. scotii from this site, whereas Harris and Porter [22] referred to E. conversidens a small

collection of equid remains from this locality housed at the University of Texas at El Paso. In

his dissertation, Tebedge [40] described the fauna collected from excavations undertaken in

the East Side Pocket of Dark Canyon Cave. He decided to identify the equid material as Equus

sp. because of the confused nomenclature of Pleistocene equids [40].

The Vertebrate Paleobiology Collection of the University of Texas at El Paso houses speci-

mens from different parts of Chihuahua, Mexico. Among these is a small collection of fossils

from the ranch of Santa Barbara, located 9 km north of Villa Ahumada, northern Chihuahua

[41]. In their report of this fossil locality, Comadurán et al. [41] identified the presence of

Mammuthus sp. and Equus sp. Harris [32] examined the fossil material from this locality and

identified the equid remains as Equus francisci.

1.3 Natural Trap Cave, Wyoming

The Natural Trap Cave fossil locality, Wyoming, has yielded thousands of vertebrate remains

[42]. In a report of the excavations at Natural Trap Cave, Martin and Gilbert [43] mentioned

the presence of three horse species for the equid material known at the time. They remarked

that the most common species was a small, stilt-legged equid likely referrable toHemionus

[43], a group which has been treated as a genus or subgenus of Equus and which includes the

extant Asiatic asses. Martin and Gilbert [43] indicated that the other two species were less

abundant and that one of them is assignable to the subgenus Amerhippus. Winans [10] studied

several specimens from Natural Trap Cave and assigned them to the species group of E. alas-

kae, which generally includes small, stout-legged horses. In a recent study using ancient

mtDNA, Weinstock et al. [13] concluded that two clades were present at this locality, a cabal-

line and a stilt-legged clade, each possibly representing a single species. The study by Wein-

stock et al. [13] further indicated that the stilt-legged clade is endemic to North America and

that the presence of slender metapodials is, therefore, a convergent feature with extant Asiatic

asses. In contrast, Eisenmann et al. [44] proposed that four equid species are represented in

the material from Natural Trap Cave: a caballine, E. cf. conversidens, and a large and small

Amerhippus, both with slender metapodials. According to Eisenmann et al. [44], the small

Amerhippus is the most common species in the fauna.

1.4 Alberta, Canada: The Edmonton area gravel pits andWally’s Beach
site

The equid material from the Edmonton area gravel pits has not been described in detail. Burns

and Young [45] listed two types of horses, which they referred to Equus cf. conversidens and E.

cf. niobrarensis. Weinstock et al. [13] obtained ancient mtDNA from a large sample of speci-

mens from the gravel pits around the Edmonton area. All of the specimens they studied were

found to belong to the caballine clade, suggesting that only one species was represented in the

sample they studied [13].

The archaeological-paleontological site of Wally’s Beach located in southern Alberta is

remarkable in that it is the only known late Pleistocene horse and camel kill and butchering

Tooth morphology and ancient DNA of Late Pleistocene horses
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locality in North America [46–48]. Seven butchered horses were recovered associated with

lithic artifacts [46]. McNeil [49] compared the equid material collected fromWally’s Beach to

specimens from the Yukon Territory identified as E. lambei, as well as a skull from Papago

Springs Cave, Arizona, identified by Skinner [50] as E. conversidens. McNeil [49] assigned the

equid material fromWally’s Beach to E. conversidens and noted several differences between

the Wally’s Beach sample and the sample of E. lambei, particularly in skull morphology and

dentition.

1.5 The Yukon Territory: Bluefish Caves

The Bluefish Caves are located in northern Yukon Territory above the Arctic circle and have

yielded, in addition to a large collection of vertebrate remains, some lithic artifacts and butch-

ered bones, as well as other cultural evidence that extends from the late glacial to the LGM or

possibly even earlier [51–53]. Burke and Cinq-Mars [54, 55] studied the horse remains from

Bluefish Caves identified as E. lambeiHay, 1917. These authors documented the range of varia-

tion in cheek tooth morphology [54] and also constructed mortality profiles for each of the

three caves [55]. Equus lambei has been identified as an onager [30], as a member of the genus

Asinus [56, 57], and as a caballine equid [6, 58–61]. This species has also been considered a

junior synonym of E. ferus caballus [4, 6] or E. asinus [4], it has also been assigned to the E.

alaskae species group of Winans [10], and has been regarded as a possible subspecies of E.

niobrarensis by Azzaroli [11, 12]. Burke and Cinq-Mars [54] concluded that E. lambei was a

caballine horse, based on the morphology of the cheek tooth dentition. Weinstock et al. [13]

successfully extracted, amplified, and sequenced, ancient mtDNA from one horse metatarsal

from Bluefish Cave 3. Although the specimen was only identified as Equus sp., the sequence

obtained by Weinstock et al. [13] placed it within the caballine group. Other late Pleistocene

sites in Beringia have yielded fossil material of a horse with slender metapodials [62, 63], a fea-

ture that is present in extant hemione (Asiatic ass) species. However, molecular analysis of

slender metapodials from the Yukon byWeinstock et al. [13] have placed this equid outside of

the modern hemiones as a distinct species. These studies suggest that at least two species of

Equus where present in Beringia during the late Pleistocene.

2. Materials andmethods

All of the specimens studied are housed at one of the following institutions, with correspond-

ing institutional acronyms indicated in parentheses: Canadian Museum of History (CMH;

Bluefish Caves collections: MgVo-1, 2, and 3), Gatineau, Quebec, Canada; Quaternary Paleon-

tology (P) and Archaeology collections (Wally’s Beach site; DhPg-8) of the Royal Alberta

Museum (RAM), Edmonton, Alberta, Canada; Archeozoology Laboratory ‘M. en C. Ticul

Álvarez Solórzano’ (DP), Instituto Nacional de Antropologı́a e Historia (INAH), Mexico City,

Mexico; Natural History Museum of Los Angeles County (LACM), Los Angeles, California,

USA; University of Kansas (KU), Lawrence, Kansas, USA; University of Texas at El Paso

(UTEP), El Paso, Texas, USA; and the Vertebrate Paleontology Laboratory, University of

Texas at Austin (TMM), Austin, Texas, USA.

Throughout this study, we use the revised dental nomenclature proposed by Evander [64].

The primary structures for upper and lower cheek teeth referred to in the text are shown in

Fig 2.

Before explaining the methodology for the morphometric and molecular analyses conducted

here, we feel that it is important to include a note on morphological and phylogenetic species

concepts and the approach we took in our study. Determination of species based on morpho-

metric analyses is done under the morphological species concept, whereas determination of
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species based on phylogenetic analyses of molecular data makes use of the phylogenetic species

concept. Under the morphological species concept, species are recognized based on morpholog-

ical characters. It is assumed that species display a certain definable variability and are suffi-

ciently distinct from other samples [65, 66]. The morphological species concept is ahistorical;

that is, it does not consider ancestor-descendant relationships in the identification of species

[67–69]. On the other hand, the phylogenetic species concept is historical and under the more

common version of this species concept, a species is “a diagnosable cluster of individuals with

which there is a parental pattern of ancestry and descent, beyond which there is not, and which

exhibits a pattern of phylogenetic ancestry and descent among unit of like kind” (p. 92 in [70])].

In this study, we gave priority to the results obtained in the phylogenetic analyses when encoun-

tering discrepancies between these analyses and the morphometric studies. Nevertheless, the

results of the two sets of analyses are mostly congruent with each other.

2.1 Linear morphometrics

2.1.1 Measurements and sample size. The cheek tooth dentition of equids consists of

three upper (P2, P3, and P4) and three lower (p2, p3, and p4) premolars, as well as three upper

(M1, M2, and M3) and three lower (m1, m2, and m3) molars on each side of the dentition. We

gathered linear measurements of the tooth crown dimensions of upper and lower cheek teeth

using a Mitutoyo digital caliper with a measuring range of 0–150 mm, a resolution of 0.01

mm, and an accuracy of 0.003 mm. To account for measurement error, we took every mea-

surement three times and used the mean of these measurements in all statistical analyses. All

of the specimens were measured by the same researcher (CIB-O). The measurements collected

are partially based on the methodology published by Eisenmann et al. [71]. For each cheek

tooth studied, we measured the length and width at a crown height of 2 cm (Fig 3A and 3C).

In the case of the lower teeth, these measurements were taken 2 cm above from the bifurcation

of the protoconid and hypoconid columns measured on the buccal side of the tooth (Fig 3B),

whereas in the upper teeth these measurements were taken 2 cm above from where the mesos-

tyle ends on the buccal side of the tooth (Fig 3D). The occlusal dimensions of a tooth change

as it wears down (e.g., [5, 72]) and taking measurements at a set tooth height compensates for

this ontogenetic variation, especially in teeth with similar size and degree of hypsodonty. A

potential drawback to this approach is that depending on the developmental stage of the tooth

(and its state of preservation) sometimes a thin layer of cementum is present around the tooth

crown where the measurements are taken. However, since this phenomenon was observed to

occur in every sample studied, we do not expect it to be a source of systematic error.

A total of 1,454 cheek teeth were measured (738 upper and 716 lower teeth; Tables A–H in

S1 File). Most of the specimens measured were isolated teeth, although there were some tooth

series and some complete or partial dentaries and maxillaries. We determined the side and

tooth position for every individual tooth using the criteria presented by Bode [73] and Eisen-

mann et al. [71]. The upper and lower third and fourth premolars (P3/p3 and P4/p4) are some-

times difficult to distinguish, as is the case for upper and lower first and second molars (M1/

m1 and M2/m2). As a result, Eisenmann et al. [71] suggest combining upper P3 and P4 as well

as lower p3 and p4 into a single category, respectively. The same suggestion applies to the

upper M1 and M2 as well as the lower m1 and m2 teeth [71]. Consequently, we arranged the

data into eight tooth categories: Upper P2, P3/P4, M1/M2, and M3; and lower p2, p3/p4, m1/

Fig 2. Upper (A) and lower (B) fourth premolars showing the dental structures referred to in the text, following the dental nomenclature of
Evander [64]. Computed tomography (CT-scan) images of LACM 192/156497 (A) and TMM 937–169 (B). The anterior side of both teeth is located
to the right. The lingual side is located at the bottom in figure A and the top in figure B.

https://doi.org/10.1371/journal.pone.0183045.g002
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m2, and m3. For cases in which different tooth positions of the same tooth category were asso-

ciated (i.e., they belong to the same individual), for instance a p3 and a p4 of the same tooth

series, we selected one of the two specimens at random and excluded the other from the analy-

sis. For situations in which the left and right sides of the same tooth position were associated,

for example a right P2 and a left P2, we measured both specimens, calculated the average, and

used the average measurements in the statistical analysis. The final data sets for each of the five

geographic regions and each tooth category studied are shown in Tables A–H in S1 File.

2.1.2 Statistical analyses. We conducted a Principal Components Analysis (PCA) of the

variance-covariance matrix for each of the eight tooth categories. Because of the possibility of a

non-linear allometric relationship between the variables, we log-transformed the data prior to

conducting the PCA. This transformation linearizes the data making it possible to use PCA

and other statistical methods which assume linear relationships between variables [74]. For

each tooth category, we first conducted a PCA for the five geographic regions combined, in

order to place all of the specimens into the same multivariate space (i.e., morphospace). We

then plotted the PC scores for the specimens from each geographic region separately (Figs A–J

in S2 File). This facilitated the identification of different clusters in the morphospace, which

were arranged along the first principal component (PC1). In order to statistically test for het-

erogeneity in the data that would indicate the presence of more than one population, we con-

ducted a Shapiro-Wilk test for normal distribution for the PC1 scores. The null hypothesis is

that the observations are drawn at random from a single population with a normal distribu-

tion. All statistical tests were conducted in PAST 2.17 [75] and STATISTICA v. 9 [76] software

packages. The significance level for all tests was set to a p-value of 0.05.

2.2 Geometric morphometrics of the occlusal enamel pattern

The occlusal enamel pattern of equids is complex and has been used to varying degrees in the

taxonomy of these ungulates. The occlusal surface and dimensions of hypsodont equid cheek

teeth change with age as the teeth wear down (e.g., [5, 72, 77, 78]). This large ontogenetic varia-

tion has brought into question the utility of the cheek teeth in the determination of equid spe-

cies. However, when comparing specimens at similar stages of wear, the enamel pattern can be

taxonomically informative [25, 79]. In this study, we examined teeth with a tooth height repre-

senting 30–40% of the maximum crown height. This approximately corresponds to a crown

height equivalent to the width of the tooth (or the length of the tooth for the lower teeth) mea-

sured at a tooth height of 2 cm as indicated above in the section on linear morphometrics.

2.2.1 Image acquisition. We photographed specimens showing the selected stage of wear

using a SONY Cyber-shot DSC-H9 digital camera. When taking the photograph, the occlusal

surface of the tooth was oriented perpendicular to the camera lens. In addition, we placed a

scale bar oriented parallel to the occlusal surface on the lingual side of the tooth for the upper

teeth (Fig 4) and on the buccal side for the lower teeth (Fig 5).

Typically, fossil assemblages present teeth with varying degrees of wear; therefore, restrict-

ing the analysis to teeth with equivalent stages of wear reduces the effective sample size. In

order to increase the sample size available for study we relied on X-ray Computed Tomogra-

phy to digitally section specimens at the selected stage of wear. Due to limitations in CT-scan-

ning time, we did not scan all of the tooth positions, but rather concentrated on the third and

Fig 3. Lower (A and B) and upper (C and D) third premolars showing themeasurements collected for lower and upper cheek
teeth. Transverse width (Tr) and anteroposterior length (Ap) measurements are shown in figures A and C. Thesemeasurements were taken
at a tooth crown height of 2 cm. In the lower teeth the measurements were taken 2 cm above from the bifurcation of the protoconid and
hypoconid columnsmeasured on the buccal side of the tooth (B). In the upper teeth the measurements were taken 2 cm above from where
the mesostyle ends on the buccal side of the tooth (D). Figures A and B: left p3 (DhPg-8 3437.1). Figures C and D: right P3 (DP 3850).

https://doi.org/10.1371/journal.pone.0183045.g003
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fourth premolars, as these tooth positions had proven to be taxonomically useful in a previous

study of the occlusal enamel pattern [79]. As a result, our analysis focused solely on the upper

P3/P4 and lower p3/p4 tooth categories.

In total, 139 specimens were CT-scanned, 64 upper P3/P4 and 75 lower p3/p4. All of the

specimens were scanned using a SkyScan 1173 high-resolution micro-CT scanner at the

Department of Comparative Biology and Experimental Medicine, University of Calgary.

Three-dimensional (3-D) surface models of the teeth were created in AMIRA 5.3.3 and digi-

tally sectioned at the selected tooth height. The specimens were not sectioned perpendicular to

the long axis of the tooth, but rather the cutting plane was aligned with the occlusal surface of

the tooth. Thus, the cutting plane was inclined lingually and mesially to varying degrees for the

upper teeth and buccally and (generally) mesially on the lower teeth. The sectioned 3-D mod-

els were then oriented with the enamel pattern perpendicular to the screen and an image along

with a scale bar was obtained.

In cases where there were images of associated specimens, for example left and right P3 of

the same individual, we chose one of the two specimens at random for digitization. We also

reflected all of the left teeth in the data set in order to have all of the specimens in the same ori-

entation. We then renamed every image with a four digit identifier generated at random, with

the objective of mixing the sample of images and removing the identity of each image to

Fig 4. Occlusal surface of a P3 (LACM 192/18109) showing the 24 landmarks used in the analysis.Refer to
the main text and Table C in S2 File for a description of the landmarks and details about how they were digitized.

https://doi.org/10.1371/journal.pone.0183045.g004
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minimize any biases during digitization. The final data sets (including both photographed and

CT-scanned specimens) consisted of 144 upper P3/P4 teeth (Table A in S2 File and data set in

S3 File) and 128 lower p3/p4 teeth (Table B in S2 File and data set in S4 File).

2.2.2 Upper cheek teeth landmark acquisition. We used the computer software tpsDig

2.16 [80] to digitize 24 landmarks on the images, including both photographs and images of

the sectioned 3-D surface models, of the upper P3/P4 teeth. The landmarks used in this analy-

sis are presented in Fig 4 and are listed in Table C in S2 File; they are based on a study reported

by Barrón-Ortiz and Theodor [25]. The first 18 landmarks are considered type II landmarks

under Bookstein’s [81, 82] classification of landmarks. Type II landmarks are points located at

local maxima and minima of curvature. The remaining six landmarks are considered type III

landmarks. Type III landmarks are defined by their relative position to other landmarks [81,

82]. We used type III landmarks to obtain a better characterization of the fossettes and the buc-

cal enamel band of the tooth. We had initially placed a type II landmark on the pli hypostyle of

the postfossette and on the pli protoloph of the prefossette, but decided to exclude these land-

marks because these plications are not present in all of the specimens imaged. The pli hypo-

style is absent from 18 specimens and the pli protoloph is absent from four teeth. All of the

specimen images were processed and digitized by the same researcher (CIB-O).

2.2.3 Lower cheek teeth landmark acquisition. For the lower cheek teeth, we focused on

what some researchers call the double-knot (e.g., [71]), which consist of the metaconid, lingua-

flexid, and metastylid (Fig 2). The linguaflexid, in particular, has been considered taxonomi-

cally important by different researchers (e.g., [8, 83–86]). These researchers indicate that

horses, including the Mongolian wild horse (E. ferus przewalskii), tend to have a deep U-

Fig 5. Digitized double knot (metaconid, linguaflexid, andmetastylid) of a lower p4 (KU 50629) showing
the 50 landmarks used in the analysis.Refer to the main text for details about how the landmarks were
digitized.

https://doi.org/10.1371/journal.pone.0183045.g005
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shaped linguaflexid, whereas zebrines have a V-shaped linguaflexid, and hemiones have a shal-

low V- or U-shaped linguaflexid. One methodological complication with this categorization of

the linguaflexid is that it is subjective, that is, whether a linguaflexid is categorized as U-shaped

or V-shaped depends on the judgment of the researcher [84]. A further potential complication

is that this character may be variable within the same species; at least this has been reported in

populations of the extant hemione Equus kiang, in which northern populations tend to have a

U-shaped linguaflexid, whereas southern populations tend to present a V-shaped linguaflexid

[87]. The first complication can be addressed with the use of outline-based geometric morpho-

metrics. This technique allows for the characterization of outlines or curves in a more objective

manner. Regarding the second complication, additional studies are needed to better assess the

morphological plasticity of this trait.

The outline of the metaconid-linguaflexid-metastylid complex of each tooth was digitized

to obtain 50 evenly-spaced landmarks using the computer software tpsDig 2.16 [80] (Fig 5).

The first landmark was placed on the distal point of the bucco-distal margin of the metaconid

and the last landmark was placed on the mesial point of the bucco-mesial margin of the metas-

tylid (Fig 5). The first and last landmarks are type II landmarks according to Bookstein’s [81,

82] classification of landmarks. The remaining 48 landmarks represent semilandmarks. All of

the specimen images were processed and digitized by the same researcher (CIB-O).

2.2.4 Statistical analyses. The goal of the geometric morphometric analysis was to deter-

mine whether the groups that we identified in the analysis of the linear measurements, which

were primarily based on differences in size, statistically differed in shape for both the upper

and the lower premolars. Shape refers to the geometric features of an object after accounting

for differences in size, position, and orientation [88]. To this end, we organized the landmark

data by size group (according to groups identified in the linear morphometric analysis) and

geographic region. The groups considered in the analysis are: large, medium, and small speci-

mens from northeastern Mexico; large, medium, and small specimens from the American

Southwest; large and medium specimens from Natural Trap Cave, Wyoming; large and

medium specimens from Alberta; and the specimens from Bluefish Caves, Yukon Territory.

For both the upper and the lower teeth, we superimposed the configuration of landmarks

using the generalized least squares Procrustes superimposition algorithm in MorphoJ 1.05f

[89]. We then performed a pooled within subgroups multivariate regression of log centroid

size on the Procrustes residuals to test for allometry; covariation between size and shape (e.g.,

[90–93]). As will be seen in the results, the regression for both the upper and lower premolars

yielded a statistically significant relationship. We used the regression residuals to control for

the variation of shape due to size and conducted a Canonical Variate Analysis (CVA). To test

for significant differences between groups, we carried out pair-wise permutation tests,

using10,000 permutation rounds, for the Procrustes distances among groups.

2.3 Ancient mtDNA analysis

2.3.1 Samples. We sampled 50 late Pleistocene equid teeth from 12 North American local-

ities for ancient mtDNA analysis (Table D in S2 File). These specimens were included in the

linear and/or geometric morphometric analyses described above. For each tooth we obtained a

fragment of approximately 10 mm in length from the tip of the root in order to avoid damag-

ing the tooth crown. The samples were processed at the Ancient DNA Laboratory of the

Department of Anthropology and Archaeology, University of Calgary. Repeat extractions were

conducted for five specimens and six other specimens were independently replicated at the

Ancient DNA Laboratory of the Department of Archaeology, Simon Fraser University, follow-

ing the same protocols (Table D in S2 File).
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2.3.2 DNA extraction, amplification, and sequencing. The ancient DNA laboratories at

the University of Calgary and Simon Fraser University were designed exclusively for ancient

DNA (aDNA) analyses and no modern samples have ever been processed in either laboratory.

The laboratories are equipped with UV filtered ventilation and positive airflow, as well as UV

sources for decontamination; all equipment in the laboratory is dedicated for aDNA use. Strict

contamination protocols are followed including: 1) the use of protective clothing such as

Tyvex suits, masks, and disposable gloves; 2) separation of the aDNA lab into bone prepara-

tion, DNA extraction, and PCR set-up rooms, with dedicated equipment for each room; 3)

Separation of pre- and post-PCR workspaces; 4) the inclusion of multiple blank DNA extrac-

tions (one for every six to seven samples processed) and negative PCR controls.

Approximately 0.3–1.0 g of sample were subjected to chemical and UV decontamination:

samples were immersed in 6% sodium hypochlorite for 7 minutes, rinsed twice in ultra-pure

water, and UV irradiated in a crosslinker for 30 minutes on two sides. Following decontamina-

tion, the samples were crushed into powder and incubated overnight at 50 oC in 5 ml of lysis

solution (0.5 M EDTA pH 8.0, 0.5% SDS, and 0.5 mg/mL proteinase K). We used a modified

silica-spin column technique [94, 95] to extract DNA from the decontaminated tooth samples.

For each sample, approximately 200 μl of DNA extract were obtained in two separate elutions

of 100 μl each.

Eight overlapping primer sets were designed to amplify a 621 bp fragment of the hypervariable

region I (HVR I) of equid mitochondrial control region (Table E in S2 File), spanning positions

15,443–16,063 of the Equus ferus caballusmtDNA genome (Genbank accession: JN398377). We

conducted PCR reactions using an Eppendorf Mastercycler1 in a 30 μl reaction volume contain-

ing 50 mmol/L KCl, 10 mmol/L Tris-HCl, 2.5 mmol/L MgCl2, 0.2mmol/L dNTP, 1.0 mg/mL

BSA, 0.3 μmol/L each primer, 3.0–4.0 μl DNA sample, and 2 U AmpliTaq Gold LD (Life Technol-

ogies Corporation, Carlsbad, California, USA). PCR started with an initial 12 min denaturation

period at 95 oC, followed by 60 cycles at 95 oC denaturation for 30 s, 50–52 oC annealing for 30 s,

and 72 oC extension for 40 s. We included blank extracts and negative controls in each of the PCR

sets. PCR products were sequenced using forward and reverse primers at Eurofins MWGOperon,

Inc., Huntsville, Alabama, USA. For all of the samples that yielded DNAwe attempted repeat

amplifications and sequencing and for five specimens (EQ29, EQ39, EQ43, EQ50, and EQ53) we

conducted repeat extractions to ensure the reproducibility of the results and to detect any base

pair misincorporations due to DNA damage. Six specimens were independently replicated at

Simon Fraser University (EQ1, EQ2, EQ9, EQ30, EQ43, and EQ51).

2.3.3 Data analysis. Contigs of the obtained DNA sequences were produced using Chro-

masPro software (http://technelysium.com.au/). The aligned DNA fragments were edited and

truncated to remove primer sequences and to make them comparable with previously pub-

lished equid reference sequences from GenBank.

We compiled DNA sequences of the mitochondrial control region of extant and extinct equids

(Table F in S2 File) fromGenBank, including sequences from themodern horse haplogroups iden-

tified by Achilli et al. [96], ancient horse sequences obtained byWeinstock et al. [13], sequences of

stilt-legged horses reported by Vilstrup et al. [97], and sequences of specimens identified as Equus

(Amerhippus) neogeus obtained by Orlando et al. [98]. We also included in the data set the mito-

chondrial control region of the fossil specimens from Thistle Creek, Yukon, and Taymyr penin-

sula, Siberia, reported by Orlando et al. [99]. We used sequences of the domestic and African

donkeys as outgroups (Table F in S2 File). The sequences from the literature and the ones obtained

in this study were arranged into one data set consisting of 125 sequences of a 588 bp fragment of

the hypervariable region I (HVR I).

We aligned the sequences by way of a ClustalWMultiple alignment in BioEdit 7.0.5.3 [100].

Subsequently, we used MrModeltest 2.3 [101] in PAUP 4.0 Beta Version10 [102] to determine
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the best nucleotide substitution model. This analysis identified the general time reversible

model with gamma-distributed rate variation across sites and a proportion of invariable sites

(GTR+G+I) as the best model for the data set. We then conducted a Bayesian phylogenetic

analysis integrating Markov chain Monte Carlo algorithms in MrBayes 3.2 [103]. The posterior

probability distribution of trees was approximated by drawing a sample every 1,000 steps over

20,000,000 generations, after discarding a burn-in of 1,000,000 generations.

3. Results

3.1 Linear morphometrics

In all analyses for both the upper and the lower cheek teeth, the first principal component (PC

1) accounted for over 87% of the variation in the data (Tables 1 and 2). The factor loadings

indicate that this component reflects variation in size, with larger specimens showing more

positive scores (Tables 1 and 2). Plotting the PC scores by geographic region for each tooth cat-

egory reveals the presence of one to three size groups (Fig 6; Figs A–J in S2 File). These size dif-

ferences do not correspond to sexual dimorphism as extant equid species and monospecific

quarry samples of fossil species do not show sexual dimorphism in the cheek tooth dimensions

investigated here [104].

The upper and lower cheek teeth from northeastern Mexico tend to plot into three size

groups: large, medium, and small (Fig 6; Figs A and B in S2 File). Moreover, the distribution of

the specimens along PC 1 (Fig 6; Figs K and L in S2 File) statistically departs from normality in

all tooth categories, except M3 and p2 (Table 3).

The specimens from the American Southwest tend to plot into large and medium size clus-

ters, except for the p3/p4 tooth category where there are three small-sized specimens that plot

in the same region of the morphospace as the small-sized specimens from northeastern Mexico

(Fig 6; Figs C and D in S2 File). Sample sizes for this geographic region are small in four of

the eight tooth categories, namely P2, M3, p2, and m3 (Table 3). As a result, greater weight

was given to the remaining tooth categories in the interpretation of the Shapiro-Wilk test of

Table 1. Eigenvalues, percentage variance, and factor loadings for the principal components resulting from PCA of the linear measurements of
the upper teeth (Ap = anteroposterior length; Tr = transverse width), taken at a crown height of 2 cm.

Upper P2 Upper P3/P4 Upper M1/M2 Upper M3

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Eigenvalue 0.0031 0.0003 0.0044 0.0002 0.0041 0.0002 0.0051 0.0004

% variance 92.49 7.51 94.62 5.38 96.18 3.82 93.04 6.96

Factor loadings

Ap 0.7773 -0.6291 0.7680 -0.6405 0.7401 -0.6725 0.7905 -0.6125

Tr 0.6291 0.7773 0.6405 0.7680 0.6725 0.7401 0.6125 0.7905

https://doi.org/10.1371/journal.pone.0183045.t001

Table 2. Eigenvalues, percentage variance, and factor loadings for the principal components resulting from PCA of the linear measurements of
the lower teeth (Ap = anteroposterior length; Tr = transverse width), taken at a crown height of 2 cm.

Lower p2 Lower p3/p4 Lower m1/m2 Lower m3

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2

Eigenvalue 0.0042 0.0006 0.0037 0.0004 0.0043 0.0005 0.0055 0.0005

% variance 87.34 12.66 89.81 10.19 90.01 9.99 91.90 8.10

Factor loadings

Ap 0.6873 0.7264 0.7036 0.7105 0.6411 0.7675 0.7230 -0.6909

Tr 0.7264 -0.6873 0.7105 -0.7036 0.7675 -0.6411 0.6909 0.7230

https://doi.org/10.1371/journal.pone.0183045.t002
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Fig 6. Principal component plots and histograms of PC 1 scores resulting from PCA of the linear
measurements of upper M1/M2 teeth. The specimens come from five geographic regions of theWestern
Interior of North America: Mexico (C, Cedral; J, San Josecito Cave), the American Southwest (A, Algerita
BlossomCave; D, Dry Cave; F, Fresnal Canyon; K, Dark Canyon Cave; H, Nash Draw; I, Isleta Cave No. 2; L,
Blackwater Draw; M, Big Manhole Cave; P, Imperial; R, Scharbauer Ranch; S, Salt Creek; U, U-Bar Cave);
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normality. The distribution of PC1 scores for P3/P4 and p3/p4 cheek teeth is statistically differ-

ent from the expected normal distribution, whereas normality is not rejected for the M1/M2

and m1/m2 tooth categories; although, the p-value for the M1/M2 category is marginally

greater than 0.05 (Table 3; Fig 6; Figs M and N in S2 File).

The vast majority of the specimens from Natural Trap Cave plot into one cluster that falls

in the same region of the morphospace as the medium size cluster from northeastern Mexico

and the American Southwest (Fig 6; Figs E and F in S2 File). There are, however, a few speci-

mens that are of larger size, producing a right-skewed distribution of specimens along PC1 in

all of the tooth categories except p2 and p3/p4 (Fig 6; Figs O and P in S2 File). Accordingly, the

Shapiro-Wilk test is not significant for these two tooth categories (Table 3). The test is also not

significant for the m3 tooth category. Significant departures from normality are detected for

the remaining five tooth categories (Table 3).

The specimens from Alberta tend to plot on the right side of the graph in the same region

of the morphospace as the large specimens from the American Southwest and northeastern

Mexico (Fig 6; Figs G and H in S2 File). However, this does not apply to all of the tooth posi-

tions, and there are four specimens (one p2, two p3/p4, and one m1) that are smaller in size

and that fall in the same region of the morphospace as the medium-sized specimens from Nat-

ural Trap Cave, the American Southwest, and northeastern Mexico. The sample size in four of

the eight tooth categories (P2, M3, p2, and m3) is small and, therefore, greater weight was

given to the interpretation of the Shapiro-Wilk test for the other tooth categories. Normality

cannot be rejected for the distribution of specimens along PC1 for the P3/P4, M1/M2, and

m1/m2 tooth categories, and the test is marginally not significant for the p3/p4 tooth category

(Table 3; Fig 6; Figs Q and R in S2 File).

Wyoming (N, Natural Trap Cave); Alberta (E, Edmonton area gravel pits; W, Wally’s Beach), and the Yukon
Territory (B, Bluefish Caves). A lower case “a” beside the specimen symbol indicates a tooth that yielded
ancient mtDNA (EQ16 from Dry Cave). An asterisk (*) beside the specimen symbol denotes a tooth
associated (i.e., it belongs to the same individual) with a specimen from which ancient mtDNA was obtained
(teeth associated with EQ3 from Dry Cave, EQ9 from Natural Trap Cave, EQ29 and EQ43 fromWally’s
Beach, EQ44 and EQ47 from Bluefish Caves). The dark line in the histograms corresponds to the kernel
density estimation. Table C in S1 File lists all of the specimens included in this analysis.

https://doi.org/10.1371/journal.pone.0183045.g006

Table 3. Results of Shapiro-Wilk test for normal distribution of principal component 1 scores for each tooth category and geographic region
studied.

Tooth Mexico American Southwest Wyoming Alberta Yukon Territory

n Shapiro-Wilk
W

p-
value

n Shapiro-Wilk
W

p-
value

n Shapiro-Wilk
W

p-
value

n Shapiro-Wilk
W

p-
value

n Shapiro-Wilk
W

p-
value

P2 33 0.931 0.038 10 0.915 0.319 27 0.886 0.006 5 0.907 0.448 23 0.964 0.550

P3/P4 71 0.933 0.001 26 0.916 0.036 66 0.953 0.014 26 0.972 0.663 45 0.982 0.682

M1/
M2

103 0.972 0.026 34 0.942 0.069 72 0.939 0.002 41 0.984 0.804 41 0.982 0.747

M3 37 0.950 0.094 12 0.932 0.404 35 0.904 0.005 11 0.952 0.675 20 0.927 0.135

p2 44 0.951 0.061 14 0.951 0.577 25 0.949 0.238 9 0.819 0.034 21 0.913 0.063

p3/p4 77 0.961 0.018 34 0.888 0.002 46 0.975 0.415 20 0.914 0.075 30 0.968 0.488

m1/
m2

134 0.971 0.006 56 0.965 0.108 56 0.953 0.030 22 0.969 0.678 28 0.986 0.961

m3 33 0.932 0.041 11 0.883 0.112 32 0.944 0.097 5 0.852 0.202 19 0.908 0.067

n = sample size. Statistically significant p-values are shown in bold.

https://doi.org/10.1371/journal.pone.0183045.t003
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The specimens from Bluefish Caves form one cluster in all tooth categories (Fig 6; Figs I

and J in S2 File). The specimens from this locality show a size range that is intermediate to that

of the large-sized specimens from Alberta, the American Southwest, and northeastern Mexico

and the medium-sized specimens from Alberta, Natural Trap Cave, the American Southwest,

and northeastern Mexico. The Shapiro-Wilk test is not significant for any of the tooth catego-

ries, although it is only marginally not significant for the p2 and m3 tooth categories (Table 3;

Fig 6; Figs S and T in S2 File).

3.2 Geometric morphometrics of the enamel pattern of upper premolars

There is a statistically significant relationship between shape (as defined by the Procrustes

coordinates) and log centroid size (p-value< 0.0001). The regression on centroid size accounts

for 6.045% of the total shape variation. Thus, it was necessary to standardize the data by com-

puting the residuals from the regression to remove the shape variation due to allometry. The

residuals were then used in further statistical analyses.

The first three Canonical Variates (CV 1 to CV 3) account for 81.84% of the relative

between-group variation (Table 4). The different groups are arranged from small to large

along CV 1 (Fig 7), largely reflecting the pattern seen in the PCA of the linear measurements.

The transformation grids show that negative scores on CV 1 correspond to shallow parastyle-

mesostyle and mesostyle-metastyle valleys, bucco-lingually expanded fossettes, relatively short

protocones, and mesial displacement of landmark 11 (around the area where the pli caballin is

located); the opposite is observed for positive CV 1 scores. The morphological characters asso-

ciated with negative CV 1 scores are not typically found in extant caballine equids (e.g., [59]).

As a result, we identify the groups that have negative CV 1 scores as possessing non-caballine

tooth morphologies; these groups are: the small size group from Cedral, Mexico, as well as the

intermediate size groups from northeastern Mexico (Cedral and San Josecito Cave), the Amer-

ican Southwest, and Natural Trap Cave. The remaing groups have caballine tooth morpholo-

gies (positive CV 1 scores) and these correspond to the large size groups from Cedral, Mexico,

the American Southwest, Natural Trap Cave, and Alberta (Edmonton gravel pits andWally’s

Beach), as well as the specimens from Bluefish Caves, Yukon Territory (Fig 7). The second

Canonical Axis (CV 2) clearly separates the small specimens from northeastern Mexico and

the specimens from Bluefish Caves from the rest of the groups. Negative CV 2 scores reflect a

mesial extension of the anterior margin of the protocone and a more prominent mesostyle

(landmarks 3 and 4 are more separated from each other); the opposite is seen for positive CV 2

scores. The third Canonical Axis (CV 3) does not clearly separate any of the groups, but

arranges the intermediate size groups from south to north: specimens from northeastern

Mexico show negative scores, specimens fromWyoming have positive scores, and teeth from

the American Southwest have an intermediate position (Fig 8). Examination of the transfor-

mation grid for the CV 3 axis, shows that negative scores correspond to a displacement away

Table 4. Eigenvalues, percentage variance, and cumulative percentage variance of the first five
Canonical Variates resulting fromCVA of 24 landmark coordinates of the occlusal enamel pattern of
the upper premolars (P3/P4).

Eigenvalues % Variance Cumulative %

1 10.9984 43.64 43.64

2 6.0334 23.94 67.58

3 3.5944 14.26 81.84

4 1.8776 7.45 89.29

5 1.3469 5.34 94.64

https://doi.org/10.1371/journal.pone.0183045.t004
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from the center of the tooth of the pli paraconule (landmark 17), pli postfossette (landmark

14), and landmark 11; the opposite is observed for positive CV 3 scores.

The pair-wise permutation tests identified significant differences in the Procrustes distance

for all but eight comparisons (Tables 5 and 6). Two of these comparisons concern the large

size group from northeastern Mexico, which is not significantly different from the large size

groups of the American Southwest and Alberta. Likewise, these last two groups are not statisti-

cally different from each other. The medium size group from Natural Trap Cave is not

Fig 7. Plot of the first two Canonical Variates resulting fromCVA of 24 landmark coordinates of the occlusal enamel pattern of the upper
premolars (P3/P4). Shown on the margins of the graph is the change in tooth shape along each corresponding axis. The groups included in the
analysis are: 1) large specimens from Cedral, Mexico (Cl); 2) medium specimens from Cedral (Cm) as well as all teeth from San Josecito Cave (J),
Mexico; 3) small specimens from Cedral, Mexico (Cs); 4) large specimens from different localities of the American Southwest (identified by a lower
case “l” beside the specimen symbol; refer to Fig 1 for locality names); 5) medium specimens from different localities of the American Southwest
(identified by a lower case “m” beside the specimen symbol; refer to Fig 1 for locality names); 6) medium specimens from Natural Trap Cave,
Wyoming (N); 7) large specimens from Natural Trap Cave, Wyoming (Nl); 8) large specimens from the Edmonton area gravel pits (E) andWally’s
Beach (W), Alberta; and 9) all of the specimens digitized from Bluefish Caves, Yukon (B). A lower case “a” beside the specimen symbol indicates a
tooth that yielded aDNA (these include EQ38 and EQ45 from Bluefish Caves). An asterisk (*) beside the specimen symbol denotes a tooth
associated (i.e., it belongs to the same individual) with a specimen from which aDNA was obtained (including teeth associated with EQ3 from Dry
Cave, NewMexico, EQ9 from Natural Trap Cave, EQ43 fromWally’s Beach, and EQ44 as well as EQ47 from Bluefish Caves). Table A in S2 File
lists all of the specimens included in this analysis.

https://doi.org/10.1371/journal.pone.0183045.g007
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significantly different from the medium size group of the American Southwest. The four

remaining pair-wise permutation tests that are non-significant include the large size group

from Natural Trap Cave, which has a sample size of only two specimens and, thus, the reliabil-

ity of these results is questionable.

3.3 Geometric morphometrics of the enamel pattern of lower premolars

The lower premolars show a marginally significant relationship between shape (as defined by

the Procrustes coordinates) and log centroid size (p = 0.0437). The regression on centroid size

accounts for 2.257% of the total shape variation. As for the case of the upper premolars, the

residuals were calculated and used in further statistical analyses.

The first three Canonical Variates (CV 1 to CV 3) account for 71.93% of the relative

between-group variation (Table 7). The groups generally plot along CV 1 from small to large

(Fig 9), reflecting the same overall pattern observed in the CVA of the upper premolars and

Fig 8. Plot of the first and third Canonical Variates resulting from CVA of 24 landmark coordinates of the occlusal enamel pattern of the
upper premolars (P3/P4). Shown on the margins of the graph is the change in tooth shape along each corresponding axis. Refer to caption of Fig
7 for details on the specimens included in this analysis.

https://doi.org/10.1371/journal.pone.0183045.g008
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the PCA of the linear measurements. Examination of the transformation grids reveals that the

CV 1 axis corresponds to a morphological gradient which goes from a caballine double knot,

with a deep, U-shaped linguaflexid on the right side of the plot (i.e., CV 1 values greater than

0) to a hemione-like double knot with a shallow and more open, U-shaped linguaflexid on the

left side of the plot (i.e., CV 1 values less than 0). Moreover, positive CV 1 scores also reflect a

tooth morphology in which the metaconid is “constricted” (i.e., the bucco-distal margin of the

metaconid is displaced towards the linguaflexid) and the metastylid is “open” (i.e., the bucco-

mesial margin of the metastylid is displaced away from the linguaflexid); the opposite pattern

is observed for specimens with negative CV 1 scores. As a result, we identify the groups that

have positive CV 1 scores as possessing caballine tooth morphologies; these groups are: the

large size groups from Cedral, Mexico, the American Southwest, Natural Trap Cave, and

Alberta (Edmonton gravel pits andWally’s Beach), as well as the specimens from Bluefish

Caves, Yukon Territory. The remaing groups have non-caballine tooth morphologies (negative

CV 1 scores) and these correspond to the small size groups from Cedral, Mexico, and the

American Southwest (a small sample of teeth from northern Chihuahua, Mexico), as well as

the intermediate size groups from northeastern Mexico (Cedral and San Josecito Cave), the

Table 5. Procrustes distances among groups for the upper premolars (P3/P4).

Cl B Cm/J Cs SWl SWm Nl N

B 0.0606

Cm/J 0.0847 0.0649

Cs 0.1354 0.1099 0.0683

SWl 0.0358 0.0614 0.0870 0.1351

SWm 0.0618 0.0543 0.0412 0.0871 0.0657

Nl 0.0634 0.0657 0.0758 0.1095 0.0745 0.0590

N 0.0856 0.0698 0.0400 0.0672 0.0864 0.0370 0.0696

E/W 0.0327 0.0455 0.0746 0.1247 0.0324 0.0538 0.0670 0.0780

Abbreviations: Cl = large specimens from Cedral, Mexico. Cm/J = medium specimens from Cedral and specimens from San Josecito Cave, Mexico;

Cs = small specimens from Cedral, Mexico; SWl = large specimens from the American Southwest; SWm =medium specimens from the American

Southwest; Nl = large specimens from Natural Trap Cave, Wyoming; N = medium specimens from Natural Trap Cave, Wyoming; E/W = large specimens

from the Edmonton area andWally’s Beach, Alberta; B = specimens from Bluefish Caves, Yukon.

https://doi.org/10.1371/journal.pone.0183045.t005

Table 6. P-values from permutation tests (10,000 permutation rounds) for Procrustes distances among groups of the upper premolars (P3/P4).

Cl B Cm/J Cs SWl SWm Nl N

B < .0001

Cm/J < .0001 < .0001

Cs < .0001 < .0001 < .0001

SWl 0.3251 < .0001 < .0001 < .0001

SWm 0.0031 < .0001 0.0153 0.0007 0.001

Nl 0.2502 0.0250 0.0244 0.0263 0.028 0.4479

N < .0001 < .0001 < .0001 < .0001 < .0001 0.0514 0.0618

E/W 0.1672 < .0001 < .0001 < .0001 0.2875 0.0007 0.0801 < .0001

Abbreviations: Cl = large specimens from Cedral, Mexico. Cm/J = medium specimens from Cedral and specimens from San Josecito Cave, Mexico;

Cs = small specimens from Cedral, Mexico; SWl = large specimens from the American Southwest; SWm =medium specimens from the American

Southwest; Nl = large specimens from Natural Trap Cave, Wyoming; N = medium specimens from Natural Trap Cave, Wyoming; E/W = large specimens

from the Edmonton area andWally’s Beach, Alberta; B = specimens from Bluefish Caves, Yukon. Statistically significant p-values are shown in bold.

https://doi.org/10.1371/journal.pone.0183045.t006
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American Southwest, Natural Trap Cave, and Alberta (a small sample of teeth from the

Edmonton area gravel pits) (Fig 9). The small and large groups from northeastern Mexico, the

small specimens from the American Southwest, and the specimens from Bluefish Caves all

have positive CV 2 scores and are clearly separated from the rest of the groups along this axis

(Fig 9). The transformation grids show that positive CV 2 scores correspond to a relatively

rounded metastylid, whereas specimens with negative CV 2 scores reflect a triangular metasty-

lid. The specimens from Bluefish Caves, the large and medium size specimens from Natural

Trap Cave and the small groups from northeastern Mexico and the American Southwest all

have negative CV 3 scores and plot separately from the remaining groups in the data set (Fig

10). Negative CV 3 scores correspond to a bucco-lingually compressed metastylid, whereas

positive scores reflect a bucco-lingually expanded metastylid.

In contrast to the upper premolars, there were fewer pair-wise comparisons in which the

Procrustes distance between groups was statistically different (Tables 8 and 9). This is partially

due to the inclusion of groups with small sample sizes, namely the small groups from north-

eastern Mexico and the American Southwest, the large size group from Natural Trap Cave,

and the medium size group from Alberta. Of the remaining groups in the data set, the most

relevant differences are: 1) the Bluefish Caves group is significantly different from all other

groups; 2) the medium size group from northeastern Mexico differs from the medium size

group of Natural Trap Cave as well as the large size groups from northeastern Mexico, the

American Southwest, and Alberta; 3) the medium size group from the American Southwest is

statistically different from the large size groups of Alberta and the American Southwest; and 4)

the medium size group from Natural Trap Cave differs from the large size group of Alberta.

3.4 Ancient mtDNA

We were able to extract and amplify ancient mtDNA from 22 of 50 late Pleistocene specimens

we sampled (Table D in S2 File), including specimens of the different morphological groups

identified in the morphometric analyses, except for the small non-caballine equids from north-

eastern Mexico and the American Southwest. The DNA sequence data we generated was sub-

mitted to GenBank (accession numbers KX137124 –KX137148).

The Bayesian phylogenetic analysis using a 588 bp fragment of the HVR I yields the two lin-

eages of late Pleistocene North American equids that have been identified in previous molecu-

lar studies [13, 97]: caballine and NewWorld stilt-legged lineages (identified as clades A and B,

respectively in Fig 11). The phylogenetic analysis also recovers 16 of the 18 extant horse hap-

logroups identified by Achilli et al. [96]. The two horse haplogroups that are not recovered in

the analysis are haplogroups O and F.

Interestingly, the medium-sized specimens with a non-caballine tooth morphology from

the Edmonton area, Alberta; Natural Trap Cave, Wyoming; Dry Cave, NewMexico; and San

Josecito Cave, Mexico fall in the stilt-legged clade. The large-sized specimens with a caballine

Table 7. Eigenvalues, percentage variance, and cumulative percentage variance of the first five
Canonical Variates resulting fromCVA of 50 landmark coordinates of the double knot (metaconid-lin-
guaflexid-metastylid complex) of the lower premolars (p3/p4).

Eigenvalues % Variance Cumulative %

1 30.9264 32.85 32.85

2 21.6312 22.98 55.83

3 15.1508 16.10 71.93

4 8.3076 8.83 80.75

5 5.6457 6.00 86.75

https://doi.org/10.1371/journal.pone.0183045.t007
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tooth morphology from Dry Cave, NewMexico andWally’s Beach site, Alberta; as well as the

specimens from Bluefish Caves, Yukon Territory, which also have a caballine tooth morphol-

ogy cluster within the caballine clade (Fig 11). The caballine specimens fromWally’s Beach site

and Dry Cave fall outside of the caballine crown group (clade C in Fig 11). The specimens

from Bluefish Caves fall within the caballine crown group and may comprise an extinct horse

haplogroup along with specimens from Siberia, Alaska, and other sites in the Yukon Territory

(clade D in Fig 11).

Fig 9. Plot of the first two Canonical Variates resulting fromCVA of 50 landmark coordinates of the double knot (metaconid-linguaflexid-
metastylid complex) of the lower premolars (p3/p4). Shown on the margins of the graph is the change in shape along each corresponding axis.
The groups included in the analysis are: 1) large specimens from Cedral, Mexico (Cl); 2) medium specimens from Cedral (Cm) as well as all teeth
from San Josecito Cave (J), Mexico; 3) small specimens from Cedral, Mexico (Cs); 4) large specimens from different localities of the American
Southwest (identified by a lower case “l” beside the specimen symbol; refer to Fig 1 for locality names); 5) medium specimens from different
localities of the American Southwest (identified by a lower case “m” beside the specimen symbol; refer to Fig 1 for locality names); 6) small
specimens from Villa Ahumada (Vs) and Highway 45 (Gs), Chihuahua, Mexico; 7) medium specimens from Natural Trap Cave, Wyoming (N); 8)
large specimens from Natural Trap Cave, Wyoming (Nl); 9) large specimens from the Edmonton area gravel pits (E) andWally’s Beach (W),
Alberta; 10) medium specimens from the Edmonton area gravel pits (Em), Alberta; and 11) all of the specimens digitized from Bluefish Caves,
Yukon (B). A lower case “a” beside the specimen symbol indicates a tooth that yielded aDNA (these include EQ1 from Dry Cave, NewMexico, EQ4
from the Edmonton area gravel pits, EQ13 as well as EQ22 from Natural Trap Cave, EQ43 fromWally’s Beach, and EQ39, EQ48, and EQ50 from
Bluefish Caves). An asterisk (*) beside the specimen symbol denotes a tooth associated (i.e., it belongs to the same individual) with a specimen
from which aDNAwas obtained (including teeth associated with EQ42, EQ51, and EQ53 from Bluefish Caves). Table B in S2 File lists all of the
specimens included in this analysis.

https://doi.org/10.1371/journal.pone.0183045.g009
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4. Discussion

The geometric morphometric analyses of the occlusal enamel pattern of the upper and lower

premolars suggest the presence of four morphological groups of Equus for the Western Inte-

rior of North America during the late Pleistocene. Overall, there is good correspondence

between these groups and those suggested by the morphometric analysis of tooth dimensions.

The geometric morphometric analyses allow a better characterization of the occlusal enamel

pattern and facilitate comparisons with descriptions published in the literature; thus, our inter-

pretations of tooth morphology are primarily based on the results of these analyses. Two of the

groups identified possess morphological characters that are typically associated with caballine

equids, such as a deep U-shaped linguaflexid (e.g., [8, 83–86]), whereas the remaining two

groups possess non-caballine enamel patterns (Table 10). For the purpose of this discussion,

the four morphological groups identified in our analyses are numbered as follows: Group 1)

caballine equids from Bluefish Caves, Yukon Territory; Group 2) caballine equids from

Alberta, Natural Trap Cave, the American Southwest, and Cedral, Mexico, which are morpho-

logically different (Table 10) and also tend to be larger than the Bluefish Caves caballine group;

Fig 10. Plot of the first and third Canonical Variates resulting from CVA of 50 landmark coordinates of the double knot (metaconid-
linguaflexid-metastylid complex) of the lower premolars (p3/p4). Shown on the margins of the graph is the change in shape along each
corresponding axis. Refer to caption of Fig 9 for details on the specimens included in this analysis.

https://doi.org/10.1371/journal.pone.0183045.g010
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Group 3) a non-caballine equid group from Cedral, Mexico, and the American Southwest

(comprised of a small sample of teeth from northern Chihuahua), which shows features of the

enamel pattern that are different from the other non-caballine group (Table 10) and that also

includes the smallest specimens in our dataset; Group 4) a non-caballine equid group which

tends to be intermediate in size (relative to the other groups) from northeastern Mexico

(Cedral and San Josecito Cave), the American Southwest, Natural Trap Cave, and Alberta

(comprised by a small sample of teeth from the Edmonton area gravel pits).

The identification of four morphological groups of Equus for the late Pleistocene of the

Western Interior of North America differs from the latest morphological revisions of the

Table 8. Procrustes distances among groups for the lower premolars (p3/p4).

Cl Em B Cm/J Cs SWl SWm SWs Nl N

Em 0.0894

B 0.0865 0.1224

Cm/J 0.1056 0.0762 0.1575

Cs 0.1383 0.1224 0.2062 0.0688

SWl 0.0369 0.0699 0.0849 0.0980 0.1389

SWm 0.0838 0.0519 0.1302 0.0387 0.0892 0.0722

SWs 0.1093 0.0963 0.1771 0.0728 0.0515 0.1089 0.0739

Nl 0.1392 0.1072 0.1510 0.0898 0.1452 0.1236 0.0872 0.1494

N 0.0698 0.0444 0.1111 0.0596 0.1069 0.0620 0.0321 0.0828 0.0977

E/W 0.0511 0.0722 0.1008 0.1134 0.1443 0.0378 0.0857 0.1071 0.1483 0.0726

Abbreviations: Cl = large specimens from Cedral, Mexico. Cm/J = medium specimens from Cedral and specimens from San Josecito Cave, Mexico;

Cs = small specimens from Cedral, Mexico; SWl = large specimens from the American Southwest; SWm =medium specimens from the American

Southwest; SWs = small specimens from the American Southwest (Villa Ahumada and Highway 45, Chihuahua); Nl = large specimens from Natural Trap

Cave, Wyoming; N = medium specimens from Natural Trap Cave, Wyoming; E/W = large specimens from the Edmonton area gravel pits and Wally’s

Beach, Alberta; Em = medium specimens from the Edmonton area gravel pits, Alberta; B = specimens from Bluefish Caves, Yukon.

https://doi.org/10.1371/journal.pone.0183045.t008

Table 9. P-values from permutation tests (10,000 permutation rounds) for Procrustes distances among groups of the lower premolars (p3/p4).

Cl Em B Cm/J Cs SWl SWm SWs Nl N

Em 0.5058

B 0.0406 0.1796

Cm/J 0.0022 0.3584 < .0001

Cs 0.0784 0.4690 0.0010 0.2060

SWl 0.5379 0.4552 0.0068 0.0003 0.0141

SWm 0.0630 0.8363 0.0001 0.2552 0.1435 0.0223

SWs 0.2377 0.6013 0.0047 0.2328 0.9087 0.0705 0.3682

Nl 0.6303 1.0000 0.1799 0.4938 0.3942 0.2581 0.7017 0.7455

N 0.0973 0.8424 0.0017 0.0315 0.0855 0.0571 0.5407 0.2564 0.6039

E/W 0.2837 0.4330 0.0009 < .0001 0.0143 0.3376 0.0062 0.0659 0.1217 0.0339

Abbreviations: Cl = large specimens from Cedral, Mexico. Cm/J = medium specimens from Cedral and specimens from San Josecito Cave, Mexico;

Cs = small specimens from Cedral, Mexico; SWl = large specimens from the American Southwest; SWm =medium specimens from the American

Southwest; SWs = small specimens from the American Southwest (Villa Ahumada and Highway 45, Chihuahua); Nl = large specimens from Natural Trap

Cave, Wyoming; N = medium specimens from Natural Trap Cave, Wyoming; E/W = large specimens from the Edmonton area gravel pits and Wally’s

Beach, Alberta; Em = medium specimens from the Edmonton area gravel pits, Alberta; B = specimens from Bluefish Caves, Yukon. Statistically significant

p-values are shown in bold.

https://doi.org/10.1371/journal.pone.0183045.t009
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Fig 11. Consensus tree of Bayesian (Markov chain Monte Carlo) phylogenetic analysis displaying
relationships betweenmitochondrial control region (HVR 1) haplotypes of extinct and extant equids,
rooted with domestic donkey (Equus africanus asinus (L., 1758)) and Somali Wild Ass (Equus
africanus somaliensis (Noack, 1884)) as the outgroup. The tree was constructed using 588 bp fragments
of the HVR I. Posterior probabilities of the major nodes are listed for each of the branches. The groups
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genus. Winans [10] identifies the presence of three equid species groups that were widely dis-

tributed throughout North America, including the Western Interior, during the late Pleisto-

cene: Equus alaskae (Hay), 1913 (small and stout-legged species group), E. francisciHay, 1915

(small and stilt-legged species group), and E. laurentius Hay, 1913 (large and stout-legged spe-

cies group). In contrast, Azzaroli [12] recognizes nine species of equids that were present in

the continent during this time interval, six of which he mentions have been found in localities

from the Western Interior of North America. These are E. fraternus Leidy, 1860 and E. conver-

sidensOwen, 1869 (short-legged equids which Azzaroli [12] considers were related to South

American species of Equus), E. excelsus Leidy, 1858 (a large and stout-legged equid with a

heavy skull and mandible), E. niobrarensis Hay, 1913 (a large equid with more slender limbs

than E. excelsus as well as a more slender skull and mandible), E.mexicanus (Hibbard) 1955 (a

large equid which according to Azzaroli [12] shares some skull features with species of Equus

from South America), and E. francisciHay, 1915 (a stilt-legged equid).

The analysis of ancient mtDNA is congruent in several respects with the results of the mor-

phological analyses. Ancient mtDNA was successfully extracted, amplified, and sequenced

from specimens belonging to each of the four groups identified in the morphological analyses,

with the exception of group 3. The mtDNA analysis recovers the two main clades identified

previously by Weinstock et al. [13] and which they refer to as the caballine and NewWorld

“stilt-legged” (NWSL) clades. The specimens referred to groups 1 and 2 from which mtDNA

was obtained have sequences that identify them as belonging to the caballine clade. These

results are consistent with the morphology of the enamel pattern as both groups have a cabal-

line tooth morphology (Table 10). The phylogenetic analysis places the specimens from group

2 as stem caballines. The specimens from group 1 fall within the caballine crown group

discussed in the text are indicated by the letters. Tables D and F in S2 File list all of the specimens included in
this analysis.

https://doi.org/10.1371/journal.pone.0183045.g011

Table 10. Summary of the results of the geometric morphometric analyses of the cheek teeth and the Bayesian phylogenetic analysis of ancient
mtDNA.

Group Upper P3/P4 Lower p3/p4 mtDNA Taxonomic
id.

Group
1

Caballine. Deep parastyle-mesostyle and mesostyle-metastyle
valleys, fossettes bucco-lingually compressed, landmark 11
displaced distally, anterior margin of protocone does not extend
mesially

Caballine. Generally deep and U-shaped
linguaflexid, constricted metaconid, and bucco-
lingually compressed metastylid

Caballine E. ferus

Group
2

Caballine. Deep parastyle-mesostyle and mesostyle-metastyle
valleys, fossettes bucco-lingually compressed, landmark 11
displaced distally, anterior margin of protocone extends
mesially

Caballine. Generally deep and U-shaped
linguaflexid, constricted metaconid, and bucco-
lingually expanded metastylid

Caballine E. ferus

Group
3

Non-caballine. Shallow parastyle-mesostyle and mesostyle-
metastyle valleys, fossettes bucco-lingually expanded,
landmark 11 displaced mesially, anterior margin of protocone
does not extend mesially

Non-caballine. Generally shallow and V- or broad
U-shaped linguaflexid, open metaconid, and
relatively rounded metastylid

— E. cedralensis

Group
4

Non-caballine. Relatively shallow parastyle-mesostyle and
mesostyle-metastyle valleys, fossettes sometimes bucco-
lingually expanded, landmark 11 in some specimens displaced
mesially, anterior margin of protocone extends mesially

Non-caballine. Generally shallow and V- or broad
U-shaped linguaflexid, open metaconid, and
triangular metastylid

NWSL E.
conversidens

Four groups are identified (two caballine and two non-caballine) based on the morphology of the occlusal enamel pattern of the third and forth upper

premolars (P3/P4) and the morphology of the metaconid, linguaflexid, and metastylid of the third and fourth lower premolars (p3/p4). Two clades are

recognized (caballine and NewWorld stilt-legged, NWSL) based on the analysis of ancient mtDNA of the hypervariable region I. The last column presents

the taxonomic identifications referred in the main text. Ancient DNA extraction of specimens identified as E. cedralensis failed.

https://doi.org/10.1371/journal.pone.0183045.t010
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forming a distinct, apparently extinct haplogroup to those identified by Achilli et al. [96],

along with specimens from Siberia, Alaska, and other sites in the Yukon Territory. However,

the tree at this level is not well resolved and additional work applying a mitochondrial genomic

approach or analysis of nuclear protein-coding genes is required to validate these patterns. As

a result, we favor a conservative interpretation and regard morphological groups 1 and 2 as

geographical variants of a single widely distributed caballine species.

The equid teeth assigned to group 4 from which mtDNA was recovered fall within the

NWSL clade in the phylogenetic analysis. This result is consistent with the tooth morphology

as specimens in this group have a non-caballine enamel pattern (Table 10). On the other hand,

this result was unexpected as the group 4 specimens from Dry Cave, NewMexico and San

Josecito Cave, northeastern Mexico, are not associated with slender metapodials (e.g., [10, 12,

20, 21, 22]). These results may suggest a certain degree of plasticity in the metapodial propor-

tions of this group. Examination of the PCA graphs of Winans, (Figures 14.6C and 14.6D in

[10]) lends support to this idea and hints at the presence of a geographical cline in which the

degree of metapodial slenderness increases from San Josecito Cave to Natural Trap Cave, with

the specimens from Dry Cave occupying an intermediate position. These graphs also show

that specimens from Natural Trap Cave do not attain the degree of slenderness presented by

other North American Pleistocene equid samples, such as those from Channing, Texas,

referred to E. semiplicatus Cope, 1892, by some researchers [12, 44], and the holotypes of E.

calobatus Troxell, 1915, and E. francisciHay, 1915 [105]. Eisenmann et al. [44] have identified

the two former species as the true North American stilt-legged equids, based not only on the

degree of metapodial slenderness, but also on the presence of unique morphological charac-

ters. A geographical cline was also revealed in the occlusal enamel pattern of the upper P3/P4

by the geometric morphometric analysis. The third Canonical Axis (CV 3) arranged the group

4 specimens from south to north: specimens from northeastern Mexico have negative scores,

whereas specimens fromWyoming have positive scores, with specimens from the American

Southwest occupying an intermediate position (Fig 8).

The results of the morphological and molecular analyses support the presence of two equid

species for the Western Interior of North America during the late Pleistocene, a caballine spe-

cies (morphological groups 1 and 2) and a non-caballine species (morphological group 4). A

third species might be represented by morphological group 3, which has a distinctive enamel

pattern. In both geometric morphometric analyses the first Canonical Variate (CV 1) separates

caballine equids, which show positive scores, from non-caballine equids, which show negative

scores (Figs 7 and 9). The group 3 specimens have the most negative scores in the plot. This

equid is tentatively identified as a separate non-caballine species, however, the recovery and

analysis of ancient DNA is required to test its validity.

4.1 Taxonomic nomenclature and geographic distribution of late
Pleistocene equids from theWestern Interior of North America

The taxonomy of North American Equus is highly confused and its resolution is beyond the

scope of this study, which would require careful re-evaluation of every single holotype. Previ-

ous researchers (e.g., [4, 10]) have lamented that several holotypes consist of isolated teeth or

partial tooth rows and have questioned the diagnostic value of these elements, regarding the

names based on them as nomina dubia. The methodology presented here can be applied to

evaluate many of these holotypes. This new research direction can potentially help to clarify

the nomenclature of North American Pleistocene equids. Until such a study is completed, the

name we use (i.e., Equus cedralensis) for the putative non-caballine species (morphological

group 3 above) is considered provisional.
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The caballine equid species appears to be conspecific with E. ferus Boddaert, 1785, and this

is the name we propose should be assigned to this material. We regard the morphological

differences between the enamel pattern of the caballine specimens from Bluefish Caves (mor-

phological group 1) and the caballine specimens from the other geographic regions (morpho-

logical group 2) as the product of geographic variation. Equus lambei Hay, 1917, is the name

that has been widely applied in the literature for the caballine equid material from Bluefish

Caves (e.g., [54, 55]). Winans [10] suggested that E. lambei might be a junior synonym of E.

alaskae (Hay), 1913, along with the specimens from San Josecito Cave referred as E. conversi-

dens leoni by Stock [20, 21]. The synonymy with E. alaskae may or may not be correct, but the

material from San Josecito Cave is clearly distinct based on the morphological and molecular

analyses reported here. Azzaroli [11, 12] considered E. lambei as a valid species, but thought it

was probably a subspecies of E. niobrarensis Hay, 1913. The caballine equid remains we studied

from Alberta, Natural Trap Cave, the American Southwest, and northeastern Mexico have

been identified under several names including Equus caballus caballus Linnaeus, 1758, E.

caballus laurentius Hay 1913, E. excelsus Leidy, 1858, E. laurentius Hay, 1913, E.mexicanus

(Hibbard), 1955, E.midlandensis Quinn, 1957, E. niobrarensis, and E. scotti Gidley, 1900 [4, 10,

22–24, 26, 27, 29–32]. Extant caballine equids have historically been assigned to two species, E.

caballus Linnaeus, 1758, and E. przewalskii Poliakov, 1881, but several studies point to the

inclusion of E. przewaslkii in E. caballus (e.g., [106–109]). The name E. feruswas proposed by

Gentry et al. [110] to differentiate wild caballines from domestic forms (i.e., E. caballus). The

International Commission on Zoological Nomenclature has approved this proposal [111, 112],

and “implementation of the ruling means that names based on wild populations will continue

to be used for wild species and will include those for domestic forms if these are considered

conspecific” (p. 649 in [112]). We follow this proposal in the present study; however, we point

out that there is still some disagreement about the status of E. ferus as a wild rather than a feral

horse [113].

The non-caballine equid species (morphological group 4) whose ancient mtDNA corre-

sponds to the NWSL clade of Weinstock et al. [13] is referred to Equus conversidens Owen,

1869. This name has been widely used in the literature of North American late Pleistocene

equids, although not without some confusion (see Scott [114], for different morphological

concepts of this species). The morphological and molecular data sets we analyzed for this spe-

cies included several specimens studied by previous authors and which were consistently iden-

tified as E. conversidens, including material from San Josecito Cave (e.g., [11, 12, 20, 21, 114]),

specimens from Dry Cave [22, 32], U-bar Cave [37], Scharbauer Ranch [30], and Blackwater

Draw [31]. Alberdi et al. [27] also report the presence of E. conversidens from Cedral, Mexico;

however, several of the specimens that Alberdi et al. [27] identify as E. cedralensis we identify

here as E. conversidens. The specimens fromWally’s Beach, Alberta, were identified as E. con-

versidens by McNeil [49]; however, this assignment is not supported by the morphological and

molecular analyses of the specimens from this site included in our study. The results show that

the specimens fromWally’s Beach are caballine equids and are, therefore, identified as E. ferus.

The NWSL equid from Natural Trap Cave, Wyoming, has been identified under different

names, including Amerhippus sp., E. alaskae, and Hemionus sp. [10, 43, 44], but our results

suggest that it is not distinct morphologically nor genetically from the NWSL equid of the

American Southwest and Mexico; thus, it is here re-identified as E. conversidens. The same is

suggested by the phylogenetic analysis for the NWSL equid from Beringia. The proposal put

forward by different authors (e.g., [8, 12, 22]) regarding the close phylogenetic affinity of E.

conversidens to South American equids of the subgenus Amerhippus (sometimes regarded as a

distinct genus (e.g., [44])), based primarily on specimens from San Josecito Cave, is not sup-

ported by the molecular analysis. The specimens of Equus (Amerhippus) neogeus cluster well
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within the caballine clade (Fig 11) as it was originally reported by Orlando et al. [98]. Never-

theless, this should be tested further with additional mitochondrial and nuclear DNA data.

Fossil material referred here to Equus conversidens was recognized in four of the five geo-

graphic regions studied. It is well represented in northeastern Mexico (including Cedral and

San Josecito Cave), the American Southwest (i.e., Algerita Blossom Cave, Blackwater Draw,

Dark Canyon Cave, Dry Cave, Lubbock Lake, Quitaque Creek, Salt Creek, Scharbauer Ranch,

and U-Bar Cave), and Natural Trap Cave, Wyoming. This species is much less common in

Alberta, where it was identified based on at least four specimens from the Edmonton area

gravel pits, but not fromWally’s Beach, and it was not found in the material examined from

Bluefish Caves, Yukon. The presence of this species in the Edmonton area gravel pits is further

supported by the association of some of the specimens studied (right and left p2 as well as left

p3) as part of a partial dentary (RAM P98.5.480) in which all of the incisors lack an infundibu-

lum (a funnel-like cup of enamel filled with cementum). Our examination of partial mandibles

and mandibular symphyses with lower incisors from San Josecito Cave (e.g., LACM 18404,

18383, 18802, 120758, 18644) and those identified as E. conversidens from Dry Cave (UTEP

22–955, 26–1064) by Harris and Porter [22] and Harris [32] revealed that all of the incisors

lack an infundibulum. In contrast, the mandibles and partial mandibles we observed with asso-

ciated lower incisors that we assign to E. ferus from Bluefish Caves (e.g., CMHMgVo-2 B3-3-

23, MgVo-2 C3(E)-3-19, MgVo-2 H6-3-7, MgVo-3 85–95, MgVo-3 85–76, MgVo-3 85–64,

MgVo-3 M-9-83), Wally’s Beach (RAMDhPg-8 876.1, DhPg-8 863, DhPg-8 3437.2), the

Edmonton area gravel pits (RAM P97.11.2A), Dry Cave (UTEP 22–1657), Salt Creek (UTEP

34–5), and Scharbauer Ranch (TMM 998–1) have an infundibulum on the first and second

lower incisors and this feature is more variable on the third lower incisors. This pattern is cer-

tainly consistent with the results obtained for the molecular and morphological analyses of the

cheek teeth; nevertheless, the sample size represented by these specimens is not adequate to

fully document the frequency of this morphological trait in each species and further study is

required. Eisenmann [115] has noted that the frequency of infundibula in the lower incisors of

modern equid species can show important intraspecific variation. Moreover, as with other

morphological characters of the enamel pattern of equid teeth, the morphology of the infun-

dibulum changes as the tooth wears down until it completely disappears; therefore, the assess-

ment of this character has to take into consideration the stage of tooth wear.

The taxonomic assignment of the small non-caballine equid (morphological group 3) from

Cedral, northeastern Mexico, and northern Chihuahua, Mexico, here grouped with the Ameri-

can Southwest samples, is not completely clear. Morphologically, it appears to represent a sep-

arate species, but this needs to be validated with the sequencing and analysis of ancient DNA.

Alberdi et al. [27] considered that the small equid from Cedral represents a new species, which

they named Equus cedralensis, but the enamel pattern of the premolars as well as the tooth

dimensions are comparable to those of E. tau Owen, 1869. The maxillary figured and described

by Owen [116] (designated the lectotype of E. tau by Mooser and Dalquest [117]) has the third

premolar damaged, but the fourth premolar shows many of the traits found in the group 3

teeth from Cedral identified in the geometric morphometric analysis: mesostyle and parastyle

not prominent, shallow parastyle-mesostyle valley (the mesostyle-metastyle valley is not pre-

served in Owen’s [116] specimen), and the region of the occlusal enamel corresponding to

landmark 11 displaced mesially (CV1 transformation grid in Fig 7). Other morphological traits

commonly present in the group 3 teeth from Cedral and shared with the cheek teeth figured

by Owen [116] are a straight (flat) lingual border of the protocone and the absence of a pli

caballin. All of the features mentioned above are also present in the holotype of E. francisci fig-

ured by Lundelius and Stevens [105] and Eisenmann et al. [44]. The holotype of E. tau has

been lost [117]; nevertheless, different researchers have assigned material from a variety of
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localities in Mexico and the United States to this species (e.g., [9, 24, 117]), some of which may

or may not correspond to the species described by Owen [116]. Recently, Eisenmann et al. [44]

suggested a partial skull from the Cedazo fossil assemblage, central Mexico, as the neotype of E.

tau. Our examination of this specimen confirmed that the teeth are within the size range of the

group 3 specimens and those figured by Owen [116], but they are in an advanced stage of wear

and the premolars are too worn for reliable comparisons of their enamel pattern with the teeth

in our analyses. The most common morphological concept of E. tau in the literature is that of a

small-sized equid with slender metapodials (e.g., [9, 44]) and, as a result, some researchers have

synonymised E. francisci with E. tau (e.g., [9]). It is not clear, however, whether E. tau possessed

slender metapodials as the material described by Owen [116] was not associated with metapo-

dials or any other postcranial elements. The same is true for the neotype proposed by Eisen-

mann et al. [44]. Although a slender metatarsal of the size range expected for the neotype skull

of E. tau has been recovered from Cedazo [44, 117], its association with the skull cannot be

firmly established as neither possess precise stratigraphic information. Stratigraphic studies at

several of the localities that have produced the Cedazo fossil assemblage identified different fos-

siliferous strata, which range biochronologically from the latest Blancan to the Rancholabrean

NALMAs (early to late Pleistocene) [118, 119]. This work suggests that what was originally

described as the Cedazo local fauna by Mooser and Dalquest [117] actually includes specimens

of different ages. It is, therefore, possible that the proposed neotype skull of E. tau and the small

slender metatarsal are from different strata. According to Alberdi et al. [27], Equus cedralensis

does not possess slender metapodials. Until the exact taxonomic status of E. tau and other small

North American equids (e.g., E. littoralis Hay, 1913; E. achates Hay and Cooke, 1930) is clarified

we provisionally refer to the morphological group 3 equid as E. cedralensis.

Extant equid species are mostly allopatric, except for small areas where two species are

known to coexist (e.g., [120–122]). In contrast to the modern distribution of equids, the fossil

record shows that throughout much of the history of the group in North America the coexis-

tence of two or more species was the norm rather than the exception [104]. This pattern may

have extended into the late Pleistocene. The coexistence of the species identified here as E.

ferus and E. conversidens in some areas of the Western Interior is suggested by stratigraphic

and biochronologic information, with associated radiocarbon dates, from localities such as Dry

Cave [38], U-bar Cave [38], and Blackwater Draw [28, 31]. At Cedral, Mexico, these two equids

co-occur with E. cedralensis [27] and recent paleodietary reconstructions suggest that resource

partitioning may have facilitated their coexistence [123]. The restriction of E. cedralensis to lower

latitudes of theWestern Interior may seem surprising compared to the distribution of E. ferus

and E. conversidens; however, our study evaluated specimens from a paleontologically short time

interval (primarily mid- to late-Wisconsin glacial stage, ca. 50,000 to 10,000 radiocarbon years

BP) and it is possible that this species had a wider distribution at other times. Alternatively, E.

cedralensis may have been a resident of lower latitudes throughout most of its evolutionary his-

tory. Some North American Pleistocene mammals appear to be restricted to southern localities

including pronghorn (Capromeryx spp. and Stockoceros conklingi), gomphotheres (Cuvieronious

spp.), capybaras (Hydrochoerus spp. andNeochoerus spp.), glyptodonts (Glyptotherium spp.),

camelids (Palaeolama mirifica), and pampatheres (Pampatherium mexicanum andHolmesina

spp.) [1–3].

5. Conclusions

Two equid species, Equus ferus and E. conversidens, are identified for the late Pleistocene of the

Western Interior of North America, based on molecular and morphological analyses of the

cheek teeth. A third species, E. cedralensis, is provisionally recognized based exclusively on the
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morphological analyses of the cheek teeth. Equus ferus is a caballine equid that appears to have

been distributed throughout much of the Western Interior of North America. It was identified

from Cedral, Mexico, the American Southwest (e.g., Blackwater Draw, Dry Cave, Isleta Cave

No. 2, Salt Creek, Scharbauer Ranch, and U-Bar Cave), Natural Trap Cave (where it is repre-

sented by relatively few specimens), Alberta (including the Edmonton area gravel pits and

Wally’s Beach site), and the Bluefish Caves, Yukon Territory. Geographic variation in mor-

phology in this species is indicated by statistically different occlusal enamel patterns in the

specimens from Bluefish Caves relative to the specimens from the other geographic regions.

Whether this represents ecomorphological variation and/or a certain degree of geographic and

genetic isolation of these Arctic populations requires further study. Equus conversidens is a

non-caballine equid which was previously identified based on ancient mtDNA as the New

World stilt-legged clade [13]. The assignment to this group by the morphometric and ancient

mtDNA analyses of specimens that are not associated with slender metapodials (e.g., speci-

mens from Dry Cave, NewMexico and San Josecito Cave, northeastern Mexico [10, 12, 20, 21,

22]), may suggest a certain degree of plasticity in the metapodial proportions of this species.

Specimens identified by our analyses as E. conversidens come from northeastern Mexico

(Cedral and San Josecito Cave), the American Southwest (e.g., Blackwater Draw, Dark Canyon

Cave, Dry Cave, Quitaque Creek, Salt Creek, Scharbauer Ranch, and U-Bar Cave), Natural

Trap Cave, and Alberta (a small sample of teeth from the Edmonton area gravel pits). Speci-

mens assigned on morphological grounds to a different non-caballine species are provisionally

identified as E. cedralensis. We were unable to recover ancient mtDNA from teeth assigned to

this species to corroborate its identification as a distinct species. Equus cedralensis appears to

have been restricted during the late Pleistocene to the southern latitudes of the Western Inte-

rior of North America, as the specimens assigned to this species come from Cedral, Mexico,

and the American Southwest (sites located in northern Chihuahua, Mexico).

The analyses of tooth morphology and ancient mtDNA reported in this study have pro-

vided new insights into the taxonomy of late Pleistocene equids from the Western Interior of

North America. Nevertheless, additional work is needed to validate the patterns presented in

our study. Of particular importance is the application of a mtDNA genomic approach to better

resolve the phylogenetic relationships within the caballine and stilt-legged clades. Equally rele-

vant is the morphological and, if possible, genomic assessment of several holotypes that consist

of isolated teeth or partial tooth rows. Another important aspect is to increase the geographic

coverage of the equid sample. Some late Pleistocene morphospecies identified in previous

studies appear to be restricted to areas outside of the Western Interior of North America. For

example, E. occidentalis sensu Merriam, 1913, which is commonly identified in late Pleistocene

sites from the Pacific Coast of North America (e.g., Rancho La Brea, California) is considered

a separate species from the ones described here based on the morphology of the upper P3/P4

premolars [25] as well as the lack of infundibulae on the lower incisors and other cranial char-

acters [11, 12, 124]. Finally, we acknowledge that the temporal coverage of sampling needs to

be increased. All of the specimens studied are late Pleistocene in age, mostly from the mid- to

late-Wisconsin glacial stage (approximately 50,000 to 10,000 radiocarbon years BP). Further

work on these areas will provide a refined understanding of the evolution and extinction of

North American Pleistocene equids.
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23. Alberdi MT, Arroyo-Cabrales J, Polaco OJ. ¿Cuántas especies de caballo hubo en una sola localidad
del Pleistoceno Mexicano? Rev Esp Paleontol. 2003; 18:205–212.

24. Melgarejo-Damián MP, Montellano-Ballesteros M. Quantitative differentiation of Mexican Pleistocene
horses. Curr Res Pleist. 2008; 25:184–186.

25. Barrón-Ortiz CR, Theodor JM. A geometric morphometric study of North American late Pleistocene
equid upper premolars and its potential significance for equid systematics. Curr Res Pleist. 2011;
28:147–149.

26. Marı́n Leyva AH. Caballos del Pleistoceno y su paleoambiente en dos cuencas deMichoacán, México.
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