

This is a repository copy of *Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2-5 and on dialysis.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/120339/

Version: Supplemental Material

Article:

Shroff, R., Wan, M., Nagler, E.V. et al. (12 more authors) (2017) Clinical practice recommendations for native vitamin D therapy in children with chronic kidney disease Stages 2-5 and on dialysis. Nephrology Dialysis Transplantation, 32 (7). pp. 1098-1113. ISSN 0931-0509

https://doi.org/10.1093/ndt/gfx065

This is a pre-copyedited, author-produced version of an article accepted for publication in Nephrology Dialysis Transplantation following peer review. The version of record Volume 32, Issue 7, 1 July 2017, Pages 1098–1113 is available online at: https://doi.org/10.1093/ndt/gfx065.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Vitamin D.tw.	23	Hemodialysis.tw.
2		24	
	Vitamin D2.tw.		Haemodialysis.tw.
3	Vitamin D3.tw.	25	CAPD.tw.
4	Cholecalciferol.tw.	26	CCPD.tw.
5	Colecalciferol.tw.	27	APD.tw.
6	Ergocalciferol.tw.	28	Hemofiltration.tw.
7	or/1-6	29	Haemofiltration.tw.
8	Paediatric.tw.	30	Hemodiafiltration.tw.
9	Pediatric.tw.	31	Haemodiafiltration.tw.
10	Child*.tw.	32	CKD.tw.
11	Infant.tw.	33	CKF.tw.
12	Neonatal.tw.	34	CRD.tw.
13	Adolescent.tw.	35	CRF.tw.
14	or/8-13	36	ESKD.tw.
15	Kidney disease.tw.	37	ESKF.tw.
16	Kidney failure.tw.	38	ESRD.tw.
17	Renal disease.tw.	39	ESRF.tw.
18	Renal failure.tw.	40	or/15-39
19	Renal insufficiency.tw.	41	7 (limited to systematic review)
20	Renal replacement therapy.tw.	42	7 and 14 (limited to systematic review and clinical trial)
21	Dialysis.tw.	43	7 and 14 and 40
22	Pre dialysis.tw.	44	7 and 40 (limited to systematic review and clinical trial)
			7 and 40 (limited to systematic review and clinical trials

Supplemental Table 1 – Search strategy used in the literature review for MEDLINE (Pubmed, 1966 to 1 October 2016)

Supplemental Table 2A – Quality of evidence and strength of the recommendation

	High	А		Level 1	Corresponds to "strong" in
Quality of	Moderate	В	Strength of	LEVELI	GRADE
evidence	Low	С	recommendation	Level 2	Corresponds to "weak or
	Very low	D			discretionary" in GRADE

Supplemental Table 2B – Clinical practice implications of the level of recommendations

Level 1 recommendation can be examined to determine their suitability for use in developing a clinical performance measure. On the other hand, a level 2 grade inherently indicates uncertainty, and future research may provide higher quality evidence or more precise estimates or yield opposing findings.

Level of Strength	Implications						
Lever of Strength	Patients	Clinicians	Policy				
1 ("We recommend")	Most patients would want the recommended course of action; only a small proportion would not	Most patients should receive the recommended course of action	The recommendation can be evaluated as a candidate for developing a policy of performance measure				
2 ("We suggest")	The majority of patients would want the recommended course of action; but many would not	Different choices will be appropriate for different patients	There is a need for substantial debate and involvement of stakeholders				

Supplemental Table 3 - Randomised controlled trials of native vitamin D therapy in children with chronic kidney disease – level of evidence:

Author, year	Sequence generation	Allocation concealment	Blinding of participants	Blinding of personnel	Blinding of outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Funding source
Shroff; 2012 ⁸	Yes	Yes	Yes	Yes	Yes	No	No	No	Research charity

Supplemental Table 4 – Randomised controlled trials of vitamin D_2 vs vitamin D_3 supplementation in children without chronic kidney disease – level of evidence

Author, year	Sequence generation	Allocation concealment	Blinding of participants	Blinding of personnel	Blinding of outcome assessors	Incomplete outcome data	Selective outcome reporting	Other sources of bias	Funding source
Gallo; 2013 ⁸²	Unclear	Unclear	Unclear	Unclear	Unclear	No	No	73% on vitamin D supplement at baseline	Unclear
Thacher; 2010 ⁸⁴	Yes	Yes	Unclear	Unclear	Unclear	No	No	Historic cohort of rachitic children treated with D ₂ used as comparator	Government
Gordon; 2008 ⁸³	Yes	No	No	No	No	No	No	Weekly D ₂ dose is not a direct comparison on a IU per IU basis	Government Research charity

Supplemental Table 5 – Summary of recommendations for native vitamin D therapy in children with chronic kidney disease 2-5D

	CATEGORY	RECOMMENDATION	GRADE				
1	Assessing vitamin D status	We recommend measuring serum 25(OH)D concentration for assessing the vitamin D status of children with CKD 2-5D.					
2	Monitoring vitamin D levels	 We suggest the following schedule for measuring serum 25(OH)D levels in children with CKD stage 2-5D: 6 – 12 monthly depending on CKD stage in children not on vitamin D treatment if normal levels, measure 6 -12 monthly (based on previous 25OHD level and stage of CKD). If vit D supplementation required – check levels after 3 months. If:: normal levels, continue vit D supplements as above and measure levels 6-monthly low levels, consider one repeat course of 'intensive replacement treatment' as described below and repeat levels in 3-months 	2D				
3	Defining target levels of vitamin D	 We suggest that serum 25(OH)D levels are maintained above 75nMol/L (>30ng/ml) in children with CKD stages 2 – 5D. We classify vitamin D status as follows: Sufficiency > 75 nMol/L (>30 ng/ml) Insufficiency 50 – 75 nMol/L (20 – 30 ng/ml) Deficiency 12 - 50 nMol/L (5- 20 ng/ml) Severe deficiency <12 nMol/L (<5 ng/ml) 	2C				
4	Target population	We suggest using native vitamin D supplements for the treatment of vitamin D deficiency in children with CKD stages 2-5D who have serum 25(OH)D concentrations below 75nMol/L. In children with CKD stages 2-3 native vitamin D supplements may be used for the prevention or treatment of secondary hyperparathyroidism.	2B				
5	Type of vitamin D supplementation	We suggest using either vitamin D_2 (ergocalciferol) or vitamin D_3 (cholecalciferol) treatment in children with CKD 2 – 5D to increase serum 25(OH)D levels to the target range.	2D				
6	Treatment schedule for native vitamin. D supplementation	We suggest using a treatment regimen, guided by age and vitamin D concentration, for the prevention and treatment of vitamin D deficiency in children with CKD 2-5D. Mega-dose vitamin D therapy is not recommended.	2C				

		Intensive	e replacement p	hase		
			25(OH)D serum (nMol/L)***	Vitamin D supplementatio n dose (daily)	Monitoring	
		<1 year >1 year**	< 12 12 - 50 50 - 75	600 IU/ day * 8000 IU / day 4000 IU / day 2000 IU / day	 Serum Ca and urinary Ca levels 1-3 monthly based on CKD stage 25(OH)D levels after 3 months 	
		-	ance phase	2000 10 / day		
		<1 year >1 year*	>75****	400 IU / day 1000 - 2000 IU /day based on CKD stage	- 25(OH)D levels 6-12 monthly	
		** Consid *** To con **** If leve	er adjusting dose vert nMol/L to ng Is remain <75nn	e by body size (weigh µ/ml divide by 2.5	mended irrespective of the level of 25(C t or body surface area) es as per the 'Intensive replacement' s leck levels	
Vitamin toxicity	D	120nMol/	L (48ng/ml). Sy	mptomatic toxicity	n is stopped at serum 25(OH)D co from Vitamin D is defined as seru uria and suppressed PTH.	