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The Pi-puck extension board:

a Raspberry Pi interface for the e-puck robot platform

Alan G. Millard1, Russell Joyce2, James A. Hilder1, Cristian Fles, eriu1,

Leonard Newbrook1, Wei Li1, Liam J. McDaid3, and David M. Halliday1

Abstract— This paper presents the Pi-puck extension board
– an interface between the e-puck robot platform and a Rasp-
berry Pi single-board computer that enhances the processing
power, memory capacity, and networking capabilities of the
robot at a low cost. It allows high-level control algorithms,
wireless communication, and computationally expensive oper-
ations such as real-time image processing to be handled by
a Raspberry Pi, while the e-puck’s microcontroller deals with
low-level motor control and sensor interfacing.

Although two similar extension boards for the e-puck robot
platform already exist, they are now out-dated and expensive in
comparison. Our open-source hardware design and supporting
software infrastructure offer an inexpensive upgrade to the
e-puck robot, transforming it into the Pi-puck – a modern and
flexible new platform for mobile robotics research.

I. INTRODUCTION

The e-puck robot [1] was first developed as an educational

platform in 2004 at the École Polytechnique Fédérale de

Lausanne, but was soon adopted as a tool for mobile robotics

research. Thanks to its commercial availability and simple

open-hardware design, the e-puck continues to be used by

many institutions across the world in various fields including

evolutionary robotics [2], reinforcement learning [3], and

swarm robotics [4]. The platform also benefits from being

supported by a number of simulation tools such as Enki [5],

Webots [6], V-REP [7], and ARGoS [8].

Despite its small size, the base e-puck (with jumper board

connected) features an array of sensors and actuators: two

stepper motors, eight infra-red (IR) proximity sensors, a 3D

accelerometer, three microphones, a speaker, a CMOS colour

camera (640x480 pixel resolution), an IR remote receiver,

and a number of LEDs. The e-puck also has a Bluetooth ra-

dio, which allows control programs to be wirelessly uploaded

to the robot, and facilitates debugging via remote monitoring.

The success of the e-puck robot platform is partly at-

tributable to the fact that extension boards, which connect

to the robot via its expansion sockets, can be developed by

third-parties. To date, a number of extension boards have

been designed, including a ground sensor and colour LED

communication turret [1], and range-and-bearing turret [9].

Although such extension boards augment the robot’s sens-

ing and actuation capabilities, the base e-puck has limited
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computational resources and networking abilities, thus re-

stricting its usefulness as a research platform. The e-puck’s

dsPIC30F6014A microcontroller has just 8 KB RAM and

144 KB flash memory, and is clocked at a slow 60 MHz. This

is particularly problematic for image processing applications,

because only small segments of the on-board camera images

can be stored in memory, and they can only be processed at

low frame rates. Also, it is often necessary to log the robot’s

internal state and/or sensor data, for real-time monitoring

and post-experiment analysis. In single-robot experiments,

this can be achieved by connecting the e-puck to a computer

via Bluetooth, but inherent constraints of the communication

protocol cause problems for swarm-scale experiments.

In this paper we present the Pi-puck extension board – a

novel hardware design that interfaces the e-puck robot with

the popular Raspberry Pi single-board computer [10]. This

extension board overcomes the aforementioned limitations of

the e-puck by improving its computation, memory, network-

ing, storage, and image processing capabilities. The open-

source hardware design and supporting software infrastruc-

ture described in this paper offers a cheap and simple way

of upgrading e-puck robots, which many institutions already

own, transforming them into Pi-puck robots that have greater

utility as a platform for both research and education.

The rest of this paper is structured as follows. In Section II

we discuss existing extension boards for the e-puck robot

that serve a similar purpose to the Pi-puck extension board,

before motivating our use of the Raspberry Pi in Section III.

Section IV describes the hardware design of the extension

board, and how it interfaces with the e-puck hardware,

while Section V details the supporting open-source software

infrastructure we have developed. Potential applications of

the extension board are discussed in Section VI, before

closing with concluding remarks in Section VII.

II. RELATED WORK

Two similar extension boards for the e-puck robot platform

are known to exist – the Linux extension board developed

at the Bristol Robotics Laboratory [11] (hereafter referred

to as the BRL Linux extension board), and the Gumstix

Overo COM turret [12]. Both of these boards run the Linux

operating system, which confers a number of benefits. Firstly,

the e-puck’s dsPIC microcontroller can only be programmed

in low-level C or assembly code, whereas a Linux platform

can be programmed using many high-level languages such

as C++ and Python. Moreover, the Linux operating system

allows libraries and packages to be easily installed that



can enhance user applications. A Linux environment also

facilitates the use of high-level Wi-Fi protocols, allowing for

remote terminal access to the robot via ssh, or file transfer

via scp, and lifts the network topology constraints imposed

by Bluetooth.

A. BRL Linux extension board

The BRL Linux extension board features an Atmel AT91

System-on-Chip (SoC), with an ARM processor that runs

in parallel with the dsPIC microcontroller on the e-puck

motherboard. Synchronous communication between the two

is achieved via an SPI bus, allowing high-level control

algorithms to be executed on the ARM processor. The

extension board also provides the e-puck with a high-level

network interface through the use of a USB Wi-Fi adapter.

In addition, the board connects directly to the e-puck camera

via the Atmel Image Sensor Interface and I2C bus, so that

full resolution images (640x480 pixels) can be processed,

thus overcoming some of the image-sensing limitations of

the base e-puck platform.

Since its inception, the BRL Linux extension board has

proven to be a useful addition to the e-puck robot – support-

ing research into evolutionary adaptation [13], behavioural

imitation [3], ethical robotics [14], and fault detection [15].

Its success demonstrates the utility of Linux-enabled robotic

platforms, and has contributed to the longevity of the e-puck

as a tool for scientific research.

Unfortunately, the hardware is now quite dated compared

to modern standards – the ARM9 processor housed within

the SoC only runs at 180 MHz, and the board features just

64 MB SDRAM. Also, the Linux kernel must be customised

to support the extension board’s hardware. Liu and Win-

field [11] published their own modifications to kernel version

2.6.26 (released in 2008) for use with the board, but sadly the

software is no longer actively maintained, so has fallen far

behind the latest kernel version (4.12 at the time of writing).

Similarly, the EmDebian Linux distribution that the board

originally used was discontinued in 2014, so the software

infrastructure provided is now also stuck in the past.

B. Gumstix Overo COM turret

In contrast to the integrated BRL Linux extension board,

the Gumstix Overo COM turret mostly acts as an interface

between the e-puck and a Gumstix Overo computer-on-

module (COM) [16], which is a self-contained single-board

computer. The turret is compatible with all Gumstix Overo

COM models, but is sold with an EarthSTORM COM that

features an ARM Cortex-A8 clocked at 800 MHz, and has

512 MB DDR. It is therefore significantly more powerful

than the BRL Linux extension board.

Like the BRL Linux extension board, the Gumstix Overo

COM turret has enhanced the e-puck’s usefulness as a

research platform, and has been used for the automatic

design of robot controllers [17], implementing virtual sensors

[18], and running ARGoS controllers on real robots [19].

However, it suffers from similar software maintenance issues

– the turret connects to the e-puck’s camera via the OMAP

Camera Interface Subsystem, necessitating customisations to

the Linux kernel to provide drivers for the camera sensor.

GCtronic published the requisite modifications to kernel

version 2.6.32 (released in 2009), but have not kept up with

newer releases of the Linux kernel.

Being stuck with an outdated operating system makes it

difficult to install versions of packages and libraries that

modern software is dependent on, or drivers for contem-

porary hardware such as USB Wi-Fi adapters produced in

recent years. While it is certainly possible to modify the latest

version of the Linux kernel to work with old hardware, it is a

laborious process that requires specialist knowledge of kernel

customisation and driver development. Major revisions of

Linux that significantly reorganise the structure of the kernel

exacerbate the problem, as they preclude straightforward

incremental modifications. Unless the creators of a Linux

extension board (or the research community) are able to

actively maintain the necessary customisations to the Linux

kernel and apply them to new releases, the system will

inevitably become outdated.

III. RASPBERRY PI

Instead of designing another integrated solution like the

BRL Linux extension board using modern hardware com-

ponents, we have developed the Pi-puck extension board to

interface an existing single-board computer with the e-puck,

in the spirit of the Gumstix Overo COM turret. Although

many different single-board computers exist, we have opted

for the Raspberry Pi because it is very popular and well-

supported. Since its introduction in 2012 various models have

been released, including the Raspberry Pi Zero W, which we

have specifically chosen for use with the Pi-puck platform

due to its low cost, minimal power consumption, integrated

wireless capabilities, and small physical footprint.

The Raspberry Pi Zero W uses a Broadcom BCM2835

SoC that houses a 1 GHz ARM11 processor, and has 512 MB

RAM, so is similar in specifications to the Gumstix Overo

EarthSTORM COM. However, a major advantage of the

Raspberry Pi Zero W is its MIPI Camera Serial Interface

that supports the Raspberry Pi camera module v2, which uses

a Sony IMX219 8 megapixel sensor. In combination with

the on-board GPU, this makes the Raspberry Pi Zero W a

superior hardware platform for real-time image processing.

It also features built-in 802.11n Wi-Fi and Bluetooth 4.1, so

USB adapters are not required for wireless communication.

Like the BRL Linux extension board and Gumstix Overo

COM turret, the Raspberry Pi uses a microSD card for

non-volatile storage, upon which the Linux kernel and root

file system reside. One of the major advantages of using

the Raspberry Pi is that the Raspberry Pi Foundation ac-

tively maintains an up-to-date version of the Linux kernel

that is customised to support their single-board computers,

thus freeing us from the burden of modifying the kernel

for our own hardware. The Pi-puck runs Raspbian Jessie

Lite (currently on kernel version 4.9), which is a headless

Debian-based distribution of the Linux operating system that

provides hardware floating-point support.
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Fig. 1. Overview of the interfaces between the Raspberry Pi, Pi-puck extension board, and e-puck hardware. Dashed lines denote optional connections.

IV. PI-PUCK EXTENSION BOARD

The Pi-puck extension board provides connections be-

tween a Raspberry Pi and an e-puck, using a format like

other extension ‘turret’ boards. All of the necessary circuitry

is included to effectively support a Raspberry Pi, and allow it

to control the robot. The hardware design files necessary for

other institutions to manufacture their own extension boards

are open-source, and freely available online [20].

A. Overview

The extension board is the same diameter as the e-puck’s

main circuit board, with three screw holes allowing it to be

mounted above the robot and any other extension boards, and

connects to the e-puck through the two 40-pin expansion

sockets on its base. The Raspberry Pi Zero W connects to

the top of the extension board via a 40-pin, 2.54 mm pitch

header, which suspends it horizontally above the robot, with

its SoC, Micro-USB and Mini-HDMI sockets, and camera

connector on top, as shown in Figure 2.

The board is designed to be used as the topmost board

in a stack of extension turrets that sit above the e-puck, and

therefore mimics some of the features of the standard jumper

board that is usually placed at the top of the stack, including

a speaker and a dsPIC reset button. All unused signals on the

e-puck’s JE1 expansion connector (everything except UART

RS RX/TX) are also bridged across, allowing the dsPIC to

continue to use them as if the jumper board were connected.

Although our extension board is primarily intended to be

used with the Raspberry Pi Zero W, any board that conforms

to the same pin-out as the standard 40-pin Raspberry Pi con-

nector will be compatible. For example, the more powerful

Raspberry Pi 3 may be used, or even the ZynqBerry [21],

which would augment the e-puck with an FPGA for spe-

cialised hardware acceleration. We have designed a separate

PCB that allows these larger boards to be mounted vertically

on top of the robot, without any need to modify their default

pin headers, as shown in Figure 2.

B. Communication interfaces

The Pi-puck extension board enables the Raspberry Pi

to communicate with the dsPIC microcontroller and the

e-puck’s other hardware, as well as additional extension

boards via I2C, SPI and UART serial connections, as illus-

trated in Figure 1.

The I2C and SPI buses allow the Raspberry Pi to act as a

master device for sending commands to, and reading data

from, slave software on the dsPIC. Both connections are

provided so that the user may choose whichever commu-

nication method best suits their needs. Through the I2C bus,



the Raspberry Pi can directly interface with the LSM330

accelerometer/gyroscope on e-puck HWRev 1.3, the e-puck’s

camera configuration registers, and other extension boards

such as the ground sensor [1] and range-and-bearing [9]

boards. The I2C and SPI buses are broken out to a 12-pin

PicoBlade connector, allowing additional peripherals to be

connected, or for easy access when debugging signals.

For simple asynchronous communication, such as that

used by the ARGoS controllers described in Section V, 3.3 V

UART signals can be sent between the Raspberry Pi and

the dsPIC. Transmit and receive UART signals from both

devices are broken out to adjacent 2.54 mm pitch header pins

on the extension board, which can either be connected to

external hardware for monitoring and debugging, or bridged

together with jumpers to facilitate communication between

the Raspberry Pi and dsPIC. These pins supplant the RS-232

UART header on the base e-puck board.

C. Power circuitry

The Raspberry Pi is powered from the Pi-puck extension

board using the 5 V power pins on its 40-pin header. Due

to the low energy consumption of the Raspberry Pi Zero W,

the entire system can be powered from the e-puck battery

without any need for external cables or batteries. The user

can control and monitor the power supply to the Raspberry

Pi, independently to that of the e-puck, via the extension

board’s power switch and LEDs.

1) Voltage regulators: Like the Gumstix Overo COM

turret, the voltage of the e-puck battery is stepped-up to a

regulated 5 V supply, in order to reliably power the Raspberry

Pi. The voltage regulator circuitry is controlled by the

ENABLE LDO signal from the e-puck, so power will be shut-

off if the battery voltage falls below a safe level. A simpler

alternative would be to attach the Raspberry Pi directly to

the e-puck battery power, but this would cause it, and any

attached USB devices, to operate below their rated voltages,

potentially causing them to malfunction.

The Pi-puck extension board also features a regulated

3.3 V supply (independent to that of the Raspberry Pi) for

powering its own hardware, which we have broken out to

the 12-pin PicoBlade connector, along with ground and 5 V

connections, so that auxiliary peripherals may be powered.

2) Battery voltage monitoring: The Pi-puck extension

board features an analogue-to-digital converter (ADC) that

allows the Raspberry Pi to monitor the voltage of the e-puck

battery, and/or that of an auxiliary battery. This ADC is an

I2C device, so the e-puck’s dsPIC may also communicate

with it directly via the I2C bus to monitor the battery volt-

ages, if desired. We have broken out two more ADC inputs,

with 3.3 V and ground, to a 4-pin PicoBlade connector, so

that further analogue signals can be monitored.

The BATT LOW signal from the e-puck’s battery control

circuitry can optionally be connected to a GPIO pin on the

Raspberry Pi, to allow basic power monitoring from software

on the ARM without needing to monitor the voltage by

polling the ADC. This gives the user a way to easily detect

when the e-puck determines its battery to be ‘low’ (below

3.3 V), allowing a graceful Linux shut-down to be performed

before the power is cut off, as explained in Section V.
3) Auxiliary power connection: In addition to powering

the Raspberry Pi from the e-puck battery, an auxiliary battery

can be connected to the input of the voltage regulator via a

standard 2-pin JST connector on the Pi-puck extension board,

as shown in Figure 2. This feature can be used to provide

power-hungry boards such as the Raspberry Pi 3 with more

current than the e-puck can supply, or simply to decrease

load on the e-puck battery for longer experimental runs.

A dedicated chip is used to monitor the voltage of the

auxiliary battery, and generates a BATT LOW signal when the

voltage drops below a certain threshold. There is no need for

another explicit ENABLE LDO signal, as the voltage regulator

will automatically turn off its output when the voltage of

the auxiliary battery drops below a safe level. The extension

board is designed such that the user may switch the voltage

input, ENABLE LDO signal, and BATT LOW signal between

the e-puck or auxiliary power supplies using a set of three

jumpers positioned beneath the Raspberry Pi.

D. LEDs and DIP switches

The extension board features eight system status LEDs,

as shown in Figure 2. The 5 V and 3.3 V power LEDs are

connected to the outputs of the two voltage regulators, while

another LED displays the status of the BATT LOW signal that

is being sent to the Raspberry Pi from either the e-puck or

the auxiliary battery controller. The remaining five LEDs are

directly connected to GPIO pins on the Raspberry Pi, four

of which are configured in software to display microSD card

activity, Wi-Fi transmit and receive status, and a heartbeat

signal once Linux has booted. The behaviour of the final

LED is left for the user to define.

A set of four system control DIP switches is also directly

connected to GPIO pins on the Raspberry Pi. We provide

scripts that configure the LEDs and DIP switches for system

control functionality (as described in Section V), but the user

may configure them to perform other functions if desired.

In addition to the system LEDs and DIP switches, a further

four user LEDs and DIP switches are connected to the

Raspberry Pi via a GPIO expander, to provide additional

input and output signals. The GPIO expander is an I2C

device, so these LEDs and switches can also be interfaced

with the e-puck’s dsPIC microcontroller via the I2C bus.

E. OLED display and menu controls

The Pi-puck extension board features a 96x16 pixel OLED

display (shown in Figure 2), which can be used to provide

feedback to the user. It can be configured via the I2C bus

to display information such as the ID of the robot, the IP

address of the Raspberry Pi, the voltage of the e-puck or

auxiliary batteries (read via the ADC), or real-time sensor

readings, for example. The adjacent navigation switch and

two push buttons can be used in conjunction with the display

to implement a simple menu system. The user may then use

these controls to select the information to be displayed, or

even choose between different control programs stored on

the microSD card.
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F. Speaker

The PWM audio output of the Raspberry Pi is connected

to a speaker on the extension board via an audio amplifier,

so that the user can easily play sound directly from Linux.

This uses the same audio output as the 3.5 mm connector

on a full-sized Raspberry Pi, allowing the standard analogue

audio driver to be used. Alternatively, the speaker can be

driven by the the e-puck’s audio codec, in order to mimic

the functionality of the jumper board. The user can switch

between these two input sources with jumpers located be-

neath the Raspberry Pi, as shown in Figure 2.

G. Long-range distance sensors

Like the Gumstix Overo COM turret, the Pi-puck ex-

tension board optionally features two long-range distance

sensors positioned at the front of the robot. We use VL53L0X

time-of-flight sensors that emit pulses of IR laser light to

measure the distance to the nearest surface. These sensors

interface with the Raspberry Pi via I2C, and can measure the

distance of objects up to 2 m away. This allows the Pi-puck to

detect obstacles at a far greater distance than is possible with

the e-puck’s IR proximity sensors, or to construct an internal

map of its surroundings by taking repeated measurements

from a series of different positions and orientations.

H. Power consumption

To assess the power consumption of the Pi-puck platform,

a bench power supply was used to provide a fixed 4.2 V to the

battery connector of an e-puck that had a Pi-puck extension

board and Raspberry Pi Zero W attached. The total current

draw of the system was then measured while various tasks

were performed on the Raspberry Pi, with the base e-puck

robot in three different states of operation – off, on (idle), and

moving while performing simple obstacle avoidance. The

results from these tests are presented in Table I.

The current draw when the e-puck is turned off demon-

strates the power consumption of the Pi-puck extension

board and Raspberry Pi Zero W in isolation. The current

draw when the e-puck is idle corresponds to best-case

power consumption for the Pi-puck, while figures for when

the e-puck is performing obstacle avoidance represent the

expected current draw in a more realistic use-case. When

the e-puck is moving, the stepper motors account for the

majority of the power consumption (around 450 mA com-

bined), causing the base e-puck current draw to outweigh

that of the Pi-puck extension in all but the most demanding

scenarios (for example, streaming video).

The Raspberry Pi Zero W was considered to be idle once

it had finished booting into Raspbian, and was connected

to Wi-Fi except where indicated. The difference in current

draw between an idle state with Wi-Fi off and one with Wi-

Fi on shows that the wireless hardware can incur around a

40 mA overhead simply when enabled and connected to an

access point. With the CPU at maximum utilisation, up to

an additional 160 mA is used compared to when it is idle.

The power consumed by transmitting and receiving data

over Wi-Fi was tested using Linux’s netcat utility to

send and receive packets via UDP. As shown in Table I,

receiving data draws very little current in comparison to idle.

Conversely, transmitting consumes a lot of power, due to the

high CPU utilisation caused by constructing packets to send.

The power consumption of the Raspberry Pi camera mod-

ule and GPU were also tested by recording a 1080p H.264

video stream to the microSD card, using the raspivid

command. This drew more current than the CPU utilisation

test, although CPU usage was not at 100% while recording

video. As a final power stress-test, a 1080p H.264 video

from the camera was streamed via HTTP over Wi-Fi to a

remote computer using VLC, causing very high usage of

CPU, GPU and network, as well as powering the camera

module. Predictably, this consumed more power than any

other test, but the e-puck battery is still able to provide

sufficient current to allow high-quality video to be streamed

for off-board processing, if necessary.

In addition to measuring the instantaneous current draw

under various conditions, we tested the battery life of a

standard e-puck robot versus the Pi-puck. An e-puck robot

fitted with a 1600 mAh battery performing simple obstacle

avoidance (continually driving) will survive for approxi-

mately 210 minutes. Running the same experiment with the



TABLE I

POWER CONSUMPTION OF THE PI-PUCK WITH A RASPBERRY PI ZERO W. VALUES ARE IN mA.

Off Idle (Wi-Fi off) Idle Max CPU UDP transmit UDP receive Recording video Streaming video

e-puck off 0 160 200 360 430 220 430 665

e-puck idle 110 260 300 460 520 310 540 745

e-puck moving 560 700 715 875 960 750 965 1210

Pi-puck extension board and Raspberry Pi Zero W attached,

while the Raspberry Pi is connected to Wi-Fi but otherwise

idle, the system lasts for approximately 130 minutes.

If an auxiliary battery is used, the Raspberry Pi and

other extension board peripherals will run on their own

power source and will not drain the e-puck battery. Although

this will increase the longevity of the e-puck battery, the

Pi-puck’s lifespan will remain limited by the maximum

battery life of the base e-puck.

While the power consumption figures presented here are

limited in scope, they are comparable to those quoted for the

BRL Linux extension board [11] and Gumstix Overo COM

turret [12]. Although the actual power usage and battery

life will vary depending on the specific e-puck and battery

used, the application, and many other factors, they offer an

indication of what can be expected when using a Pi-puck

robot compared to the standard e-puck platform.

I. Cost

A major advantage of the Pi-puck extension board is

that the production cost is far lower than the retail price

of the Gumstix Overo COM turret, which is approximately

£640 [22]. The cost is more comparable to that of the BRL

Linux extension board, which had a unit cost of £80 (based

on out-sourcing the manufacture of 50 boards) [11].

We have assembled our boards in-house using PCBs

produced by Eurocircuits [23], who charge £35.21, £12.30,

£8.08, or £4.57 per board for batches of one, five, ten, or

thirty boards, respectively. The components that are soldered

onto each PCB cost around £40 per board. However, many

of them are optional and may be omitted to cut costs.

In addition to the cost of manufacturing the extension

board, the user must also purchase a Raspberry Pi Zero W

(available for £9.60), and a microSD card (recommended

minimum capacity of 4 GB) from which the Linux operating

system runs. Finally, if desired, the official Raspberry Pi

camera module can be purchased for £21.

Note that these are only indicative costs – the actual

costs will vary depending upon the suppliers and scale of

production. However, a single complete extension board

with all of the necessary peripherals (including the camera

module) can be constructed for around £110, excluding the

cost of labour for assembly.

V. SOFTWARE INFRASTRUCTURE

In addition to the hardware design, we also provide an

open-source software infrastructure [20], to make it easier

for other users to get started with the extension board.

This includes the files required to support the hardware,

and example code for controlling the e-puck robot from the

Raspberry Pi in different ways.

A. Hardware support

As discussed in Section III, there is no need to modify the

Linux kernel or root file system to support the Raspberry Pi

hardware, as this is already handled by the Raspbian Linux

distribution provided by the Raspberry Pi Foundation. How-

ever, some optional software customisations can be made to

fully utilise the hardware interfaced with the Raspberry Pi.

For example, although the user-programmable LEDs and DIP

switches on the Pi-puck extension board can be interfaced

with directly as generic I2C or GPIO devices via the sysfs

pseudo file system, device tree overlays can be used to

associate them with specialised Linux kernel drivers.

We provide an example device tree overlay that associates

the status LEDs with the leds-gpio kernel driver, and

configures them to display system status information, as de-

scribed in Section IV. Similarly, we include another example

device tree overlay that associates the DIP switches with

the gpio-keys kernel driver, causing them to generate

keyboard events when they change state.

Alternatively, the state of the DIP switches can simply

be continually monitored in software. We provide a sample

Python script that triggers a graceful Linux shut-down when

one of the DIP switches is set to the on position, which is use-

ful when remote terminal access to the robot is unavailable.

A second Python script is used to enable/disable the getty

service on the Raspberry Pi UART via another DIP switch,

so that the user can alternate between serial terminal access

to the Raspberry Pi, and allowing the dsPIC to communicate

with the Raspberry Pi via the UART.

As discussed in Section IV, the ENABLE LDO signal will

cut power to the Raspberry Pi when the battery is critically

low, so we also provide a Python script that monitors the

BATT LOW signal, and initiates a graceful Linux shut-down

before this happens to prevent corruption of the file system

on the microSD card.

Further device tree overlays are used to remap the PWM

output of the Raspberry Pi to the GPIO pins connected to

the audio amplifier, to set up the display navigation controls,

and to associate the ADC with a kernel driver. We provide

sample code that demonstrates how to interact with these

devices, and how to communicate with the VL53L0X long-

range distance sensors and OLED display via I2C.

The example device tree overlays and Python scripts may

simply be copied to the appropriate locations on the microSD

card, so are very easy to customise and update.

B. Robot Operating System

ROS (Robot Operating System) [24] is an open-source

collection of libraries and tools designed to facilitate the

development of software for robot platforms. Its architecture



comprises a distributed network of processes (called nodes)

that can be designed and developed in isolation and then

integrated at run-time, thus encouraging code re-use within

the robotics research community.

Both Python and C++ ROS drivers already exist for the

base e-puck platform, which provide a hardware abstraction

layer for the robot’s sensors and actuators. This allows robot

controller code to be written in a high-level language, and

enables easy integration with other ROS nodes. These drivers

comprise firmware for the dsPIC that sends sensor data via

Bluetooth to a desktop PC running a ROS node, which

publishes the data as a ROS topic. The ROS node also

subscribes to a ROS topic that receives actuator commands,

and forwards them to the dsPIC.

By interfacing a Raspberry Pi with the e-puck, we are

able to run this ROS node directly on the Linux-enabled

robot, rather than on a separate machine. We have ported

the C++ driver developed by GCtronic [25] to work with our

extension board, such that the ROS node communicates with

the dsPIC directly through the UART, instead of remotely

via Bluetooth. This ROS node may then integrate with

other nodes running on separate machines, via Wi-Fi. To

demonstrate the usefulness of this software infrastructure, we

provide example code that uses the rviz and gmapping

ROS nodes to build a 2D occupancy grid from IR proximity

sensor data collected by the e-puck robot.

C. ARGoS controllers

ARGoS [8] is a multi-robot simulator that is widely-

used within the swarm robotics research community, and has

built-in support for the e-puck robot platform. Garattoni et

al. [19] have recently extended this support to allow ARGoS

controllers to be executed on real e-pucks that are fitted with

a Gumstix Overo COM turret. This software infrastructure

is immensely beneficial, as it allows an experimenter to

quickly prototype robot controller code in simulation, and

then deploy it to real robot hardware without modification.

In order to reap the same benefits, we have ported this

software infrastructure to run on e-puck robots fitted with

our Pi-puck extension board. The ARGoS controller code

(written in C++) runs under Linux, and communicates with

slave firmware running on the dsPIC via the UART. Like

ROS, this provides a hardware abstraction layer for the

e-puck’s sensors and actuators, allowing controller code to

be written at a higher level than can be achieved when

programming the dsPIC directly.

VI. APPLICATIONS

The Pi-puck platform’s combination of capable hardware

and the Linux operating system facilitates the implementa-

tion of useful experimental infrastructure, including: remote

operation, data logging for real-time monitoring and post-

experiment analysis, integration with a tracking system for

the implementation of virtual sensors, and inter-robot com-

munication via Wi-Fi, for example.

In addition, there are a few applications that the Pi-puck

extension board is better-suited to than the BRL Linux

extension board and Gumstix Overo COM turret.

A. Image processing

While the e-puck camera’s parallel interface is incom-

patible with the Raspberry Pi hardware, the Raspberry Pi

features a more modern serial camera interface that supports

higher quality sensors, as discussed in Section III. Thanks

to hardware acceleration from the on-board GPU, use of the

Raspberry Pi camera module incurs little CPU overhead. If

desired, the e-puck camera can still be used via the dsPIC.

The Sony IMX219 sensor can capture still images up

to a resolution of 8 megapixels (3280x2464), or video

at 1080p (1920x1080 pixel resolution). Processing images

of such a high resolution in real-time is computationally

expensive, and may be beyond the capabilities of the

Raspberry Pi Zero W, depending on the application. How-

ever, images can be efficiently downscaled using the on-

board GPU before being processed, to reduce computational

expense. Alternatively, compressed video can be streamed to

an external machine via Wi-Fi for off-board processing, the

results of which can be transmitted back to the Pi-puck to

provide feedback to a control program. If intensive on-board

image processing is absolutely necessary, a Raspberry Pi 3

may be used with the Pi-puck extension board to provide

more computational power.

The Raspberry Pi camera module may be mounted in a

front-facing configuration, or combined with an appropriate

lens or mirror to produce an omnidirectional field of vision.

Omnidirectional images can either be unwrapped in real-

time to create a 2D panorama, or processed directly for

simple range-and-bearing calculations, using libraries such

as OpenCV [26]. Additionally, the high-quality image sensor

allows fiducial markers such as ArUco tags [27] to be

decoded at a greater distance than would be possible with the

e-puck’s low-resolution camera, providing the Pi-puck with

the ability to uniquely identify objects in its environment.

B. Hardware acceleration

The Raspberry Pi’s VideoCore IV GPU comprises 12

vector processors called Quad Processing Units (QPUs),

offering the possibility for hardware acceleration via the

exploitation of GPGPU. Although the Raspberry Pi GPU

is not supported by OpenCL, other GPGPU programming

environments are available. For example, QPULib [28] is a

programming language and compiler for the Raspberry Pi

QPUs that is implemented in C++, and PyVideoCore [29] is

a Python library that attempts to achieve a similar goal.

This form of hardware acceleration could be used to

efficiently implement on-board evolutionary algorithms [30]

or artificial neural networks [31] in parallel. It would be par-

ticularly beneficial for accelerating the implementation of on-

board simulations, which are computationally expensive, but

have been shown to be useful for embodied evolution [32],

prediction of robot behaviour [14], and fault detection [33].

Poulding [34] demonstrated that GPGPU could be used to

execute several parallel instances of a low-fidelity on-board

robot simulator, allowing many repeat runs to performed

in real-time for such applications. Jones et al. [35] later



showed that GPGPU could also be used to accelerate high-

fidelity simulations on low-power GPU chips for mobile

robot platforms. The Raspberry Pi 3 GPU is clocked at a

higher speed than that of the Raspberry Pi Zero W, so could

potentially be used in conjunction with the Pi-puck extension

board to produce similar results.

Hardware acceleration could also be achieved through the

use of an FPGA, with hardware such as the ZynqBerry [21],

as mentioned in Section IV. Custom cores for acceler-

ating specific algorithms could be created in a hardware

description language, or using technologies such as OpenCV

through Xilinx Vivado High-Level Synthesis [36] for image

processing tasks.

VII. CONCLUSIONS

The Pi-puck extension board presented in this paper can

be used for research into single-robot, multi-robot, or swarm

robotic systems. The board interfaces the e-puck platform

with a Raspberry Pi single-board computer, which offers a

modern and well-supported alternative to existing hardware

designs that allow the robot to run Linux. Our open-source

hardware and software infrastructure provide a cost-effective

and convenient upgrade that breathes new life into the

e-puck platform, transforming it into the Pi-puck, which has

enhanced utility as a tool for experimental robotics research.

The prototype hardware presented in this paper will con-

tinue to be refined as it is used for education and research, in

order to further the Pi-puck’s usefulness as a robot platform.

The latest version of our hardware design and supporting

software infrastructure can be found on our website [20].
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