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Non-parametric directionality measures for time series and point

process data.∗

David M. Halliday

Department of Electronics, University of York

York, YO10 5DD, UK

david.halliday@york.ac.uk

The need to determine the directionality of interactions between neural signals is a key
requirement for analysis of multichannel recordings. Approaches most commonly used are
parametric, typically relying on autoregressive models. A number of concerns have been
expressed regarding parametric approaches, thus there is a need to consider alternatives.
We present an alternative non-parametric approach for construction of directionality mea-
sures for bivariate random processes. The method combines time and frequency domain
representations of bivariate data to decompose the correlation by direction. Our framework
generates two sets of complementary measures, a set of scalar measures, which decompose
the total product moment correlation coefficient summatively into three terms by direction
and a set of functions which decompose the coherence summatively at each frequency into
three terms by direction: forward direction, reverse direction and instantaneous interac-
tion. It can be undertaken as an addition to a standard bivariate spectral and coherence
analysis, and applied to either time series or point-process (spike train) data or mixtures of
the two (hybrid data). In this article we demonstrate application to spike train data using
simulated cortical neurone networks and application to experimental data from isolated
muscle spindle sensory endings subject to random efferent stimulation.

Keywords: Directionality; Coherence; Non parametric; Time series; Point process; Net-
works; Granger causality

1. Introduction

In many scientific fields there is a need to extract information from multivariate time-

series or point-process data that can provide insight into the underlying dynamics of

the system under study. The field of networks and network theory (Newman, 2010)

has emerged in recent years as an approach that has broad applicability, where a

graphical network (Whittaker, 1990) is used to represent the data, with individual

time series or point processes as nodes in the network and the pattern of interac-

tions as edges (or links) in the network. This approach has been applied to genetic

regulatory networks (Karlebach and Shamir, 2008; Crespo et al., 2012) metabolic

networks (Jeong et al., 2000), man made networks (Carvalho et al., 2009) and neu-

ronal networks using neuroimaging (Rubinov and Sporns, 2010; Kaiser, 2011) and
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electrophysiological (Medkour et al., 2009) data sets. The field of network theory

provides a range of tools to classify the network structure (Newman, 2010; Rubinov

and Sporns, 2010), which takes as the starting point the adjacency matrix in binary

form describing the pattern of interactions between the time-series or point-process

data.

The first step in applying network theory is to establish the pattern of inter-

actions between the nodes (time-series or point-processes). In application to multi-

variate neural data, two classes of networks are used, these are directed and undi-

rected networks, often referred to as functional and effective connectivity graphi-

cal networks (Rubinov and Sporns, 2010). Undirected networks are typically based

on measures of correlation between pairs of variables (Rubinov and Sporns, 2010;

Kaiser, 2011) although partial correlation has also been used (Rosenberg et al., 1998;

Salvador et al., 2005; Halliday, 2005; Medkour et al., 2009). The most commonly

applied correlation measures are non-parametric using time and frequency domain

measures of correlation (Medkour et al., 2009; Rosenberg et al., 1998, 1989)

Directed networks which measure the effective connectivity are concerned with

cause-and-effect, i.e. establishing directionality or causal effects in the network (Ru-

binov and Sporns, 2010). Approaches typically adopted here are parametric, these

rely on a model to describe the underlying interactions. Granger (1969) introduced

the concept of using residual variances to determine cause and effect in random

processes, with application to economic time series, leading to the term “Granger

causality”. A variation on this was developed by Geweke (1982, 1984) using a similar

parametric approach to generate measures based on log ratios of residual variances.

These studies use autoregressive models to describe the pattern of interactions be-

tween the time-series. The Granger and Geweke measures and variants of these have

been widely applied to describe directed interactions in neurophysiological data sets

(Baccala et al., 2001; Kaminski et al., 2001; Chen et al., 2006; Schelter et al., 2006;

Chicharro, 2012). Although parametric approaches are widely used, a number of

studies have suggested reasons why parametric approaches may not be appropriate.

Gersch (1972) showed examples of misclassification of interactions using paramet-

ric as opposed to non parametric measures. Thomson (1990) compared multi-taper

spectral estimates with autoregressive estimates and found the former to be better

suited to climate time series data. (Thomson and Chave, 1991) suggested that AR

models are not well suited to capture the structure in time series routinely encoun-

tered in scientific and engineering problems. It has also been noted that in some

cases negative values can be obtained for parametric causality estimates (Geweke,

1982; Lindsay and Rosenberg, 2011).

These concerns suggest that approaches which avoid the use of AR models need

to be further investigated, including non-parametric approaches. Gersch (1972) in-

troduced the concept of using non parametric approaches to infer causal effects

using partial coherence estimates. Eichler et al. (2003) investigated a time domain

approach based on partial co-variance densities. Lindsay and Rosenberg (2011) in-
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troduced a frequency domain approach using a progression of spectra and partial

spectra to infer network structure. These non-parametric approaches are not subject

to the concerns regarding autoregressive models. However, as yet, non parametric

approaches do not provide direct quantitative measures of directionality similar to

those available from parametric approaches. This may explain in part the restricted

applications of non-parametric directionality analyses. There have been few stud-

ies of directionality applied to neuronal spike train (or point process) data, in part

because of the inability to apply autoregressive models to point-process data. One

approach has been suggested recently that uses a recursive factorisation of the spec-

tral matrix (Wilson, 1972) and has been applied to generate Granger like measures

(Dhamala et al., 2008a,b). It has been pointed out (Lindsay and Rosenberg, 2011)

that the approach is partly parametric as it relies on a parametric model for the

observations. Thus it could also be classified as a parametric approach and may be

subject to some of the concerns regarding the validity of representation.

This paper introduces a framework for non-parametric directionality measures

which quantify directed interactions between bivariate data. A combined time and

frequency domain approach is used to decompose the coherence function by di-

rection. In addition, scalar metrics are introduced which quantify the direction of

interaction between the signals. The measures have a direct interpretation in terms

of the overall strength of correlation. We use the term directionality in preference to

causality, although the motivation is similar. A particular strength of the proposed

approach is applicability to both time series and point process data.

Section 2 describes method including practical aspects related to estimation

and the setting of confidence limits. Section 3 illustrates application of our non-

parametric approach to neuronal spike train data using simulated cortical neurone

interactions and application to single unit data from identified single muscle spindle

sensory endings subject to efferent stimulation. Section 4 discusses the results and

considers a number of issues related to the broader applicability of the approach

and how our metrics relate to those obtained from parametric approaches.

2. Methods

We consider bivariate random processes, (x, y), which are assumed to be weakly

(or wide-sense) stationary (Brillinger, 1975), have bounded moments and satisfy a

mixing condition (Rosenberg et al., 1989). The notation (x, y) is used to represent

bivariate time series and stochastic point process data. This shared notation draws

on the concept of stationary interval functions (Brillinger, 1972; Daley and Vere-

Jones, 2003), where point-process data are represented using zero-mean differential

increments. Differential increments count the number of spikes in a small interval,

see Brillinger et al. (2009); Rigas (1983). The techniques can be applied to both spike

train and waveform (sampled) signals or mixtures of the two data types, which we

refer to as hybrid data (Halliday et al., 1995).
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2.1. The coherence function and R
2 measure

The coherence between two random processes (x, y) is defined as (Brillinger, 1975;

Priestley, 1981; Rosenberg et al., 1989)

|Ryx(ω)|2 =
|fyx(ω)|2

fxx(ω)fyy(ω)
(2.1)

where fyx(ω) is the cross power spectral density (or cross-spectrum) between x and

y, and fyx(ω) and fyx(ω) are the auto spectra at frequency ω.

The total product moment correlation between (x, y), which we denote as R2
yx,

can be recovered by integration of the coherence (Pierce, 1979)

R2
yx =

1

2π

∫ +π

−π
|Ryx(ω)|2 dω (2.2)

The coherence in (2.2) is defined over the normalised angular frequency range

[−π,+π]. Pierce (1979) uses this definition to obtain the squared correlation coef-

ficient, R2, by integrating coherence when x is the input to and y the output from

a linear regression model. Equation (2.2) allows the R2 measure to be calculated

by integrating over frequencies and establishes an important reference point for our

framework. The decomposition of R2
yx by direction is achieved using a novel form of

filtering which reduces the coherence to the cross spectrum.

2.2. MMSE whitening - reducing coherence to the cross spectrum

The coherence, (2.1) is defined as a ratio. Pierce (1979) notes that if the autospectra

are assumed white then coherence reduces to the cross-spectrum. However, in gen-

eral, spike trains and time series will not have white PSD estimates. The method of

pre-whitening (Press and Tukey, 1956) can be used, where a signal is filtered prior

to spectral analysis to bring its spectral content closer to that of white noise. A

common approach to pre-whitening is to create a residual series after fitting a low

order AR model to each process x and y (Percival and Walden, 1993). Pre-whitening

can be advantageous in reducing undesirable aspects such as spectral leakage (Per-

cival and Walden, 1993), but in the majority of cases the target of achieving a

white sequence prior to spectral analysis is only met approximately, this does not

allow replacement of the magnitude squared coherence by the magnitude squared

cross-spectrum without degradation of the reliability of the coherence estimate.

We adopt the optimal whitening or minimummean square error (MMSE) whiten-

ing scheme introduced by Eldar and Oppenheim (2003). The Optimal whitening

filter for a zero-mean stationary random process, x, with PSD fxx(ω) is given by

(Eldar and Oppenheim, 2003, Theorem 3).

wxx(ω) = σfxx(ω)
−1/2 (2.3)

where σ is a fixed constant, σ > 0. Denoting the whitened spectrum as fw
xx(ω), the

MMSE whitening procedure generates a whitened spectrum: fw
xx(ω) = σ2. In our
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case we wish σ2 = 1, thus σ = 1 in equation (2.3). The pre-whitening filter defined

in equation (2.3) is a non-causal zero phase phase filter with magnitude proportional

to the inverse square root of the PSD fxx(ω).

This procedure is equivalent to generating two new (or derived) random pro-

cesses, xw and yw, which have spectra equal to 1 at all frequencies

fw
xx(ω) = 1, fw

yy(ω) = 1 (2.4)

The cross spectrum between the two whitened sequences is fw
yx(ω), and a co-

herence estimate calculated using equation (2.1), in conjunction with equation (2.4)

gives
∣

∣Rw
yx(ω)

∣

∣

2
=

∣

∣fw
yx(ω)

∣

∣

2
(2.5)

Our framework is applicable to both time series and point process signals. The

MMSE filtering step derives processes with spectra equal to 1 at all frequencies.

Following this whitening/filtering step point process signals can no longer be con-

sidered as spike trains. In the context of the present analysis the output of the

MMSE whitening procedure for spike trains will be a continuous process which has

a constant spectrum. The MMSE whitening step for time series similarly derives a

continuous process with a constant spectrum. The two derived continuous processes

have the same correlation structure as the original bivariate spike train or time se-

ries data. Brillinger (1974) notes that a common frequency domain approach can be

applied to time series and point process signals, where parameter estimates having

the same statistical results can be constructed in the same manner after evaluation

of the relevant Fourier transforms.

The filtering step to derive the whitened processes xw and yw uses two separate

univariate filters in the MMSE framework as opposed to a single optimal whitening

transformation derived from the inverse square root of the covariance matrix (Eldar

and Oppenheim, 2003). A single transformation would effectively orthogonalize the

two random processes removing both within-variable and between-variable effects,

and would not provide a useful approach to estimating directionality. The effect of

the two pre-whitening filters is to remove any structure in the auto-correlation of

the original sequences x and y. The relationship between the variables is preserved,

coherence is insensitive to linear transformations of the original signals (Priestley,

1981). Thus the two coherence functions in equations (2.1) and (2.5) are equivalent
∣

∣Rw
yx(ω)

∣

∣

2
= |Ryx(ω)|2 (2.6)

The coherence between the whitened processes, |Rw
yx(ω)|2 = |fw

yx(ω)|2, has no terms

in the denominator and can thus be decomposed to obtain directionality measures.

2.3. Directionality measures - time domain

The scalar measure of dependence between x and y, R2
yx, can now be written as

R2
yx =

1

2π

∫ +π

−π

∣

∣fw
yx(ω)

∣

∣

2
dω (2.7)
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To decompose R2
yx by direction we define a correlation measure in the time domain,

ρyx(τ), with time lag τ , which forms a Fourier transform pair with the pre-whitened

cross spectrum, fw
yx(ω), as

ρyx(τ) =
1

2π

∫ +π

−π
fw
yx(ω)e

iωτ dω (2.8)

The definitions in equations (2.7 - 2.8)assume second order spectra are periodic in

ω with period 2π (Brillinger, 1975, Th 2.5.1). Then R2
yx can be decomposed by lag

according to

R2
yx =

∫ +∞

−∞
|ρyx(τ)|2dτ (2.9)

Equation (2.9) can be proved using Parseval’s theorem (e.g. Priestley, 1981, Ch 4)

Further decomposition of R2
yx by lag to obtain measures of directionality is

achieved by selecting the required lag range in equation (2.9). We define and use

three measures which from a subset of R2
yx. These are R

2
yx;−, R

2
yx;0 and R2

yx;+ which

measure the directionality: x ← y, x ↔ y and x → y, respectively. Thus R2
yx is

decomposed summatively into three components:

R2
yx =

∫

τ<0
|ρyx(τ)|2dτ + |ρyx(0)|2 +

∫

τ>0
|ρyx(τ)|2dτ (2.10)

This can be written using our extended notation as

R2
yx = R2

yx;− +R2
yx;0 +R2

yx;+ (2.11)

The term R2
yx;− quantifies the contribution from future xt to the present yt, using

values with negative lags from ρyx(τ). The term, R2
yx;0 has a single component that

quantifies the contribution of the instantaneous interaction between xt and yt to

R2
yx, using the single value ρyx(0). The term R2

yx;+ quantifies the contribution from

past xt to the present yt, using values with positive lags from ρyx(τ).

2.4. Directionality measures in the frequency domain

In this section we consider how the directionality measures, R2
yx;−, R

2
yx;0 and R2

yx;+

can be decomposed as a function of frequency. To do this we define two sets of

corresponding measures: f ′
yx;−(ω), f

′
yx;0(ω), f

′
yx;+(ω) and |R′

yx;−(ω)|2, |R′
yx;0(ω)|2,

|R′
yx;+(ω)|2. The first set of measures are defined by applying a Fourier transform

to the function ρyx(τ) with different integration ranges for τ :

f ′
yx;−(ω) =

∫

τ<0
ρyx(τ)e

−iωτ dτ (2.12)

f ′
yx;0(ω) = ρyx(0) (2.13)

f ′
yx;+(ω) =

∫

τ>0
ρyx(τ)e

−iωτ dτ (2.14)



February 25, 2015 14:20 WSPC/INSTRUCTION FILE R2˙ver4rev1

Non-parametric directionality analysis 7

The lag ranges used for τ here are the same as in equation (2.10), thus f ′
yx;−(ω) is

calculated using only negative lags from ρyx(τ) and f ′
yx;+(ω) is calculated using only

positive lags from ρyx(τ). The measure f ′
yx;0(ω) is constant over all frequencies, this

is just the Fourier transform of a scaled impulse at τ = 0 in ρyx(τ). The original R
2
yx

measure can be recovered from these by integrating over the full frequency range

as, c.f. equation (2.2)

R2
yx =

1

2π

(
∫ +π

−π
|f ′

yx;−(ω)|2 dω +

∫ +π

−π
|f ′

yx;0(ω)|2 dω +

∫ +π

−π
|f ′

yx;+(ω)|2 dω
)

(2.15)

This result is derived following the same arguments as for the proof of equation (2.9).

The three directional measures can also be defined in terms of the f ′ functions, for

example

R2
yx;− =

1

2π

∫ +π

−π
|f ′

yx;−(ω)|2 dω (2.16)

The equality in equations (2.15), (2.16) is valid when the f ′ measures are integrated

over the complete frequency range, [−π,+π]. Using the magnitude squared of each

measure, |f ′
yx;·(ω)|2, as an indication of the strength of the interaction at each fre-

quency may not preserve the original variance bound (Priestley, 1981), as the sum

of the three terms at each frequency may exceed the original coherence, |Ryx(ω)|2.
To overcome this we define a second set of measures, |R′

yx;−(ω)|2, |R′
yx;0(ω)|2,

|R′
yx;+(ω)|2. These preserve the variance bound given by the original coherence es-

timate at each frequency

|Ryx(ω)|2 = |R′
yx;−(ω)|2 + |R′

yx;0(ω)|2 + |R′
yx;+(ω)|2 (2.17)

This is achieved by rescaling the original coherence according to the relative mag-

nitude of the |f ′
yx;·(ω)|2 measures at each frequency

|R′
yx;−(ω)|2 =

|f ′
yx;−(ω)|2

|f ′
yx;−(ω)|2 + |f ′

yx;0(ω)|2 + |f ′
yx;+(ω)|2

|Ryx(ω)|2 (2.18)

|R′
yx;0(ω)|2 =

|f ′
yx;0(ω)|2

|f ′
yx;−(ω)|2 + |f ′

yx;0(ω)|2 + |f ′
yx;+(ω)|2

|Ryx(ω)|2 (2.19)

|R′
yx;+(ω)|2 =

|f ′
yx;+(ω)|2

|f ′
yx;−(ω)|2 + |f ′

yx;0(ω)|2 + |f ′
yx;+(ω)|2

|Ryx(ω)|2 (2.20)

The assumption underlying this re-scaling is that the |f ′
yx;·(ω)|2 provide an indication

of the relative strength of the directionality at each frequency (Pierce, 1979). To

distinguish the two sets of measures from conventional cross-spectral densities and

conventional coherence functions we use the notation f ′ and R′.

2.5. R
2

yx
measures over a restricted frequency range

A further useful refinement is consideration of R2
yx calculated over a restricted fre-

quency range. This may be useful in situations where the dependency between the
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signals of interest is restricted to a particular frequency range. For example many

neurophysiological signals are low pass in nature with little power and dependency

above a specific cut-off frequency. If the Nyquist frequency is considerably higher

than this cut-off frequency then calculation of R2
yx using equation 2.2 will include

values where the coherence is not significant. In such cases it may be appropriate to

introduce an upper limit in the integration to calculate R2
yx;α as

R2
yx;α =

1

2απ

∫ +απ

−απ
|Ryx(ω)|2 dω (2.21)

where α is a fractional multiplier for the nyquist frequency, 0 < α ≤ 1. To distinguish

such measures they will be referred to as R2
yx;α and in the directional case as R2

yx;−,α,

R2
yx;0,α and R2

yx;+,α. To calculate the directionality measures over a restricted fre-

quency range we use the R′ measures, as these satisfy the residual variance bound,

see equation (2.17). Thus

R2
yx;−,α =

1

2π

∫ +απ

−απ
|R′

yx;−(ω)|2 dω (2.22)

A similar definition is used for R2
yx;0,α and R2

yx;+,α. The numerical value of α may be

more usefully indicated as absolute frequency in Hz, fα. So the directional measures

are then R2
yx;−,fα, R

2
yx;0,fα and R2

yx;+,fα, where fα = αfN and fN is the nyquist

frequency, usually specified in Hz. This is the approach we adopt, thus R2
yx;+,100

represents the directionality measure x→ y at frequencies up to 100Hz.

Some caution is needed in selecting the value of α particularly if comparisons are

made between R2
yx;α for different bivariate data which do not use the same value of

α. The choice of suitable values of α are discussed in the results section.

2.6. Estimation and algorithmic details

This section gathers in one place all the necessary expressions to estimate our non

parametric measures. The first step in the bivariate directionality analysis of two

random processes x and y is to construct the auto- and cross-spectral estimates. A

range of approaches exist for calculation of spectral densities, here we will adopt the

approach of (Halliday et al., 1995) in which a record of duration R points is split

into L disjoint sections of length T points, with R = LT . To distinguish between a

parameter and its estimate we will use a hat symbol, ,̂ to indicate an estimate, thus

f̂xx(ω), f̂yy(ω) and f̂yx(ω) are the estimated auto- and cross-spectra constructed

using average periodograms, see Halliday et al. (1995, eq 5.2)

The pre-whitening filter for each process is estimated from equation (2.3) as

ŵxx(ω) = f̂xx(ω)
−1/2 (2.23)

ŵyy(ω) = f̂yy(ω)
−1/2 (2.24)

The hat is used in each pre-whitening filter to indicate that it is an estimate con-

structed from a single realisation of each process. A different realisation will result



February 25, 2015 14:20 WSPC/INSTRUCTION FILE R2˙ver4rev1

Non-parametric directionality analysis 9

in a different pre-whitening filter for each process. From our perspective this is fine,

the objective is to pre-whiten auto-spectral estimates to be identical to 1 at each

frequency. The simplest approach to apply the filter is in the frequency domain

by multiplying each discrete Fourier transform by the appropriate filter to get the

whitened discrete Fourier transform for each segment, l

dwT
x (ω, l) = dTx (ω, l) ŵxx(ω) (l = 1, . . . L) (2.25)

dwT
y (ω, l) = dTy (ω, l) ŵyy(ω) (l = 1, . . . L) (2.26)

The whitened auto- and cross-spectral estimates, f̂w
xx(ω), f̂

w
yy(ω) and f̂w

yx(ω), are

then constructed using the same algorithmic approach as previously (average pe-

riodograms in our case). The auto spectral estimates, f̂w
xx(ω) and f̂w

yy(ω), will now

be 1 at all frequencies. Thus the coherence from the whitened sequences can be

estimated as

|R̂w
yx(ω)|2 = |f̂w

yx(ω)|2 (2.27)

This will be identical to the original coherence estimate before whitening, |R̂yx(ω)|2,
the advantage now is that the pre-whitening process equates the magnitude squared

coherence to the magnitude cross spectrum, allowing the directionality measures

to be derived from the cross spectrum estimate, f̂w
yx(ω). The correlation, ρyx(τ), is

estimated using a standard inverse Fourier transform of length T (e.g. Halliday et

al., 1995).

The overall R2
yx measure can be estimated in either the frequency domain from

equation (2.7) or in the time domain from equation (2.9).

R̂2
yx =

1

T

∑

j

|f̂w
yx(ωj)|2 (2.28)

R̂2
yx =

∑

k

ρ̂yx(τk)
2 (2.29)

Here ωj are the discrete Fourier frequencies, ωj = 2πj/T . Both summations have T

terms. We do not distinguish between the two estimates in equations (2.28-2.29). In

practice either can be used to estimate R2
yx, they give equivalent values.

The directionality measures can be calculated using ρ̂yx(τ) as

R̂2
yx;− =

∑

τ<0

ρ̂yx(τ)
2 (2.30)

R̂2
yx;0 = ρ̂yx(0)

2 (2.31)

R̂2
yx;+ =

∑

τ>0

ρ̂yx(τ)
2 (2.32)

where τ is lag specified as an integer in the range −T
2 ≤ τ < T

2 .

The frequency domain directionality measures use the quantities f ′ in equations

2.12-2.14, and R′ in equations 2.18-2.20. The first of these are estimated as

f̂ ′
yx;−(ωj) =

∑

τ<0

ρyx(τk)e
iωjτ (2.33)
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f̂ ′
yx;0(ωj) = ρ̂yx(0) (2.34)

f̂ ′
yx;+(ωj) =

∑

τ>0

ρyx(τk)e
iωjτ (2.35)

where ωj = 2πj/T . The quantities in equations 2.33-2.35 can be calculated using an

FFT algorithm of length T containing the relevant subset of ρ̂yx(τ), padded with

zeros as appropriate. The R′ measures can be estimated directly by direct substi-

tution of |f̂ ′
yx;·(ωj)|2 estimates and coherence estimates, |R̂yx(ω)|2, into equations

2.18-2.20, providing the estimates |R̂′
yx;−(ω)|2, |R̂′

yx;0(ω)|2 and |R̂′
yx;+(ω)|2.

Calculation of the R2 scalar metrics over a limited frequency range needs the

additional parameter α to be specified, where 0 < α ≤ 1. From equation 2.21 we

can estimate R2
yx;α as

R̂2
yx;α =

1

αT

∑

|j|<αT/2

|R̂yx(ωj)|2 (2.36)

An estimate of R2
yx;−,α, equation 2.22, is

R̂2
yx;−,α =

1

αT

∑

|j|<αT/2

|R̂′
yx;−(ωj)|2 (2.37)

Similar expressions are used to estimate R2
yx;0,α and R2

yx;+,α.

2.7. Assessing significance in parameter estimates

Approaches for assessing the significance of features in autospectral estimates are

described in Diggle (1990); Bokil et al. (2007). The metric R2
yx can be viewed as

a correlation coefficient between the bivariate random processes (x, y). Statistical

aspects of the correlation coefficient are discussed in (Kendall and Stuart, 1961)

where expressions for standard errors and setting of confidence limits are discussed

for a range of scenarios including the case of no correlation. These expressions are

based on calculation of a scalar product-moment correlation coefficient, calculated

as a ratio of the covariance to the product of the standard deviations. In our case the

correlation coefficient R2
yx is estimated by integrating across the coherence function,

thus the statistical distribution will be different. In the case of no correlation, R2
yx =

0, the distribution of R̂2
yx will tend to normal as it is based on a sum over T points,

see equation 2.28. Since R̂2
yx is derived from the estimated coherence, |R̂yx(ω)|2,

we can use existing approaches to determine significance in coherence estimates

to determine the significance of R̂2
yx. Significance levels for coherence estimates,

based on a NULL hypothesis of uncorrelated data are discussed in Brillinger (1975);

Rosenberg et al. (1989). In particular Rosenberg et al. (1989) provides an expression

for the approximate upper 95% confidence limit for |R̂yx(ω)|2 estimated through an

average periodogram over L disjoint sections as

1− 0.051/(L−1) (2.38)
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Our approach is to use this for R̂2
yx also: If the estimated coherence is significant

at frequencies of interest then R̂2
yx can be interpreted as also significant at these

frequencies. This assumes that estimation of R̂2
yx over a reduced frequency range,

R̂2
yx;α, equation 2.36, incorporates the frequencies of interest. Equation 2.38 provides

an approximate confidence limit based on the assumption of uncorrelated processes.

A more detailed analysis can be found in Brillinger (1975) where it is shown that the

covariance structure for different frequencies has terms of order O
(

T−2
)

. Concerns

regarding the spread of correlation to adjacent frequencies can be addressed through

using a longer segment length, T , at the expense of fewer segments, L.

The primary use of the function ρyx(τ) is to allow decomposition of R2
yx into the

three components in equation (2.11). However, the measure may be useful visually

as an indicator of the general characteristics of the interactions between random

processes x and y. A graphical representation is likely to be the most useful way to

present this, in which case the large sample behaviour needs to be investigated, and

in particular confidence intervals derived. From the definition of ρyx(τ) in equation

(2.8) and the results in Halliday et al. (1995), Rigas (1983, Th 4.9.1), under the

assumption of no correlation between processes x and y we can write

var {ρyx(τ)} ≈
(

1

2π

)2(2π

R

)
∫ π

−π
fw
xx(ω)f

w
yy(ω) dω (2.39)

Here R is the record length or number of data points, R = LT . As a consequence

of the MMSE pre-whitening step then fw
xx(ω) = fw

yy(ω) = 1, all ω. Thus

var {ρ(τ)} ≈
(

1

2π

)2(2π

R

)

2π =
1

R
(2.40)

The expected value and upper and lower 95% confidence limits can then be set as

0± 1.96√
R

(2.41)

Inclusion of horizontal lines at these values on plots of estimates of ρyx(τ) will provide

a useful guide to interpret the significance or otherwise of specific features at indi-

vidual lags. Equation (2.41) provides approximate confidence limits that are based

on the assumption of uncorrelated processes, where second and fourth order cross

spectral terms are assumed zero, with additional terms of order O
(

R−2loge (R)
)

(Rigas, 1983). A similar approach has proved useful for setting confidence limits on

cross-covariance (cumulant density) estimates (Halliday et al., 1995).

Equation 2.41 can be used to assess significance of the scalar measures R2
yx;−,

R2
yx;0 and R2

yx;+ which are estimated from ρ̂yx(τ) using equations 2.30-2.32. There-

fore significant values of ρ̂yx(τ) at lags τ < 0 can be interpreted as an indication of

significant R2
yx;−, and significant values of ρ̂yx(τ) at lags τ > 0 can be interpreted

as an indication of significant R2
yx;+. Similarly, a significant value of ρ̂yx(0) can be

interpreted as an indicator of a significant R2
yx;0.
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3. Results

3.1. Simulated 3 neurone networks

The data in this section was generated using simulated 3 neurone networks of

cortical neurones with dynamcis similar to those in Halliday (2005). Each neuron

was modelled using a biophysical point neurone conductance model (Rm = 40MΩ,

Cm = 0.5pF, τm = 20 ms) with resting potential, Vr = −74mV, firing threshold,

Vthresh = −54mV and partial reset threshold of Vreset = −60mV. The partial re-

set mechanism allows point cortical neurone models to mimic the firing variability

seen in vivo (Troyer and Miller, 1997). Each neurone received large scale back-

ground synaptic activation consisting of 100 excitatory inputs firing randomly at 40

spikes/sec (VEPSP = 300µV from rest, VEPSP = 220µV at Vthresh, τEPSP = 0.2ms,

reversal potential EEPSP = 0mV) and 25 inhibitory inputs firing randomly at 40

spikes/sec (VIPSP = 16µV at Vthresh, τIPSP = 10ms, EIPSP = −74mV). This back-

ground activation generated membrane potential fluctuations with a mean value of

-55mV and SD of 1.25mV (measured with threshold mechanism suppressed) thus

simulating the balanced large scale input that cortical neurones typically receive in

vivo (Destexhe et al., 2003).

The three neurone networks were connected in a range of configurations using

both excitatory (VEPSP = 2000µV from rest, VEPSP = 2750µV at Vthresh, τEPSP =

1ms, EEPSP = 0mV) and inhibitory connections (VIPSP = 1000µV at Vthresh,

τIPSP = 10ms, EIPSP = −74mV) as illustrated in figure 1. Each configuration was

run 10 times generating 100 seconds of spike train data for each run. The firing

rates ranged from 8–21 spikes/sec and the coefficient of variation (COV) ranged

from 0.70–0.95 across all runs. Spike timings for each neurone were saved using a

sampling interval of ∆t = 1 ms.
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Fig. 1. Network configuration for 3 cortical neurone simulations. Excitatory connections are indi-
cated: “+”, inhibitory connections are indicated: “-”. Configurations g) and h), are the same as a)
and e), respectively, except an additional synaptic delay of 50 ms is present in the connection from
1→ 3 in g) and 1← 3 in h).
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The results for the simulated data are illustrated in Figures 2-4 and Table 1. The

examples in the figures use single data sets of 100 seconds duration each, the data

in the table are mean values over 10 repeat runs of 100 secs duration each. Each run

was analysed using the directionality analysis with a segment length of T = 1024

over L = 97 segments. All estimates in Figures 2-4 have been constructed using

L = 97 segments. In our average periodogram estimates the number of segments, L,

is used to determine confidence limits, and it can also provide an indication of the

sensitivity of the approach.

Coherence estimates are plotted as a function of frequency in cycles/sec, λj with

λj = j/(T∆t), 1 ≤ j ≤ T/2, where T is the segment length and ∆t the sampling

interval. Here ∆t = 10−3sec. The original coherence estimates, |R̂21(λj)|2 (Figure 2,

black lines) and |R̂31(λj)|2 (Figure 3, black lines) indicate there is significant cor-

relation between all spike train pairs, with significant coherence up to ∼ 150Hz for

excitatory connections and up to ∼ 10 Hz for inhibitory connections. The quanti-

tative directionality measures are in Table 1, an upper limit of 250 Hz was used

to calculate the directionality measures (α = 0.5, fα = 250Hz, against a Nyquist

frequency of fN = 500Hz). The table shows the values for the estimated strength of

interactions between neurones 1→ 2, R̂2
21;250 and between neurones 1→ 3, R̂2

31;250,

as well as the estimated directional interactions: R̂2
21;+,250 and R̂2

21;−,250 for neurones

1 and 2, and R̂2
31;+,250 and R̂2

31;−,250 for neurones 1 and 3. In our notation, R̂2
yx repre-

sents an estimate of the strength of interaction between x and y assuming process x

is the input and y is the output. Thus the directional measures in table 1 all assume

that neurone 1 is the reference (or input) neurone.

Table 1. Estimated values of R2
21 and R2

31 at frequencies up to 250 Hz, fα = 250Hz,
for the 3 neurone networks illustrated in figure 1, R̂2

21;250, R̂
2
31;250, along with the

estimated directional coupling strengths at frequencies up to 250 Hz, R̂2
21;+,250,

R̂2
21;−,250, R̂

2
31;+,250, R̂

2
31;−,250. The numbers in brackets for the directional measures

are the percentage of the overall correlation in each direction. All values represent
the mean over 10 repeat runs, where each run generated 100 seconds of spike train
data for analysis.

Config. R̂2
21;250 R̂2

21;+,250 R̂2
21;−,250 R̂2

31;250 R̂2
31;+,250 R̂2

31;−,250

a 0.0712 0.0664 (93) 0.0046 (7) 0.0688 0.0638 (93) 0.0049 (7)
b 0.0561 0.0045 (8) 0.0514 (92) 0.0600 0.0048 (8) 0.0551 (92)
c 0.0802 0.0756 (94) 0.0045 (6) 0.0642 0.0059 (9) 0.0582 (91)
d 0.0122 0.0050 (41) 0.0071 (58) 0.0641 0.0060 (9) 0.0580 (90)
e 0.0124 0.0050 (40) 0.0074 (60) 0.0845 0.0364 (43) 0.0479 (57)
f 0.0689 0.0046 (7) 0.0642 (93) 0.0139 0.0075 (54) 0.0064 (46)
g 0.0722 0.0674 (93) 0.0046 (6) 0.0675 0.0629 (93) 0.0046 (7)
h 0.0129 0.0053 (41) 0.0077 (59) 0.1225 0.0657 (54) 0.0568 (46)

For configuration a) the directionality estimates in table 1, R̂2
21;+,250 and
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R̂2
31;+,250, assign 93% of the overall correlation to the directions 1→ 2 and 1→ 3, in

agreement with the configuration in figure 1a. In figure 2a, the decomposition of the

coherence by direction shows |R̂′
21;+(λj)|2 (red line) is almost identical to the origi-

nal coherence estimate (black line), whereas |R̂′
21;−(λj)|2 (blue line) is close to zero

at all frequencies. A similar interpretation applies to |R̂′
31;+(λj)|2 and |R̂′

31;−(λj)|2
in figure 3a. The time domain estimate in figure 4a, ρ̂31(τ) has a significant peak

at positive latencies (maximum at +2 ms) and no significant features at negative

latencies, in agreement with the configuration in figure 1a.

In configuration b), the directionality is reversed (fig 1b), this is correctly identi-

fied by the entries in Table 1 (row 2), by the decomposition of coherence by direction

(figs 2b, 3b) and by the decomposition in the time domain (fig 4b), where the sig-

nificant features are at negative latencies.

Configurations c) and d) include reciprocal excitatory-inhibitory connections be-

tween neurones 1 and 3. Figures 3c,d indicate that the excitatory connection is much

stronger than the inhibitory connection. This is further illustrated in fig 4c,d where

the relative timescales of the excitatory and inhibitory connections are highlighted -

a short duration peak at negative latencies for excitatory connection (time constant

τEPSP = 1ms) from 1← 3 and a much broader depression only just reaching signif-

icance at positive latencies for inhibitory connection (τIPSP = 10ms) from 1 → 3.

Configurations e) and f) have symmetrical reciprocal connections between neurones

1 and 3. The metrics in table 1 assign around 50% of the overall correlation to each

direction as expected. The symmetry is further highlight by the decomposition of

the coherence in figs 3e, f and the decomposition by lag in figs 4e, f.

The final two configurations g) and h) are similar to a) and e), respectively,

except there is an additional synaptic delay of 50 ms in the connection from 1→ 3

in a) and 1← 3 in e). These two configurations demonstrate that the directionality

metrics are not affected by the presence of additional delays in the pathways. For

configuration g) the estimate in figure 3g is not distinguishable from that in figure

3a. The delay is clearly seen in figure 4g. The directional metrics in Table 1 row g are

identical to those in row a. In configuration h) the coupled neurones now oscillate

with a fundamental frequency around 18 Hz, this is seen in the original coherence

in fig 4h. The increased strength of correlation is reflected by the increased value

of R̂2
31;250 in table 1, the decomposition by direction suggests a similar strength in

each direction, as does the decomposition of the coherence by direction in fig 3h.

The increased latency in the connection from 1 ← 3 is clearly seen in fig 4h, note

that this is unaffected by the strong oscillatory coupling and rhythmic discharges of

the two model neurones.

3.2. Experimental data

In this section we consider analysis of an experimental data set consisting of simul-

taneous recordings of the spike timings from afferent sensory receptors while subject
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Fig. 2. Directionality analysis for interactions between neurones 1 and 2. Configuration as shown
in figure 1. Shown are original coherence estimate |R̂21(λ)|

2 (black line) and estimated directional
measures from 1→ 2, |R̂′

21;+(λ)|2 (red line) and directional measure from 1← 2, |R̂′

21;−(λ)|2 (light
blue line). The horizontal dashed line is the upper 95% confidence limit for the ordinary coherence
based on the assumption of uncorrelated processes.

to efferent stimulation of the same sensory ending. The data was obtained from an

isolated muscle spindle (Halliday et al., 1987; Gladden and Matsuzaki, 2002) where

the discharges of the primary (Ia) and secondary (II) endings were made while one

or two separate static gamma (γs1, γs2) were stimulated with electrical pulses with

a random (or exponential) distribution of intervals. For further details and time

and frequency analyses of this data set see Rosenberg et al. (1989); Brillinger et al.

(2009). Here two 60 second records are analysed using non parametric directionality

analysis. In the first record γs1 was stimulated, in the second record both γs1 and γs2
were stimulated. The directionality analysis considers the relationship between the

γs inputs and the Ia, II outputs in both cases. The directionality measures are given

in table 2, for frequencies up to 100 Hz, the overall strength of correlation ranges

from 0.05 to 0.18. The percentage of this overall correlation which is in the forward

direction, i.e. from γs → II and γs → Ia ranges from 78% to 96%. Thus there is

clear evidence that the directionality is in the forward direction for this data. Since

the pulse sequences driving the electrical stimulation were generated independently

we would expect the directionality to be in the forward direction for this data set.

The data in table 2 is in broad agreement with our expectations.

Figures 5, 6 show the frequency domain and time domain analyses of the same

data is in table 2. The frequency domain estimates in figure 5 have the same format as

previously, with the original coherence estimate, |R̂yx(λj)|2 in black and the forward,
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Fig. 3. Directionality analysis for interactions between neurones 1 and 3. Configuration as shown
in figure 1. Shown are original coherence estimate |R̂31(λ)|

2 (black line) and estimated directional
measures from 1→ 3, |R̂′

31;+(λ)|2 (red line) and directional measure from 1← 3, |R̂′

31;−(λ)|2 (light
blue line). The horizontal dashed line is the upper 95% confidence limit for the ordinary coherence
based on the assumption of uncorrelated processes.

Table 2. Values of directionality measures R̂2
yx;100, R̂2

yx;−,100 and R̂2
yx;+,100 for two

records from an isolated muscle spindle where one or two static gamma inputs were stim-
ulated with sequences of random pulses while the discharges of the primary (Ia) and sec-
ondary (II) endings were simultaneously recorded. The directional coupling strengths are
estimated at frequencies up to 100 Hz, fα = 100Hz. See text for further details. The per-
centage in brackets in the last column represents the percentage of R̂2

yx;100 that is accounted

for by R̂2
yx;+100, i.e. the percentage in the direction from γs → II and γs → Ia.

No) Record: x→ y R̂2
yx;100 R̂2

yx;−,100 R̂2
yx;+,100

a) 1: γs1 → II 0.067 0.015 0.052 (78%)
b) 1: γs1 → Ia 0.18 0.0087 0.170 (95%)
c) 2: γs1 → II 0.048 0.0061 0.042 (87%)
d) 2: γs1 → Ia 0.18 0.0076 0.175 (96%)
e) 2: γs2 → II 0.083 0.010 0.073 (87%)
f) 2: γs2 → Ia 0.065 0.011 0.054 (82%)

|R̂′
yx;+(λj)|2, and reverse, |R̂′

yx;−(λj)|2, directional measures shown in red and blue

respectively. For all 6 interactions there is a clear consensus that the directionality of

interaction is in the forward direction - the red traces, |R̂′
yx;+(λj)|2, lie either on or

just below the original coherence estimates. In contrast the blue traces, |R̂′
yx;−(λj)|2,

all fluctuate close to or around zero over the frequency range of interest.
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Fig. 4. Time domain directionality analysis for interactions between neurones 1 and 3. Configu-
ration as shown in figure 1, these use the same data as analysed in figure 3. Shown are estimated
correlation ρ̂31(τ) along with null value (dashed horizontal line at zero) and upper and lower 95%
confidence limits (solid horizontal lines) based on the assumption of uncorrelated processes. Note
that the lag range is not the same for all panels, a dotted vertical line at τ = 0 is included for
reference.

The time domain estimates, ρ̂yx(τ), in Figure 6 all have a similar form with a

clear excitatory effect of the gamma inputs onto the primary and secondary sensory

endings at positive latencies. There is no consistent evidence in favour of any effects

at negative latencies. While there are departures outside the upper and lower 95%

confidence intervals at negative latencies, we regard these as chance effects, which

should happen on average for 5 points in every 100. As well as confirming the

directionality of interaction the plots in figure 6 give some further insight into the

dependency of the sensory discharges on the stimulation. The effect of the γs1 input

onto the secondary ending (Fig 6a,c) are longer latency (around +20 ms) and more

diffuse than onto the primary ending (Fig 6b,d), which have latencies of +14ms and

+12 ms, respectively. The second gamma input, γs2 has a shorter latency onto the

secondary ending, +16 ms (Fig 6e) and a similar latency onto the primary ending,

+13 ms (Fig 6f) than the simultaneously active γs1 input (Fig 6c,d). Taken together

the R2 metrics in table 2, the frequency domain directionality measures in figure 5

and the time domain directionality measures in figure 6 give a clear and consistent

indication of the strength of dependence and directionality of interaction between

the γs stimuli and the discharges of the sensory endings.
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Fig. 5. Frequency domain directionality analysis for the same data as described in Table 2. The
channel definitions are in column 1 of Table 2. Each panel shows estimates of the original coherence,
|R̂yx(λ)|

2 (black trace), and decomposition of this into the forward, |R̂yx;+(λ)|2 (red trace) and

reverse, |R̂yx;−(λ)|2 (blue trace), directions. The dashed horizontal line is the upper 95% confidence
limit for the coherence estimates, based on the assumption of uncorrelated processes.
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Fig. 6. Time domain directionality analysis for the same data as described in Table 2. The channel
definitions are in column 1 of Table 2. Each panel shows estimates of the correlation measure, ρ̂yx(τ).
The dashed horizontal line is the null value (zero), the solid horizontal lines are the upper and lower
95% confidence limits based on the assumption of uncorrelated processes.
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4. Discussion

4.1. General remarks

We have shown how a combined frequency domain and time domain approach can be

used to construct non-parametric measures of directionality in bivariate data. Our

approach is to combine power spectral density analysis with a MMSE filtering step

which reduces the coherency to the cross spectrum. The filtering derives two new

processes which have the same correlation structure (coherence and phase) as the

original processes, but with spectral densities of 1 at all frequencies. This removes

the denominator terms from the coherence function, compare equation (2.1) with

equation (2.5). The complex coherency reduces to the cross spectrum of the derived

processes, fw
yx(ω), allowing the overall correlation, R2

yx, to be decomposed using

Parseval’s theorem according to time lag, see equations (2.9) and (2.10), which de-

compose the total correlation coefficient summatively into three components: R2
yx;−,

R2
yx;0 and R2

yx;+. These measure the strength of directionality from: x ← y, x ↔ y

and x → y, respectively, assuming that x is the input process and y the output

process. Estimates of the scalar directionality measures have a direct interpretation

related to the overall strength of correlation in each direction. A further refinement

defined the measures over a restricted frequency range, fα: R2
yx;−,fα, R

2
yx;0,fα and

R2
yx;+,fα

The function that we use to derive the directionality measures is the correlation

function, ρyx(τ) defined in equation (2.8) as the inverse Fourier transform of the

cross spectrum between the whitened processes, fw
yx(ω). This function captures the

correlation structure in the time domain between the two whitened processes in

a similar manner to the way the ordinary cross-covariance (or cumulant density)

captures the temporal structure between the original processes as represented in the

ordinary cross spectrum, fyx(ω). However, ρyx(τ) is free from any within variable

effects. The whitened processes have the same coherence and phase estimates as the

original processes, so all significant features in estimates of ρyx(τ) will reflect the

interaction between the processes, as illustrated in figures 4, 6. In practice numerical

issues will result in small differences in the coherence and phase estimates between

the original and those for the whitened processes. For the results presented here

these differences are less than 10−15 in absolute terms (using MATLAB), there are

no practical consequence of these differences for the directionality estimates.

We do not directly generate the whitened processes. Instead the discrete Fourier

transforms (dFTs) are calculated using equations (2.25) and (2.26) and all param-

eters are derived from these dFTs. The characteristics of the derived processes are

discussed in section 2.2. The MMSE filters used to derive the whitened processes are

defined in the frequency domain, equation (2.3), these are real valued even symmet-

ric in frequency ω. The time domain equivalent filter can be estimated through an

inverse Fourier transform, a process used to obtain time domain wavelet functions

for classes of wavelets defined in the frequency domain (Olhede and Walden, 2002).
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In our case these will be Finite Impulse Response (FIR) filters, typically high pass

although the precise form depends on the nature of the electrophysiological signals

under consideration. The coefficients of these FIR filters will be symmetrical about

the current time sample and will therefore be zero phase filters with no delay (Op-

penheim and Schafer, 1975). The filtering process preserves the timing information

between the original processes as encoded in the phase estimate. The FIR filters will

be non-causal, however, as our processing is done offline, this is not an issue.

The ordinary coherence function, |Ryx(ω)|2, decomposes the overall correlation,

R2
yx, as a function of frequency. However, it provides no indication regarding the

direction of interaction. To complement the scalar directionality measures we have

also introduced a decomposition of the coherence using three frequency domain

functions: |R′
yx;−(ω)|2, |R′

yx;0(ω)|2, |R′
yx;+(ω)|2. Estimates of these functions are used

to infer directionality at each frequency. These functions decompose the coherence

in a summative manner, and thus have an immediate interpretation in terms of the

strength of directional interactions at a particular frequency.

The correlation function ρyx(τ) can also be used to provide a visual represen-

tation of the pattern and direction of interaction between the signals. Confidence

limits were derived for a NULL hypothesis of no linear dependence, equation (2.41).

The interpretation of this measure is similar to a traditional cross-correlation es-

timate. One consequence of using the optimal MMSE whitening step is to remove

all structure in the input and output signals, thus estimates of ρyx(τ) are a use-

ful addition to the normally used cross-covariance or cumulant density functions in

the time domain. The cross covariance function can contain features reflecting the

internal structure of one or both of the process (x, y), the MMSE whitening step

removes these features. Thus the function ρyx(τ) is likely to be a useful indicator

of the relative timing of between variable effects that is free from within variable

effects.

4.2. Summary of results

The non parametric measures were applied to both simulated and real spike train

data. Application to the simulated data, section 3.1, demonstrated that all measures

correctly inferred the directional interactions between the 3 neurones, as defined in

figure 1. The scalar directionality metrics in Table 1 are in agreement with figure

1 as are the estimated R′ functions in figures 2, 3. The estimates, |R̂′
yx;−(λj)|2 and

|R̂′
yx;+(λj)|2 have a direct interpretation in terms of the strength of correlation in

each direction as a function of frequency. We believe this direct interpretation will

add to the appeal of these measures. Application to experimental data used a data

set consisting of random stimulation of primary and secondary sensory endings in a

single identified muscle receptor. The directionality analysis in scalar (Table 2) and

functional form (Figures 5, 6) correctly identified the directionality in this case.
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4.3. Relationship with parametric approaches

Much of the previous work on directionality has relied on parametric approaches,

where autoregressive models are used to described the random processes and their

interactions. We have already commented in the introduction on the issues surround-

ing the validity, or otherwise, of using autoregressive models for complex neural data.

Notwithstanding this issue, a natural question is to ask how the scalar R2 measures

and the magnitude squared R′ functions relate to these previous approaches. Two

of the most commonly used measures are those proposed by Granger (1969) and

Geweke (1982). Geweke proposed a directional measure to measure linear feedback

from y → x of the form fy→x = loge

(

|Σ1|
|Σ2|

)

, where Σ1 is the residual after modelling

process x on its own history, and Σ2 is the residual after modelling process x on

its own history and the history of process y. In the case of no feedback, fy→x = 0,

although in practice negative values can sometimes be obtained (Gersch, 1972). In

the Granger framework the measure of the causal effect of y onto x is taken as

1−
(

|Σ2|
|Σ1|

)

, which also has the value 0 in the case of no causal interaction.

Our framework considers the definition of the R2 scalar measures in terms of

the coherence function. If the variances, Σ1 and Σ2 in the autoregressive model

are equated to the variance of the output and the residual variance in a linear

filter, respectively (Priestley, 1981), then our R2
yx directionality measure is equiv-

alent to the Granger measure. Extending this argument, then the Geweke feed-

back measure could be constructed as fy→x = −loge
(

1−R2
yx

)

, however, as has

been pointed out (Lindsay and Rosenberg, 2011) this does not directly measure

directional effects as R2
yx is not sensitive to the direction of interaction. A pos-

sible approach here, if Geweke style measures are required, might be to consider

the three terms −loge
(

1−R2
yx;−

)

, −loge
(

1−R2
yx;0

)

and −loge
(

1−R2
yx;+

)

as the

relevant measures. However, the validity of this suggestion has still to be verified.

The present non-parametric approach should be viewed as complementary to the

previously discussed parametric methods. In situations well described by low order

AR models the Granger (1969) and Geweke (1982) metrics can be used. If there is

uncertainty regarding model order, a high model order is required or there are con-

cerns regarding the validity of an AR approach, then the non-parametric approach

outlined here may be preferable.

4.4. Alternative non-parametric approaches

While much of the work on directional interactions in time series has used paramet-

ric (autoregressive) approaches, a number of studies have considered non parametric

approaches. Lindsay and Rosenberg (2011) considered a purely frequency domain

approach to directed interactions using coherence and partial coherence functions.

They also discuss how unobservable inputs can be taken into account. Eichler et al.

(2003) considered how partial spectra could be inverted to generate partial corre-

lation measures of association for spike train data using scaled partial covariance
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density estimates. This used a form of normalisation which takes into account the

firing rate of the two spike trains. Our approach is similar in concept, but by us-

ing the MMSE whitening step we effectively remove both first and second order

(periodic)components from the time domain correlation function ρyx(τ). Thus, all

significant features in time domain plots (e.g fig 4) reflect the interactions between

the neurones rather than rhythmic components in the individual spike train firing

times.

4.5. Concluding remarks

We have presented a novel approach to estimation of directionality measures that is

non-parametric, can be applied to both spike train and time series data (as well as

hybrids of the two) and can readily be incorporated into a bivariate spectral analy-

sis. The analysis generates two sets of parameters, a scalar set which decomposes the

overall strength of correlation R2
yx summatively into three directional components:

R2
yx;−, R

2
yx;0 and R2

yx;+, and a set of functions that decompose the original coher-

ence function |Ryx(ω)|2 summatively into three directional functions: |R′
yx;−(ω)|2,

|R′
yx;0(ω)|2 and |R′

yx;+(ω)|2. Estimates of these have a direct interpretation in terms

of the strength of correlation (overall or as a function of frequency). A key aspect

of our framework is a combined time and frequency domain approach, in the time

domain the key parameter is the correlation function ρyx(τ). Use of the MMSE

whitening step removes all within variable effects so that this function characterises

only effects between processes x and y.

Areas for further work include development of expressions for confidence limits

for the R2 scalar measures and |R′(ω)|2 functions, and exploration of application to

a wider range of data. It is recognised that auto regressive based approaches do not

scale well (Granger, 1969; Geweke, 1982), a new model has to be constructed for

each additional process and the comparison of different auto regressive models can

be problematic (Lindsay and Rosenberg, 2011). Future work will explore to what

extent non parametric multivariate spectral analysis (Salvador et al., 2005) can be

adapted to provide multivariate non-parametric directionality analyses.

5. Software

MATLAB software for non-parametric bivariate directionality analysis is available

for free download from the NeuroSpec archive at: http://www.neurospec.org/
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