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Abstract

The phase transition in a 3D array of classical anharmonic oscillators
with harmonic nearest-neighbour coupling (discrete φ4 model) is studied
by Monte Carlo (MC) simulations and by analytical methods. The model
allows to choose a single dimensionless parameter a determining completely
the behaviour of the system. Changing a from 0 to +∞ allows to go
continuously from the displacive to the order-disorder limit. We calculate
the transition temperature Tc and the temperature dependence of the order
parameter down to T = 0 for a wide range of the parameter a. The Tc from
MC calculations shows an excellent agreement with the known asymptotic
values for small and large a. The obtained MC results are further compared
with predictions of the mean-field and independent-mode approximations
as well as with predictions of our own approximation scheme.

In this approximation, we introduce an auxiliary system, which yields
approximately the same temperature behaviour of the order parameter,
but allows the decoupling of the phonon modes.

Our approximation gives the value of Tc within an error of 5% and
satisfactorily describes the temperature dependence of the order parameter
for all values of a.

http://arxiv.org/abs/cond-mat/9907482v1


1. INTRODUCTION

One of the basic classification schemes for structural phase transitions consists in
assigning it to the order-disorder or the displacive type. The displacive transition
can be described as a freezing of a phonon mode, which shows ”critical softening”
at the phase transition point. The occurrence of a soft mode is often used as
criterion for a displacive transition in a real systems, since the frequency of the
phonon modes is accessible by spectroscopic experiments.

In the order-disorder case, there are two or more locations for each atom
in the unit cell. Occupation numbers for these locations are the same above the
transition temperature, and differ below. Formally, as in the displacive case, the
system can be described in ”phonon” language.

There is a simple model which shows that one can go from the order-
disorder to the displacive type continuously [1]. This model can be defined as
a 3D cubic lattice of classical anharmonic 1D oscillators with nearest-neighbour
harmonic coupling [2, 3, 4, 5, 6, 7]:

V =
A

2

∑

n

x2

n +
B

4

∑

n

x4

n +
C

2

∑

n,n′

(xn − xn′)2σ(n, n′), (1)

A, B, and C are model parameters, the indices n and n′ run over all oscillators,
σ(n, n′) is equal to 1 for neighbouring particles and vanishes elsewhere. The
system undergoes a phase transition from the higher symmetry to the lower sym-
metry phase at a certain temperature Tc for any A < 0, B > 0, C > 0, i.e. the
statistical average of each coordinate xn takes a non-zero value η =< xn > below
Tc and vanishes above. It is often convenient to express the potential (1) as

V =
∑

n

v(xn) − C
∑

n,n′

xnxn′σ(n, n′), (2)

with an ”on-site” single particle potential

v(x) =
A′

2
x2 +

B

4
x4, A′ = A + 12C . (3)

It is known that the behaviour of the system is governed by the ratio

a = −A/C. (4)

At small a > 0 the system shows a displacive phase transition, while for
large a the system behaves as the Ising model, which shows a typical order-
disorder phase transition. The transition temperatures Tc in the limit cases are
known from Ising-model and self-consistent phonon calculations, to be respec-
tively [2, 4, 8, 9]:
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Tc(a ↓ 0) ≈ 2.64C|A|/B,

Tc(a → +∞) ≈ 9.12C|A|/B, (5)

assuming here and further that the temperature is expressed in energy units (the
Boltzman constant equal to 1). On the other hand, despite of the important role
of the above model in the theory of the structural phase transitions [2], the actual
dependence of Tc(a) is not known. The results of previous molecular dynamics
and Monte Carlo studies are collected in Figure 1. They obviously do not give a
consistent quantitative picture. So far the analytical study was restricted to the
mean-field approach. [2, 10].

Recently, it was observed that the knowledge of the dependence Tc(a) can be
useful in the quantitative analysis of the properties of crystalline Sn2P2S6 which
has a ferroelectric phase transition showing simultaneously features typical for
both the order-disorder and displacive type [11].

The aim of this paper is to establish this dependence of Tc(a) as well as
the temperature behaviour of the order parameter. Let us stress that, similarly
to some related papers [4, 5, 6, 7], we are not interested here in details of critical
behaviour in the very vicinity of the phase transition. Critical behaviour of this
model is thoroughly described for example in the reference [2].

The paper is organized as follows. Section 2 describes our MC simulations
performed for a wide range of values of the parameter a. In section 3, we first
compare the MC results with rather poor predictions of the standard decoupling
schemes and suggest an improved self-consistent equation for the order parameter
that allows to calculate both the transition temperature and the order parameter
with a reasonable accuracy for all values of a.

2. MONTE-CARLO SIMULATIONS

For numerical simulation it is convenient to re-scale coordinates and energy units.
This allows to reduce the potential energy (1) into the form

Vred = −a

2

∑

n

x2

n +
a

4

∑

n

x4

n +
1

2

∑

n,n′

(xn − xn′)2σ(n, n′), (6)

with a single dimensionless parameter a = −A/C. Then the re-scaled order
parameter at zero temperature is equal to 1 for any a > 0.

The typical size of the array of atoms studied in our MC simulations is
10×10×10 atoms, with periodic boundary conditions. We perform Monte-Carlo
steps consecutively for each atom, and accept (or reject) them accordingly to
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standard criteria. Additionally, we perform ”magic” steps for the case of large a,
when the sign of the coordinate of the given atom may flip. These steps allow the
system to thermalize in the order-disorder limit as well. We calculate the square
of the order parameter as the average

η2 = N−1/2 < X2

0
− X2

1
>, (7)

where Xk = N−1/2
∑

xneikn is the Fourier transform of xn, N is the total number
of particles.

For the case of an infinite slab, N−1/2X2
1 is negligible, and (7) gives purely

the square of the order parameter. For a finite slab, the term X2
1

allows to remove
fluctuations from the high-temperature branch.

The results of the calculations are presented in Figures 2-4. It is crucial
to check the dependence of the results on the system size. Figure 2 presents the
temperature dependence of X for sizes 15 × 15 × 15 and 5 × 5 × 5. It is clear,
that change of the size of the slab affects practically only the fluctuation region
near Tc. The value of Tc calculated from the fit of the dependence (see Figure 2)
remains almost unchanged. This type of size dependence of the data is found for
the whole range of a.

Figure 3 presents data for η2(T ) obtained for the potential (6) for different
values of the parameter a. Note that the Landau theory yields a linear tempera-
ture dependence for η2(T ) .

Values of Tc are extracted from the data presented in Figure 2. The plot
for Tc(a) is given in Figure 4 where a logarithmic scale for the a-axis is used. The
monotonic dependence approaches known limit values with a good accuracy. The
change in a is for which Tc(a) varies significantly is about 2 orders of magnitude.

3. ANALYTICAL APPROACHES

Two standard decoupling schemes have been used in the literature to make the
phase transition in the model tractable, usually referred to as mean field (or inde-
pendent site) approximation and self-consistent phonon (or independent mode)
approximation. In this section we first analyse the advantages and disadvantages
of these standard approximations and then we propose a modified approximation
scheme that combines advantages of both schemes.
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3.1 Independent mode approximation

In the independent mode approximation (IMA), the deviations from the average
value given by the order parameter

yn = xn − η (8)

are represented by Fourier coordinates Yk = N−1/2
∑

n yne
ikn. Interaction between

Fourier coordinates is simplified by assuming that each Fourier coordinate is
influenced only by the average of its interactions with the other coordinates.
This leads to an effective harmonic approximation. The order parameter in IMA
is defined by the equation [2]

Aη + Bη3 + 3BηI(T ) = 0, (9)

where the function I(T ) = N−1
∑

k YkY−k is calculated from the phonon disper-
sion relation renormalized by the given value of the order parameter and the
thermal fluctuations. In the vicinity of the phase transition point, I(T ) can be
evaluated by assuming a ”critical” phonon dispersion (with zero frequency of the
zone-center mode):

I(T ) ≈ T

4C(2π)3

∫

d3k

3 − cos kx − cos ky − cos kz

=
T

3Cκ
(10)

where κ ≈ 2.638 . Note that the stability limit Tc,IMA = −ACκ/B of the high
temperature phase as obtained from (9) and (10), provides an exact prediction
for Tc and η(T ) in the displacive limit. However, for the order-disorder limit, the
IMA values differ considerably from the exact values.

3.2 Mean field approximation

In the mean-field approximation (MFA) for the system with a harmonic coupling,
the behaviour of the original system is modelled by an auxiliary system in which
all direct inter-site interactions are replaced by an effective external field E, but
the on-site anharmonicity is kept without any approximation. Taking the on-site
potential as given by (3), the ensemble averages in such an auxiliary system at
fixed external field are given by

η =< xn >= gT (E) ≡
∫

x exp[−(v(x) − Ex)/T ]dx
∫

exp[−(v(x) − Ex)/T ]dx
. (11)

Since at finite temperatures the gT (E) is a monotonic function, it can be inverted
and the self-consistent equation for the order parameter in the auxiliary system
can be written as

E = g−1

T (η). (12)
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The effective field E is defined as the force on xn supplied by the interaction terms
separated in (2), assuming that the displacement of the six nearest neighbouring
sites (or at least their sum) is frozen at the equilibrium value η :

E = 12Cη. (13)

Self-consistent solution of equations (12,13) defines the order parameter ηMFA

in MFA. The phase transition temperature Tc,MFA(a) at which ηMFA vanishes is
shown in Figure 1. It was previously remarked by S. Aubry [1, 2] that the relative
over-estimation of Tc by MFA is almost the same (about 30 percent) for both limit
cases (a → +0, a → +∞). Comparison of Tc,MFA(a) with our MC results shows
that the discrepancy is really systematic for all intermediate cases. Although this
error is rather large, its systematic character strongly suggests that the physics
of the crossover is already well taken into account by the MFA.

Let us analyse the function gT (E) describing the auxiliary ensemble of the
uncoupled on-site oscillators in more detail. Let us stress the following points:

1. The variation of Tc with a is within MFA entirely given by the slope of the
function gT (η) at η = 0.

2. Unlike the on-site potential v(x), the function gT (E) at finite temperature
is a smooth monotonic odd function (see Figure 5) at any T, a [10]. Both
gT (E) and its inverse g−1

T (η) can be expanded in Taylor series:

gT (E) =
∞
∑

i=1

χ2i−1(T )E2i−1, g−1

T (η) =
∞
∑

i=1

ξ2i−1(T )η2i−1 (14)

3. The function g−1

T (η) can be identified with the derivative of its free energy
F (η, T ), which can thus be written in the form

F (η, T ) = F (0, T ) +
∞
∑

i=1

ξ2i−1(T )

(2i)
η2i (15)

4. Obviously, the Taylor expansion coefficients of gT (E) and g−1

T (η) are related
(ξ1χ1 = 1, ξ3χ

3
1
+χ1ξ

3
3

= 0, etc.) This allows to express ξ2i−1(T ) in the limit
case of the weak anharmonicity (B << A′) by expanding gT (E) in powers
of B. With an accuracy O(B2) we obtain

ξ1(T ) = A′ +
3BT

A′
, ξ3(T ) = B . (16)

In the strongly anharmonic order-disorder limit (A′ < 0, T << A′2/B),
expressing gT (E) via averages < x2 >, < x4 > yields

ξ1(T ) =
BT

A′
, ξ3(T ) =

B2

3A′2
, ... . (17)
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5. Finally, let us note that in the weak anharmonicity case we can solve the
inverse problem - express the parameters of the on-site potential via the
first two free energy coefficients ξ1(T ), ξ3(T ). With the same accuracy as
(16)

A′ = ξ1(T ) − 3ξ3(T )T

ξ1(T )
, B = ξ3(T ) . (18)

3.3 Combined scheme

We have seen that the IMA predicts well the phase transition temperature in the
displacive limit, while MFA predicts rather well its variation with a. It would
be desirable to have an approximate equation of state for the system (1) that
combines the advantages of both above discussed approaches. The key idea of
our approach is the assumption of the existence of an effective potential (with
temperature dependent coefficients) for which the self-consistent phonon approx-
imation gives correctly the order parameter. In determining the coefficients of
such an effective potential, we use the properties of the free energy F (η, T ) (re-
spectively its derivative g−1

T (η)) of the auxiliary system of uncoupled anharmonic
oscillators discussed above.

More precisely, the self-consistent equation for η(T ) is constructed in three
steps, as follows:

1. We look for an effective on-site potential of the form

u(x) =
α′

2
x2 +

β

4
x4 (19)

where α′ and β are defined by the expressions that appear in the above
discussed inverse problem (18):

α′ = ξ1 −
3ξ3T

ξ1

, β = ξ3. (20)

This potential obviously coincides with v(x) in the weak anharmonic limit.

2. We introduce a function ξ1,eff(T, η), which allows to write g−1

T formally as a
finite polynomial:

g−1

T (η) ≡ ξ1,eff(T, η)η + ξ3(T )η3. (21)

These functions ξi,eff(T ) are used instead of ξ1(T ) in the definitions (20), so
that we have

α′ = ξ1,eff(T, η) − 3ξ3(T )T

ξ1,eff(T, η)
, β = ξ3(T ). (22)

Note that the potential u(x) still coincides with v(x) in the weak anharmonic
limit for small η, since ξ1,eff(T, η) goes to ξ1(T ) for η → 0.
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3. We consider eq. (2) and replace v(x) with coefficients A′ and B by an
expression u(x) with temperature-dependent coefficients α′ and β defined
in eq. (22). Then we apply IMA to this auxiliary system. The eq. (9) then
becomes

[

ξ1,eff(T, η) − 12C +
ξ3(T )T

Cκ
− 3ξ3(T )T

ξ1,eff(T, η)

]

η + ξ3(T )η3 = 0. (23)

This equation is to be solved together with formulae (21) and (11), defining
ξ1,eff and gT , respectively. The value of ξ3(T ), entering these equations, is
given by the series (14).

For the calculation of the phase transition temperature only, the second step
can be omitted. It is obvious from its construction that the suggested method
provides the same (exact) result for the Tc in the displacive limit as the usual
IMA. In the extreme order-disorder limit, the value of Tc defined by (23) can
be obtained analytically using (17). The resulting value of Tc overestimates the
known Ising value by less then 7%. The principal advantage of the modified
approach is that it allows to calculate the Tc (and η(T )) with the above or better
accuracy for all values of a, as it can be seen from the comparison with our
MC data (Figure 6). The MC result for η2(T ) is satisfactorily described as well
(Figure 7).

4. DISCUSSION

Let us analyze the proposed model in comparison with the standard decoupling
schemes. The latter treat the system as a gas of elementary excitations, which
are supposed to interact weakly. The assumption of weak interaction allows to
replace the interaction between the elementary excitations with an interaction
with an average field. Choice of the elementary excitations as the plane waves or
on-site oscillators yields IMA or MFA, respectively. It is clear, however, that the
assumed weakness of the interaction is actually not realized for the general case,
no matter what elementary excitations we choose.

The main advantage of our approach is that it virtually replaces the real
strongly-correlated system (1) with an auxiliary one, which allows decoupling.
It is also worth noting that the theory is carried out in terms of gT (η), which is
always a smooth monotonic function. Moreover, gT (η) does not change drastically
when a is varied from 0 to +∞ - the calculation of parameters ξ1 and ξ3 at Tc shows
that their dimensionless values lie within the relatively narrow ranges 9.7...12 and
0...4, respectively. Therefore the replacement procedure works uniformly well for
all values of the parameters.

It would be interesting to investigate possible extensions to higher-order
terms. A systematic extension of the present method should contain a larger
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number of terms in the effective on-site potential (19) and in the expression for
the function g−1

T (η) in (22), and solve the self-consistent equation for the auxiliary
system more accurately than (23).

As a simplification we can consider a purely linear auxiliary system, i.e.

neglect the β term in (19) and ξ3(T ) in (22). We obtain g−1

T (η) ≡ ξ1,eff(T, η)η
and (23) then reduces simply to the mean-field equation of state g−1

T (η) = 12Cη.
Therefore, the scheme proposed here can also be considered as a generalization
of the mean field approximation.

Our method can be applied to more complicated models for which the
self-consistent phonon theory is exact in the weak anharmonic limit. This is
particularly interesting for the analysis of the DIFFOUR model [12] in which the
additional second neighbour harmonic coupling shows a phase transition to an
incommensurate phase for which the MC calculations are much more difficult.

5. CONCLUSIONS

We have studied the crossover from a displacive to an order-disorder phase tran-
sition in the discrete φ4 model with first-neighbour coupling.. The crossover is
governed by the single parameter a. Quantitative information about Tc(a) and
η(T, a) in this simple model may be helpful in elucidating the behaviour of some
real crystals with phase transitions of a mixed displacive and order-disorder type.

In terms of the dimensionless parameter a we determined the change of
the transition temperature by Monte-Carlo calculations. These show a crossover
from the displacive to the order-disorder limit.

Monte Carlo calculations have shown an excellent agreement for Tc in the
two limit cases in which exact results are known. We expect that the same
precision is obtained for the intermediate region. Thus, the presented Monte
Carlo results can be taken as quite reliable estimates of Tc(a) with a precision of
the order of 1% and we believe that a comparable precision was achieved for the
temperature dependence of the order parameter (except in the critical region in
the vicinity of the phase transition).

We have presented an analytical approach, which goes beyond the conven-
tional decoupling schemes. For this, we introduce the auxiliary array of oscillators
that (i) can be treated in the independent-mode approximation and (ii) yields
approximately the same values of Tc and the order parameter, as the real system.
The method combines the equation of state of the self-consistent phonon theory
with the response function of the system of uncoupled anharmonic oscillators
used in the the mean-field theory. It can be presented as a generalization of the
mean-field scheme.
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The analytical results for Tc agree with Monte-Carlo simulations with about
5% accuracy. Further improvement could possibly come from higher order terms
in the expansion we have used. The formalism can be used to study incommen-
surate phase transitions as well.
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Figure captions

Fig.1 The critical temperature vs. ln a. The curve shows the mean-field
result; thin horizontal lines show the asymptotic values of Tc. Results of previous
Molecular-Dynamics [5, 3] and Monte-Carlo [4] calculations are plotted with filled
and open circles, respectively.

Fig.2 The role of the finite size of the system studied numerically. Numerical
data for the square of the order parameter plotted as a function of T . Filled
circles: 5×5×5 oscillators; open circles: 15×15×15 oscillators. Both results are
obtained for a = 5 in eq. (7) by averaging over 3000 realizations at each point.
The solid line shows the interpolation used to obtain Tc.

Fig.3 The temperature dependence of the square of the order parameter for
values of a varying from 0.98 to 4000. There is a factor

√
2 between the a values

for the neighbouring curves. The data are obtained using eq. (7) by averaging
over 1000 realizations at each point; the relative amount of ”magic” steps is 0.02.

Fig.4 Numerical results for the critical temperature Tc vs. ln a. The values
of Tc are extracted from the data presented in Fig.3. Thin horizontal lines show
the asymptotic values of Tc.

Fig.5 Typical dependence of g−1

T (η) at small a (solid line) and large a
(dashed line).The inset shows the on-site potential for both cases. (Calculated
for (6)with T = 5 and a = 1 and 100, respectively.)

Fig.6 Numerical data for Tc(ln a) compared with results of calculations by
equations (23,11,21) (the solid line). The mean-field approximation is given by
the dashed line.

Fig.7 The temperature dependence of the square of the order parameter at
several values of a(= 0.98, 3.9, 15.6, 62.5, 250, 1000, 4000). Tc grows with increas-
ing a: numerical data (points) and calculation from (23,11,21) (lines).
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