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Abstract

Bi-level optimisation problems have gained increasing interest in the
field of combinatorial optimisation in recent years. With this paper, we
start the runtime analysis of evolutionary algorithms for bi-level optimisa-
tion problems. We examine two NP-hard problems, the generalised mini-
mum spanning tree problem (GMST), and the generalised travelling sales-
man problem (GTSP) in the context of parameterised complexity.

For the generalised minimum spanning tree problem, we analyse the
two approaches presented by Hu and Raidl (2012) with respect to the num-
ber of clusters that distinguish each other by the chosen representation of

1

ar
X

iv
:1

40
1.

19
05

v1
  [

cs
.N

E
] 

 9
 J

an
 2

01
4



possible solutions. Our results show that a (1+1) EA working with the
spanning nodes representation is not a fixed-parameter evolutionary algo-
rithm for the problem, whereas the global structure representation enables
to solve the problem in fixed-parameter time. We present hard instances for
each approach and show that the two approaches are highly complemen-
tary by proving that they solve each other’s hard instances very efficiently.

For the generalised travelling salesman problem, we analyse the prob-
lem with respect to the number of clusters in the problem instance. Our
results show that a (1+1) EA working with the global structure representa-
tion is a fixed-parameter evolutionary algorithm for the problem.

1 Introduction

Many interesting combinatorial optimisation problems are hard to solve and
meta-heuristic approaches such as local search, simulated annealing, evolu-
tionary algorithms, and ant colony optimisation have been used for a wide
range of these problems.

In recent years, researchers became very interested in bi-level optimisation
for single-objective (Koh, 2007; Legillon et al., 2012) and multi-objective prob-
lems (Deb and Sinha, 2009, 2010). Such problems can be split up into an upper
and a lower level problem which depend on each other. By fixing a possible
solution for the upper level problem, the lower level is optimised with respect
to the given objective and the constraints imposed by the choice of the upper
level.

Recently, Hu and Raidl (Hu and Raidl, 2011, 2012) have proposed two dif-
ferent approaches for the generalised minimum spanning tree problem (GM-
STP). Both approaches work with an upper layer and a lower layer solution.
The upper layer solution x is evolved by an evolutionary algorithm whereas
the optimal solution y of the lower layer problem corresponding to a partic-
ular search point x of the upper layer can be found in polynomial time using
deterministic algorithms.

Our goal is to understand the two different approaches by parameterised
computational complexity analysis (Downey and Fellows, 1999). The compu-
tational complexity analysis of meta-heuristics plays a major role in the theoret-
ical analysis of this type of algorithms and studies the runtime behaviour with
respect to the size of the given input. We refer the reader to (Auger and Doerr,
2011; Neumann and Witt, 2010) for a comprehensive presentation. Parame-
terised complexity analysis takes into account the runtime of algorithms in de-
pendence of an additional parameter which measures the hardness of a given
instance. This allows us to understand which parameters of a given NP-hard
optimization problem make it hard or easy to be optimised by heuristic search
methods. In the context of evolutionary algorithms, the term fixed-parameter
evolutionary algorithms has been defined in (Kratsch and Neumann, 2013). An
evolutionary algorithm is called a fixed-parameter evolutionary algorithm for
a given parameter k iff its expected runtime is bounded by f(k) ·poly(n) where
f(k) with respect to the input size n. Parameterised computational complex-

2



ity analysis of evolutionary algorithms have been carried out for the vertex
cover problem (Kratsch and Neumann, 2013), the computation of maximum
leaf spanning trees (Kratsch et al., 2010), makespan scheduling (Sutton and
Neumann, 2012b), and the travelling salesperson problem (Sutton and Neu-
mann, 2012a).

We push forward the parameterised analysis of evolutionary algorithms
and present the first analysis in the context of bi-level optimization. In our
investigations, we take into account the two NP-hard problems the gener-
alised minimum spanning tree problem (GMSTP) and the generalised travel-
ling salesman problem (GTSP) which share the parameter, number of clusters
m. We consider two different bi-level representations for GMTSP which both
have a polynomially solvable lower level part. For the Spanning Nodes Repre-
sentation, we present worst case examples which show that there are instances
leading to an optimization time of Ω(nm). For the Global Structure Representa-
tion, we show that it leads to a fixed-parameter evolutionary algorithm with
respect to the number of clusters m. Furthermore, we present an instance class
where the algorithm using the Global Structure Representation encounters an op-
timization time of mΩ(m). Analysing both approaches on each others worst-
case instances, we show that they solve them very efficiently. This shows the
complementary abilities of these two representations for the GMSTP. Then we
extend our results for Global Structure Representation to GTSP to show that a
similar algorithm has an expected optimisation time of mΩ(m) for this problem
as well.

The paper is divided into two main parts according to the two different
problems. The first part (based on the conference version (Corus et al., 2013))
where the GMSTP problem is investigated is presented in Section 2. We show
hard instances for the Spanning Nodes Representation in Section 2.2 and show
that a simple evolutionary algorithms needs exponential time even if the num-
ber of clusters is small. In Section 2.3, we examine the Global Structure Repre-
sentation and show that this leads to fixed-parameter evolutionary algorithms
for GMSTP. We point out complementary abilities in Section 2.4. This arti-
cle extends the conference version (Corus et al., 2013) by investigations of the
GTSP and some generalizations. We examine the GTSP problem with the cor-
responding Global Structure Representation in Section 3 and provide upper and
lower bounds on the optimisation time of the considered algorithm. Further-
more, we point out in Section 4 general characteristics which allows this fixed-
parameter result to be extended to other problems.

2 Generalised Minimum Spanning Tree Problem

In this section, we consider the GMSTP problem and provide the runtime anal-
ysis with respect to bi-level representations given in (Hu and Raidl, 2011, 2012).
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2.1 Preliminaries

We consider the generalised minimum spanning tree problem (GMSTP) intro-
duced in (Myung et al., 1995). The input is given by an undirected complete
graph G = (V,E, c) on n nodes with a cost function c : E → R+ that assigns
positive costs to the edges. Furthermore, a partitioning of the node set V into
m pairwise disjoint clusters V1, V2, . . . , Vm is given such that n =

∑m
i=1 |Vi|.

A solution to the GMSTP problem consists of two components, the m cho-
sen nodes P , called the spanning nodes, in the m clusters, and a minimum span-
ning tree T on the graph induced by the spanned nodes. More precisely, a
solution S = (P, T ) consists of a node set P = (p1, . . . , pm) ∈ V m, where
V m = V1 × V2 × · · · × Vm and a spanning tree T ⊆ E on the subgraph G[P ] =
G(P, {e ∈ E | e ⊆ P}) induced by P . The cost of T is the cost of the edges in T ,
i. e.,

C(T ) =
∑

(u,v)∈T

c(u, v).

The goal is to compute a solution S∗ = (P ∗, T ∗) which has minimal cost
among all possible solutions S = (P, T ). For an easier presentation, we assume
in some cases that edge costs can be ∞. In this case, we restrict our investi-
gations to solutions that do not include edges with cost∞. Alternatively, one
might view this as the GMSTP defined on a graph that is not necessarily com-
plete.

The GMSTP problem is NP-hard (Myung et al., 1995) and two different bi-
level evolutionary approaches have been examined in (Hu and Raidl, 2012).
The first approach presented in (Hu and Raidl, 2012) uses the Spanned Nodes
Representation. It selects in the upper level problem a node for each cluster
and computes on the lower level a minimum spanning tree (using for example
Kruskal’s algorithm in time O(m logm)) on the induced subgraph.

The second approach uses the Global Structure Representation. It constructs a
complete graph H = (V ′, E′) from the given input graph G = (V,E, c) and the
set of pair-wise disjoint clusters V1, V2, . . . , Vm. The node vi ∈ V ′, 1 ≤ i ≤ m,
corresponds to the cluster Vi in G. The search space for the upper level consists
of all spanning trees of H and the spanned nodes of the different clusters are
selected in time O(n2) using the dynamic programming approach of Pop (Pop,
2004).

For our theoretical investigations, we measure the runtime of the algo-
rithms by the number of fitness evaluations required to obtain an optimal solu-
tion. We call this the optimization time of the examined algorithm. The expected
optimization time refers to the expected number of fitness evaluations until an
optimal solution has been obtained for the first time.

2.2 Spanned Nodes Representation

We analyse the cluster based (1+1) EA in this section. Our first theorem shows
that this algorithm is an XP-algorithm (Downey and Fellows, 1999), i. e. an al-
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gorithm that runs in time O(ng(m)) where g(m) is a computable function only
depending on m, when choosing the number of clusters m as a parameter.

Theorem 1. For any instance of the GMSTP problem, the expected time until the
cluster based (1+1) EA reaches the optimal solution is O(nm).

Proof. For any search point x, let w(x) ∈ [m] denote the number of clusters
where the spanned node representation includes a suboptimal node. If the
algorithm chooses all w(x) suboptimal clusters for mutation and selects the
optimal node in each of them, then the optimal solution is obtained. Since
w(x) ≤ m, the probability that all suboptimal clusters are mutated in a single
step is at least (1/m)m. The probability of choosing the optimal node in cluster
i is 1/|Vi|. Thus, the probability of jumping to the optimal solution from any
search point is at least

(m)−m
m
∏

i=1

|Vi|−1.

Since
∑m

i=1 Vi = n, it holds that

m
∏

i=1

1

|Vi|
≥ (m/n)m.

Therefore, the probability of reaching the optimal solution in one step is Ω(n−m),
and the expected time to reach the optimal solution is bounded from above by
O(nm).

We now consider an instance of GMSTP which is difficult for the cluster
based (1+1) EA. The hard instance GS for the Spanning Nodes Representation is
illustrated in Figure 1. It consists of m clusters, where one cluster is called the
central cluster, and the m − 1 other clusters are called peripheral clusters. Each
cluster contains n/m nodes and we assume that n = m2 holds. The nodes
in the peripheral clusters are called peripheral nodes, and the nodes in the
central cluster are called central nodes. Within each cluster, one of the nodes
is called optimal, and is marked black in the figure. The remaining (n/m) − 1
nodes are called sub-optimal nodes, and are marked white in the figure. The
instance is a bi-partite graph, where edges connect peripheral nodes to central
nodes. The cost of any edge between two optimal nodes is 1, the cost of any
edge between two suboptimal nodes is 2. The cost of any edge between a
suboptimal peripheral node and the optimal central node is n2, and the cost of
any edge between an optimal peripheral node and a suboptimal central node is
n. A cluster is called optimal in a solution, if the solution has chosen the optimal
node in that cluster.

Theorem 2. Starting with an initial solution chosen uniformly at random, the ex-
pected optimization time of the cluster based (1+1) EA on GS is Ω(nm).

Furthermore, for any constant ǫ > 0, the probability of having obtained an optimal
solution after at most n(1−ǫ)m iterations is e−Ω(m).
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Figure 1: Hard instance GS for Spanning Node Representation.

Proof. We define two phases for the run of the (1+1) EA. The first phase consists
of the first n − 1 iterations while the second phase starts at the end of the first
phase and continues for nm/12 iterations. Four distinct events are considered
failures during the run of the (1+1) EA for the instance described above.

1. The first failure occurs if during the first phase of the run, the algorithm
obtains a search point with less than m/6 sub-optimal peripheral clusters.

2. The second type of failure occurs when the central cluster fails to switch
to a suboptimal node at least once during the first phase.

3. The third type of failure occurs when the algorithm does not switch all
the optimal peripheral clusters to suboptimal clusters during the second
phase.

4. The fourth failure corresponds to a direct jump to the optimal solution
during the second phase.

We first show that the probability of the first failure event is at most exp(−m
12 ).

This implies that with overwhelmingly high probability, a constant fraction of
peripheral clusters is always suboptimal during the first n − 1 iterations. For
i ∈ [m−1] and t ≥ 0, let Zi(t), be a random variable such that Zi(t) = 1 if cluster
Vi is always sub-optimal in iteration 0 through iteration t, and Zi(t) = 0 other-
wise. The probability that a suboptimal node is selected in the initial solution
is 1−m/n. In the following iterations, the probability that a cluster is selected
for mutation and that its new spanned node is optimal is (1/m)(m/n) = 1/n.
So it is clear that

Pr (Zi(t) = 1) ≥ (1−m/n)(1− 1/n)t.

By linearity of expectation,

E

[

m−1
∑

i=1

Zi(t)

]

≥ (m− 1)
(

1− m

n

)

(

1− 1

n

)t

.
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Considering a phase length of t = n − 1, and assuming that m is sufficiently
large and n = m2 holds, we get

E

[

m−1
∑

i=1

Zi(t)

]

≥ m

3
.

Finally, a Chernoff bound (Motwani and Raghavan, 1995) implies that

Pr

(

m−1
∑

i=1

Zi(t) ≤
(

1− 1

2

)

m

3

)

≤ exp (−m/12) .

We then show that the probability of the second failure event is exp(−Ω(√n)).
In each iteration the probability to switch the central cluster to a suboptimal
node is at least

p =
1

m

(

1− m

n

)

= Ω

(

1√
n

)

.

The probability that this event does not occur in n− 1 steps is

(1− p)n−1 =
(

(1− p)1/p
)(n−1)p

≤ exp(−p(n− 1)) = exp(−Ω(
√
n)).

Now, we show that the probability of the third failure event is less than
n−m/12, assuming that the first two failure events do not occur. As long as the
central cluster remains suboptimal, switching a suboptimal node in a periph-
eral cluster to an optimal node will result in an extra cost of n− 2. Conversely,
switching an optimal peripheral cluster into a sub-optimal cluster will decrease
the cost by n− 2. As long as there is at least one suboptimal peripheral cluster,
making the central cluster optimal will incur an extra cost of at least n2 − 2.
So, during phase two, the algorithm can not make any suboptimal cluster op-
timal unless all suboptimal clusters are made optimal in the same iteration.
The probability of making at least m/6 suboptimal peripheral clusters optimal
simultaneously is at most

(

1

m
· m
n

)m/6

=

(

1

n

)m/6

.

Since the probability to jump to the optimal solution is at most n−m/6 in
each iteration, it holds by the union bound that the probability of failure event
three is at most

n−m/6nm/12 = n−m/12.

Finally, we show that the probability of failure event four is O(n−m/13).
The probability that an optimal peripheral cluster is made suboptimal by the
(1+1) EA is at least

1

m
· n−m

n
·
(

1− 1

m

)m−1

≥ 1

3m
.
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The expected time E[T sub] until all peripheral clusters have become subopti-
mal is therefore at most m · 3m = O(m2). Considering a phase of length nm/12

and taking into account m2 = n, it holds by Markov’s inequality that the prob-
ability of a type four failure is

Pr
(

T sub > nm/12
)

≤ O(m2)n−m/12 = O(n−m/12+4).

By union bound, the probability that any type of failure occurs is less than
the sum of their independent probabilities, which is e−Ω(m). Hence, with over-
whelmingly high probability, after the second phase, the algorithm has ob-
tained a locally optimal solution where all peripheral clusters are sub-optimal.
After that iteration, the probability to jump directly to the optimal solution is
n−m, and the expected time for this event to occur is nm.

Let E be the event that no failure occurs. Then, the first statement of the
theorem follows by the law of the total probability,

E [T ] ≥ E [T |E] Pr (E)

= Ω(nm)(1− e−Ω(m))

= Ω(nm).

Furthermore, by union bound, it holds that

Pr
(

T < n(1−ǫ)m | E
)

≤ n(1−ǫ)mn−m = n−ǫm.

Hence, the second statement of the theorem follows by the law of total proba-
bility

Pr
(

T < n(1−ǫ)m
)

= Pr
(

T < n(1−ǫ)m | E
)

Pr (E)

+ Pr
(

T < n(1−ǫ)m | E
)

Pr
(

E
)

≤ Pr
(

T < n(1−ǫ)m | E
)

+ Pr
(

E
)

≤ n−ǫm + e−Ω(m) = e−Ω(m).

Our results for the Spanned Nodes Representation show that the cluster based
(1+1) EA obtains an optimal solution in time O(nm) and our analysis for the
hard instance GS shows that this bound is tight.

2.3 Global Structure Representation

The second approach examined in (Hu and Raidl, 2012) uses the Global Struc-
ture Representation. It works on the complete graph H = (V ′, E′) obtained from
the input graph G = (V,E, c). The node vi ∈ V ′, 1 ≤ i ≤ m, represents the
cluster Vi of G.

8



Algorithm 1 Tree based (1+1) EA

Choose a spanning tree T of H .
Apply dynamic programming to find the minimum spanned nodes P =
(p1, . . . , pm) induced by T .
while termination condition not satisfied do
T ′ ← T
for i ∈ [K] where K ∼ Pois(1) do

Sample edge e ∼ Unif (E′ \ T )
Sample edge e′ ∼ Unif(edges in cycle in T ′ ∪ {e})
T ′ ← T ′ ∪ {e} \ {e′}

end for
Apply dynamic programming to find a set of spanned nodes P ′ =
(p′1, . . . , p

′

m) with respect to T ′ of minimal cost.
if
∑

(i,j)∈T ′ c(p′i, p
′

j) ≤
∑

(i,j)∈T c(pi, pj) then

P ← P ′

T ← T ′

end if
end while

The upper level solution in the Global Structure Representation is a spanning
tree T of H and the lower level solution is a set of nodes P = (p1, . . . , pm) with
pi ∈ Vi that minimises the cost of a spanning tree which connects the clusters
in the same way as T . Given a spanning tree T of H , the set of nodes P can be
computed in time O(n2) using dynamic programming (Pop, 2004).

We consider the tree based (1+1) EA outlined in Algorithm 1. It starts with
a spanning tree T of H that is chosen uniformly at random. In each iteration, a
new solution T ′ of the upper layer is obtained by performing K edge-swaps to
T . Here the parameter K is chosen according to the Poisson distribution with
expectation 1. In one edge swap, an edge e currently not present in the solution
is introduced and an edge from the resulting cycle is removed such that a new
spanning tree of H is obtained. After having produced the offspring T ′, the
corresponding set of nodes P ′ is computed using dynamic programming. P
and T are replaced by P ′ and T ′ if the cost of the new solution is not worse
than the cost of the old one.

In the following, we show that the tree based (1+1) EA is a fixed-parameter
evolutionary algorithm for the GMSTP problem when considering the number
of clusters m as the parameter. We do this by transferring the result of (Pop,
2004) to the tree based (1+1) EA.

Theorem 3. The expected time of the tree based (1+1) EA to find the optimal solution
for any instance of the GMSTP problem is O(m3(m−1)). Furthermore, for any k ≥ 1,
the probability that an optimal solution is not found within ekm3(m−1) steps is less
than exp(−k).
Proof. An upper layer solution is a tree T of H . Let T ∗ be any tree of H for
which there exists a set P ∗ of spanning nodes such that T ∗ and P ∗ form an

9



v11

v12
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vm1

1

1 + 1
2m

1

1 + 1
2m

1/2

Figure 2: Hard instance GG for Global Structure Representation. Edges not shown
have weight∞.

optimal solution. For any non-optimal solution T , define w((T ) as the number
of edges in T ∗ which are missing in T .

The mutation operator can convert a non-optimal solution T into the opti-
mal solution T ∗ with a sequence of w((T ) ≤ m − 1 edge exchange operations.
The probability that the mutation operator exchanges w((t) ≤ m − 1 edges in
one mutation step is at least

Pr (Pois(1) = m− 1) = 1/e(m− 1)!.

In each exchange operation, if there are i optimal edges missing, then the
probability that one of the missing optimal edges is inserted is at least i/m2. Af-
ter the addition of an optimal edge, the probability of excluding a non-optimal
edge is at least 1/m since the largest cycle cannot be longer than m. At most
m−1 non-optimal edges must be exchanged in this manner. So the probability
that the non-optimal solution T will be converted to the optimal solution T ∗ in
one mutation step is at least

1

e(m− 1)!
·
m−1
∏

i=1

i

m2
· 1
m
≥ (1/e)m−3(m−1).

So, the expected time to achieve an optimal solution is in O(m3(m−1)). Fur-
thermore, the probability that the optimal solution has not been created after
ekm3(m−1) iterations is

(1− (1/e)m−3(m−1))ekm
3(m−1) ≤ exp(−k).

We now present an instance which is hard to be solved by the tree based
(1+1) EA. The instance GG, illustrated in Figure 2, consists of n nodes and m
clusters. There are two central clusters denoted by V1 and V2. The cluster
V1 contains the two nodes v11 and v12. The remaining clusters Vi, 2 ≤ i ≤

10



m, contain a single node vi1 each. The edges that connect the nodes v11 to
the peripheral cluster nodes have cost 1. The edges that connect v21 to the
peripheral clusters have weight 1 + 1/2m. The edge that connects v12 and
v21 have weight 1/2. All other edges have cost ∞. Hence, if the tree based
(1+1) EA connects cluster V1 and V2, then the dynamic programming algorithm
will choose node v12.

In our analysis, we will use the following lemma on basic properties of the
Poisson distribution with expectation 1.

Lemma 4. If K ∼ Pois(1), then Pr (K ≥ n) < 2(e/n)n.

Proof. Using Stirling’s approximation of the factorial,

n! >
√
2πn(n/e)n > (n/e)n.

we obtain the simple bound

Pr (K ≥ n) =

∞
∑

i=n

1

ei!

<

∞
∑

i=n

1

i!

<
∞
∑

i=n

1

n!

(

1

n+ 1

)i−n

< (e/n)n
∞
∑

i=0

(

1

n+ 1

)i

= (e/n)n
(

1 +
1

n

)

.

Using the previous lemma, we are able to show that the tree based (1+1) EA
finds it hard to optimize GG when choosing spanning tree uniformly at random
among all spanning trees having weight less then∞.

Theorem 5. Starting with a spanning tree chosen uniformly at random among all
spanning trees that have cost less than ∞, the expected optimization time of the tree
based (1+1) EA on GG is Ω((m/e)m−1).

Proof. Consider the instance in Figure 2. In the following, edge e := {v12, v21}
is the edge which connects the two central clusters. The optimal solution cor-
responds to the spanning tree which includes edge e, and where all all other
clusters are connected to cluster V2. The solution where all peripheral clusters
are connected to V1, and where cluster V2 is connected to one of the peripheral
clusters, is a local optimum.

We define four failure events that can occur during a run of the (1+1) EA on
this instance.
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1. The first type of failure occurs when the initial solution includes edge e.

2. The second type of failure occurs when less than m/3 of the peripheral
clusters are connected to cluster V1 in the initial solution.

3. The third type of failure occurs when the algorithm jumps directly to the
optimal solution during the first ((m− 2)/3e)(m−2)/6 iterations.

4. Finally, the fourth type of failure occurs if after iteration ((m−2)/3e)(m−2)/6,
there exists a peripheral cluster which is not connected to cluster V1.

There are m− 2 peripheral clusters which must be connected to either V1 or
V2. Additionally, cluster V1 and V2 must be connected. This connection can be
established either by adding edge e = (v12, v21), or by connecting a peripheral
cluster to both V1 and V2. There are 2m−2 spanning trees which contain edge
e, and (m − 2) · 2m−3 spanning trees which do not contain edge e since one
of the m − 2 peripheral clusters will be connected to both central clusters and
the others will be connected to only one. So, the probability that a uniformly
chosen spanning tree includes edge e is O(1/m), which is the probability of the
first type of failure.

Now, we show that the probability of the second type of failure is at most
exp(−Ω(m)). Considering that the probability of a specific cluster is adjacent
to V1 in the initial solution is larger than 1/2, the probability that less than
(m− 2)/3 clusters are connected to cluster V1 in the initial solution is bounded
by exp(−Ω(m)) using a Chernoff bound.

Assuming that type one and type two failures did not occur, the algorithm
cannot accept new search points where a cluster which is originally connected
to V1 is instead connected to V2 since it will create an extra cost of 1/2m. The
only exception is if a type three failure occurs, i. e. the algorithm jumps directly
to the optimal solution where all the peripheral clusters are connected to V2.
For a type three failure to occur, at least (m− 2)/3 clusters have to be modified
simultaneously. Therefore, using Lemma 4, the probability of jumping directly
to the optimal solution in a single step is bounded from above by

2(3e/(m− 2))(m−2)/3.

Taking a phase length of ((m − 2)/3e)(m−2)/6 into account, the probability
of a type three failure can be bounded from above using the union bound, as

((m− 2)/3e)(m−2)/62(3e/(m− 2))(m−2)/3 = (m/e)−Ω(m).

Now, it will be shown that the probability of a type four failure is e−Ω(m).
The probability that a single peripheral cluster which is connected to V2 is
switched to V1 is bounded from below by

1

3
· 1
e
· 1

(m2 − (m− 1))
= Ω(1/m2).
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Thus, the expected time between any such event is O(m2), and the expected
time until all of the at most m − 2 peripheral clusters are connected to V1 is
E [T ′] = O(m3). By Markov’s inequality, it holds for any nonnegative random
variable X that

Pr (X ≥ k) ≤ E [X]

k
.

The probability that it takes longer than

k = ((m− 2)/3e)(m−2)/6

iterations is therefore no more than

E [T ′]

k
= O(m3) · ((m− 2)/3e)−(m−2)/6 = (m/e)−Ω(m).

This proves our claim about the probability of failure event four.
If none of the above mentioned failures occur, we reach the local optimum

where all the peripheral clusters are connected to cluster V1. From this point
on, the probability to jump to the optimal solution is by Lemma 4 no more than

2(e/(m− 1))m−1

because it is necessary to make at least m − 1 edge exchanges to reach the
optimum. The expected time to reach the optimal solution conditional on no
failure is therefore more than (1/2)(m/e)m−1.

Let R be the event that no failure occurs. By the law of total probability, it
follows that the expected time E [T ] to reach the global optimum is

E [T ] ≥ E [T |R] Pr (R)

= Ω((m/e)m−1)(1−O(1/m))

= Ω((m/e)m−1).

The previous theorem shows that there are instances for the cluster based
(1+1) EA where the optimization time grows exponentially with the number of
clusters. In the next section, we will compare the two different representations
for GMSTP and show that they have complementary capabilities.

2.4 Complementary Abilities

The two representations examined in the previous sections significantly differ
from each other. They both rely on the fact that there is a deterministic algo-
rithm which solves the lower level problem in polynomial time. In this section,
we want to examine the differences between the two approaches. We show
that both representations have complementary abilities and do this by examin-
ing the algorithms on each others hard instance. Surprisingly, we find out that
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the hard instance for one algorithm becomes easy to solve when giving it as an
input to the other algorithm.

In Section 2.2, we have shown a lower bound of Ω(nm) for the cluster based
(1+1) EA using the Spanning Node Representation. The hard instance GS for the
cluster based (1+1) EA given in Figure 1 consists of a central cluster to which
all the other clusters are connected. There are no other connections between
the clusters. Hence, there is only one spanning tree when working with the
Global Structure Representation. The dynamic programming algorithm that runs
on the lower layer of the tree based (1+1) EA therefore solves the problem in
its first iteration.

The following theorem shows that these instances are easy to be optimised
by the tree based (1+1) EA.

Theorem 6. The tree based (1+1) EA solves the instance GS in expected constant
time.

Proof. There is only a single tree over the cluster graph. Hence, the algorithm
selects the optimal tree in the initial iteration.

For the tree based (1+1) EA, working with the Global Structure Representa-
tion, we showed that it finds the instance GG given in Figure 2 hard to solve.
Working with the Spanning Nodes Representation, there is only one cluster that
consists of two nodes where all the other clusters contain exactly one node.
Hence, an optimal solution is obtained by computing a minimum spanning
tree on the lower level if the right node in the cluster of two nodes is chosen.
The following theorem summarises this and shows that this instance become
easy when working with the cluster based (1+1) EA.

Theorem 7. The cluster based (1+1) EA solves the instance GG in expected time
O(m).

Proof. Cluster V1 contains two nodes, and all other clusters contain a single
node. If the initial solution is not already the optimal solution, the correct node
of V1 has to be selected using mutation. The node for the cluster V1 is changed
with probability 1/m and in such a step the correct node is selected with prob-
ability 1/2. Hence, the probability of a mutation leading to an optimal solution
is at least 1

2m and the expected waiting time for this event is O(m).

The investigations in this section show that the two examined representa-
tions have complementary abilities. Switching from one representation to the
other one can significantly reduce the runtime.

3 Generalised Travelling Salesman Problem

We now turn our attention to the NP-hard generalized traveling salesperson
problem (GTSP). Given a complete graph G = (V,E, c) with a cost function
c : E → R

+ and a partitioning of the node set V into m clusters Vi, 1 ≤ i ≤ m,
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Algorithm 2 Tour-based (1+1) EA

1: Choose a random permutation π (which is also a Hamiltonian tour) of the
m given clusters.

2: Find the set of nodes P (one node in each cluster) to build the shortest
path possible among those clusters with the given order, by means of any
shortest path algorithm in time O(n3).

3: while termination condition not satisfied do
4: π′ ← π
5: for i ∈ [K] where K ∼ 1 + Pois(1) do
6: Choose two nodes from π′ uniformly at random.
7: π′ ← Perform the Jump with the chosen nodes on π′

8: end for
9: Find the set of nodes P ′ = (p′1, . . . , p

′

m) which minimizes the cost with
respect to π′ in the lower level

10: if c(π′) ≤ c(π) then
11: P ← P ′

12: π ← π′

13: end if
14: end while

the goal is to find a cycle of minimal cost that contains exactly one node from
each cluster.

The bi-level approach that we are studying is similar to the one discussed in
the previous section. We investigate the Global Structure Representation which
works on the complete graph H = (V ′, E′) obtained from the input graph
G = (V,E, c). The node vi ∈ V ′, 1 ≤ i ≤ m, represents the cluster Vi of G.

The upper level solution in the Global Structure Representation is a Hamilto-
nian tour π on H and the lower level solution is a set of nodes P = (p1, . . . , pm)
with pi ∈ Vi that minimises the cost of a Hamiltonian tour which connects the
clusters in the same way as π. Given the restriction imposed by the Hamilto-
nian tour π of H , finding the optimal set of nodes P can be done in time O(n3)
by using any shortest path algorithm. One such algorithm is Cluster Optimi-
sation proposed initially by Fischetti et al (Fischetti et al., 1997) and is widely
used in the literature. Let π = (π1, . . . , πm) be a permutation on the m clusters
and pi be the chosen node for cluster Vπi

, 1 ≤ i ≤ m. Then the cost of the tour
π is given by

c(π) = c(pm, p1) +

m−1
∑

i=1

c(pi, pi+1).

Our proposed algorithm starts with a random permutation of clusters which
is always a Hamiltonian tour π, in a complete graph H . In each iteration, a new
solution π′ of the upper layer is obtained by the commonly used Jump operator
which picks a node and moves it to a random position in the permutation. The
number of jump operations carried out in a mutation step is chosen according
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to 1+Pois(1), where Pois(1) denotes the Poisson distribution with expectation
1. Although we are using the jump operator in these investigations, we would
like to mention that similar results can be obtained for other popular mutation
operators such as exchange and inversion.

Theorem 8. The expected optimization time of the tour based (1+1) EA is O(m!m2m).

Proof. We consider the probability of obtaining the optimal tour π∗ on the
global graph H from an arbitrary tour π. The number of Jump operations re-
quired is at most m (the number of clusters). The probability of picking the
right node and moving it to the right position in each of those m operations is
at least 1/m2. We can obtain an optimal solution by carrying out a sequence of
m jump operations where the ith operation jumps element π∗

i in π to position
i. Since the probability of Pois(1) + 1 = m is 1/(e(m− 1)!), the probability of a
specific sequence of m Jump operations to occur is bounded below by

1

e(m− 1)!
· 1

m2m
.

Therefore, the expected waiting time for such a mutation is

(

1

e(m− 1)!
· 1

m2m

)−1

= O(m!m2m)

which proves the upper bound on the expected optimization time.

Note that this upper bound depends on the number of clusters. Since
the computational effort required to assess the lower level problem is poly-
nomial in input size, O(n3), this implies that the proposed algorithm is a fixed-
parameter evolutionary algorithm for the GTSP problem and the parameter m,
the number of clusters.

So far we have found an upper bound for the expected time of finding an
optimal solution using the presented algorithm. In this section we will find a
lower bound for the optimization time. Figure 3 illustrates an instance of GTSP,
GG, for which finding the optimal solution is difficult by means of the pre-
sented bi-level evolutionary algorithm with Global Structure Representation.
In this graph, each cluster has two nodes. On the upper layer a tour for clusters
is found by the EA and on the lower layer the best node for that tour is found
within each cluster. All white nodes (which represent sub-optimal nodes) are
connected to each other, making any permutation of clusters a Hamiltonian
tour even if the black nodes are not used. All such connections have a weight
of 1, except for those which are shown in the figure which have a weight of 2.
All edges between a black node and a white node and also all edges between
black nodes have weight m2, except the ones presented in the figure which
have weight 1/m. An optimal solution of cost 1 uses only edges of cost 1/m
whereas local optimal solutions use only edges of cost 1. The tour compris-
ing all black nodes in the same order as illustrated in Figure 3 is the optimal
solution. Note that there are many local optimal solutions of cost m. For our
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Figure 3: Hard instance GG for GTSP with global structure representation

analysis it is just important that they do not share any edge with an optimal
solution.

The clusters are numbered in the figure, and a measure S for evaluating
cluster orders is based on this numbering: Let π = (π1, . . . , πm) represent the
permutation of clusters in the upper layer, then S(π) = |{i | π(i+1 mod m) =
(πi+1) mod m}| indicates the similarity of the permutation with the optimal
permutation. A large value of S(π) means that many clusters in π are in the
same order as in the optimal solution. Note that S(π∗) = m for an optimal
solution π∗. A solution π with S(π) = 0 is locally optimal in the sense that
there is no strictly better solution in the neighbourhood induced by the jump
operator. The solutions with S(π) = 0 form a plateau where all solutions differ
from the optimal solution by m edges.

We first introduce a lemma that will later help us with the proof of the lower
bound on the optimization time.

Lemma 9. Let π and π′ be two non-optimal cluster permutations for the instance GG.
If S(π′) > S(π) then c(π′) > c(π).

Proof. In the given instance, all white nodes are connected to each other with
a maximum weight of 2. These connections ensure that any permutation of
the clusters, can result in a Hamiltonian tour with a cost of at most 2m. More-
over, all connections between white nodes and black nodes have a weight of
m2. So the lower level will never choose a combination of white and black
nodes because the cost will be more than m2 while there is an option of select-
ing all white nodes with the cost of at most 2m. On the other hand, for any
permutation of clusters other than the Global Optimum, the lower level will
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not choose any black nodes, because it will not be possible to use all the 1/m
edges and some m2-weighted edges will be used again. Let a = S(π) be the
number of clusters adjacent to each other correctly from the right side (hav-
ing the same right-side neighbour as in the Global Optimum) in a solution π.
Then b = m − a is the number of clusters which have a different neighbour
on their right. If π is not the optimal solution, then the lower level will choose
all white nodes. As a result, a edges with weight 2 and b edges with weight
1 will be used in that solution; therefore, the total cost of solution π will be
c(π) = 2a + b = 2a + m − a = m + a. Consider a solution π′ with a′ = S(π′)
and S(π′) > S(π). We have c(π′) = m + a′ > m + a = c(π) which completes
the proof.

Lemma 9 shows that any non-optimal offspring π′ of a solution π is not
accepted if it is closer to an optimal solution π∗. This means that the algorithm
finds it hard to obtain an optimal solution for GG and leads to an exponential
lower bound on the optimization time as shown in the following theorem.

Theorem 10. Starting with a permutation of clusters chosen uniformly at random,
the optimisation time of the tour based (1+1) EA on GG is Ω((m2 )

m

2 ) with probability

1− e−Ω(m).

Proof. Considering GG illustrated in Figure 3, the optimal solution is the tour
comprising all edges with weight 1

m . We consider a typical run of the algorithm
consisting of a phase of T = Cm3 steps where C is an appropriate constant. For
the typical run we show the following:

1. A local optimum π with S(π) = 0 is reached with probability 1− e−Ω(m)

2. The global optimal solution is not obtained with probability 1−m−Ω(m)

Then we state that only a direct jump from the local optimum to the global
optimum is possible, and the probability of this event is O(m−m/2).

First we show that with high probability S(πinit) ≤ εm holds for the initial
solution πinit, where ε is a small positive constant.

We count the number of permutations in which at least εm, ε > 0 a small
constant, of cluster-neighbourhoods are correct.

We should select εm of the clusters to be followed by their specific neigh-
bour, and consider the number of different permutations of m− εm clusters:

(

m

εm

)

(m− εm)! (1)

Some solutions are double-counted in this expression, so the actual number
of different solutions with S(π) ≥ εm is less than (1). Therefore, the probability
of having more than εm clusters followed by their specific cluster, is at most

(

m

εm

)

(m− εm)!

m!
= ((εm)!)−1 = O

(

(εm

2

)−
εm

2

)
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Hence, with probability 1−O(( εm2 )−
εm

2 ), S(πinit) ≤ εm holds and the initial
solution has at at most εm correctly ordered clusters.

Now we analyze the expected time to reach a solution π with S(π) = 0. The
probability of a good ordering to change to a bad one is at least

(

1

e

)

·
(

k

m

)

·
(

m2 −m

m2

)k

where k is the number of edges which can be changed in each operation. For

jump operation k equals 3. For all m > 2, it holds that m < m2

2 , so the probabil-
ity above is at least

(

1

e

)

·
(

3

m

)

·
(

1

2

)3

= Ω(m−1)

Therefore, the expected time for each edge to be replaced with a bad edge
is in O(m) and for m edges it is in O(m2).

Now we consider a phase of T = Cm3 iterations and show that the local
optimum is reached with high probability.

Let C = 2C ′ and consider a phase of 2C ′m2 iterations while assuming that
the local optimum is expected to be reached in time C ′m2. Then by means of
Markov’s Inequality we have

Pr(T ′ > 2C ′m2) ≤ 1

2
.

Repeating this m times, the probability of not reaching the local optimum
is 2−m. Therefore, the algorithm reaches the local optimum with probability
1− 2−m = 1− e−Ω(m) during the phase of T = Cm3 steps.

To prove that with high probability, the global optimum is not reached dur-
ing the considered phase, note first that by Lemma 9, any jump to a solution
closer to the optimum other than directly to the Global Optimum will be re-
jected.

Furthermore, for the initial solution S(πinit) ≤ εm. Therefore, only non-
optimal solutions π with S(π) ≤ εm are accepted by the algorithm. In order to
obtain an optimal solution the algorithm has to produce the optimal solution
from a solution π with S(π) ≤ εm in a single mutation step. We now upper
bound the probability of such a direct jump which changes at least (1 − ε)m

clusters to their correct order. Such a move needs at least (1−ε)m
3 operations

in the same iteration. Taking into account that these Jump operations may be
acceptable in any order, the probability of a direct jump is at most

1

e
(

(1−ε)m
3

)

!
.

1

m
(1−ε)m

2

·
(

(1− ε)m

3

)

! = m−Ω(m). (2)

So in a phase of O(m3) iterations the probability of having such a direct
jump is by union bound at most m−Ω(m)+3 = m−Ω(m).
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So far we have shown that a local optimum π with S(π) = 0 is reached with
probability 1− e−Ω(m) within the first T = Cm3 iterations.

The probability of obtaining an optimal solution from a solution π with
S(π) = 0 is at most

1

e
(

m
3

)

!
· 1

m
m

2
·
(m

3

)

! = e−1 ·m−
m

2

We now consider an additional phase of (m2 )
m

2 steps after having obtained
a local optimum. Using the union bound, the probability of reaching the global
optimum in this phase is at most

(m

2

)
m

2 · e−1 ·m−
m

2 ≤
(

1

2

)
m

2

.

As a result, the probability of not reaching the optimal solution in these
(m2 )

m

2 iterations is 1− 2−
m

2 = 1− e−Ω(m). Altogether, the optimization time is

at least (m2 )
m

2 with probability 1− e−Ω(m).

4 Discussion of Generalisations

The problems we have examined in this work are bilevel optimisation prob-
lems where the upper level problem, namely the leader, and the lower level
problem, the follower, shares an objective function. The general bilevel opti-
misation problem also includes the setting where the leader and the follower
have different objectives. Given the decision of the leader, the follower makes
a decision according to his objective function which might be conflicting with
the objective function of the leader. An example of such a problem is where the
leader places toll booths across a road network and the followers try to find
the cheapest way from a point A to a point B by finding a path that avoids as
many toll booths as possible. Here, the leader can only learn the objective func-
tion value of its decision after the follower picks the optimum path. Unlike the
GMSTP and GTSP, the objective functions of upper and lower level problems
are conflicting in this toll booth problem.

For a given solution visited in the upper level problem, the evaluation cost
is, in the worst case, the computational complexity of the lower level prob-
lem. If the lower level problem can be solved in polynomial time, then a
fixed-parameter bound on the the size of the upper level solution is sufficient
for a fixed-parameter tractable problem. For when the upper level solution is
bounded by a parameter k of the original problem, any global random search
heuristic on the upper level problem will be able to find the optimal upper level
solution in no more than f(k) iterations for some function f(k) and will make
f(k) · poly(n) basic operations in total.

In our case, the Global structure representation of GMSTP and GTSP, the size
of an upper level solution is bounded above by m2 since it is enough to indi-
cate whether any two clusters are connected or not to precisely define a solu-
tion. On the other hand the spanned-nodes representation of GMSTP needs a
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size of m log(n) to represent which node is selected in each cluster. If the solution
size is restricted by a parameter m, uniform random search on the bitstring of
length O(f(m)) will find the optimal solution in 2O(f(m)) iterations in expecta-
tion. With Global structure representation, if we pick our solutions uniformly at

random the probability of picking a unique optimal solution is (1/2)m
2

which
will occur in O(m2m) time in expectation while uniform random search with
the spanned node representation takes Ω(nm) trials in expectation.

Conclusions

Evolutionary bilevel optimization has gained an increasing interest in recent
years. With this article we have contributed to the theoretical understanding
by considering two classical NP-hard combinatorial optimization problems,
namely the generalized minimum spanning tree problem and the generalized
traveling salesperson problem. We studied evolutionary algorithms for the
mentioned problems in the parameterized setting. Using parameterised com-
putational complexity analysis of evolutionary algorithms for the generalized
minimum spanning tree problem, we have examined two representations for
the upper layer solutions and their corresponding deterministic algorithms for
the lower layer. Our results show that the Global Structure Representation leads
to fixed parameter evolutionary algorithms. By presenting hard instances for
each of the two approaches, we have pointed out where they run into difficul-
ties. Furthermore, we have shown that the two representations for the gener-
alized minimum spanning tree problem are highly complementary by prov-
ing that they are highly efficient on the hard instance of the other algorithm.
After having achieved these results for the generalized minimum spanning
tree problem, we turned our attending to the generalized traveling salesper-
son problem. We showed that using the global structure representation leads
to fixed parameter evolutionary algorithms with respect to the number of clus-
ters. Furthermore, we pointed out a worst case instance where the optimization
time grows exponential with respect to the number of clusters and discussed
generalizations of the results.
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