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Abstract 
This article reviews econometric methods for health outcomes and 
health care costs that are used for prediction and forecasting, risk 
adjustment, resource allocation, technology assessment and policy 
evaluation. It focuses on the principles and practical application of 
data visualization and statistical graphics and how these can 
enhance applied econometric analysis. Particular attention is devoted 
to methods for skewed and heavy-tailed distributions. Practical 
examples show how these methods can be applied to data on 
individual healthcare costs and health outcomes. Topics include: an 
introduction to data visualization; data description and regression; 
generalized linear models; flexible parametric models; 
semiparametric models; and an application to biomarkers.  
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1 
Introduction 

 
 
 
 
 
 
 
 
 
 
 
 

 
Econometric models for health outcomes and health care costs are 
used for prediction and forecasting in health care planning, risk 
adjustment by insurers and public providers of health care, 
geographic resource allocation, health technology assessment and 
health policy impact evaluations. Methods for risk adjustment focus 
on predicting the treatment costs for particular types of patient, often 
with very large survey or administrative datasets.  
 
Microdata for individual medical expenditures and costs of treatment 
are typically non-normal. Survey data often feature a spike at zero, if 
there are non-users in the data. Both survey and administrative data, 
such as registers and discharge records, typically have a heavily 
skewed distribution and heavy tails. The spike at zero is often 
modelled by a two-part specification, with a binary choice model for 
the probability of any costs, and a conditional regression model for 
the positive costs (Jones, 2000). Due to the skewness and excess 
kurtosis of the data and the importance of influential observations, 
regression models applied directly to the raw data on the level of 
costs can perform poorly. Traditionally the positive observations have 
been transformed prior to fitting a regression model, most often by 
taking a logarithmic or, sometimes, a square root transformation. 
Once these models have been fitted then predictions have to be 
retransformed back to the original – raw cost – scale. This is not 
straightforward to do in a robust way, especially if there is 
heteroskedasticity in the data on the transformed scale (Manning, 
1998; Manning and Mullahy, 2001; Mullahy,1998).  
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In the recent literature attention has shifted away from linear 
regression models to semiparametric and flexible parametric 
estimators. A popular semiparametric approach is to use generalized 
linear models or GLMs (e.g., Buntin and Zaslavsky, 2004; Manning 
and Mullahy, 2001; Manning et al., 2005; Manning, 2006). GLMs are 
built around a link function that specifies the relationship between the 
conditional mean and a linear function of the covariates and a 
distributional family that specifies the form of the conditional variance 
as a function of the conditional mean. GLM models are estimated 
using a quasi-likelihood approach derived from the quasi-score or 
“estimating equations”.  
 
In a conventional GLM the choice of link and distribution has to be 
specified a priori. In practice the most frequently used GLM 
specification for medical costs has been the log-link with a gamma 
variance (Blough et al., 1999; Manning and Mullahy, 2001; Manning 
et al., 2005). Basu and Rathouz (2005) have developed a flexible 
semiparametric approach to the problem of selecting the appropriate 
link and variance functions. Their extended estimating equations 
estimator (EEE) approach uses a Box-Cox transformation for the link 
function and either a power variance or quadratic variance function 
for the distribution. The particular form of the link and distribution are 
thereby estimated from the data at hand.  
 
Other semiparametric methods that have appeared in the literature 
on modelling health care costs include the conditional density 
estimator and finite mixture models. The conditional density 
approach was advocated by Gilleskie and Mroz (2004) and divides 
the support of the distribution of the dependent variable into discrete 
intervals then applies discrete hazard models to these, implemented 
in practice as a series of sequential logit models. Finite mixture 
models use a discrete mixture of parametric models and, for 
example, have been applied to medical costs by Conway and Deb 
(2005). Combining simple distributions such as the gamma or log-
normal in a mixture of relatively few components may approximate 
complex empirical distributions effectively, especially for distributions 
that are multi-modal.	
  

 
In contrast to semiparametric methods, flexible parametric methods 
fully specify the distribution for health care costs. Building on 
standard distributions such as the log-normal and gamma 
distributions, they move to more flexible 3 and 4-parameter 
distributions such as the generalized gamma and the generalized 
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beta distribution of the second kind (GB2). This provides the 
additional flexibility to fit the high level of skewness and the heavy 
tails seen in cost data (Jones et al., 2014). The downside of this 
flexibility is a risk of over-fitting and, in practice, these approaches 
may be best used as a guide to selecting one of the special or 
limiting cases that are nested within the general models. In this 
respect the flexible parametric models can play a similar role to using 
the EEE approach to select the link and distribution functions to be 
used in a GLM.  
 
Earlier literature reviews have synthesised and compared the wide 
range of approaches to modelling health care costs (e.g., Hill and 
Miller, 2010; Jones, 2000, 2011; Jones et al., 2013; Mullahy, 2009). 
In addition, studies using a quasi Monte Carlo design, based on 
English administrative data for patient level costs of hospital care, 
have provided an assessment of the relative performance of these 
approaches (Jones et al., 2014, 2015, 2016). To complement these 
earlier studies this article focuses on the principles and practice of 
data visualization and statistical graphics and how these can 
enhance empirical analysis of health care costs and outcomes, 
especially for skewed and heavy-tailed distributions. The scope of 
this review is limited to non-normal but continuous outcomes such as 
health care costs and biomarkers. Many health economics 
applications deal with categorical and ordered outcomes, count data, 
or duration data. Methods for these are reviewed in Jones (2000) and 
Jones et al. (2013). The methods and applications used here are 
limited to cross sectional data. For discussions of methods for panel 
data see Jones (2009) and for the use of cohort data (Von Hinke 
Kessler Scholder and Jones (2015). 
 
Practical examples show how these graphical methods can be 
applied using the software package Stata, which is widely used in 
applied econometrics. Stata is not the obvious software of choice for 
specialist work in data visualization especially for users who wish to 
present their work online and to make use of animation or interactivity. 
Nevertheless, for many applied econometricians it is the workhorse for 
data management and econometric analysis. In this article Stata code, 
shown in the font courier new, is included to show how far it is 

possible to go within Stata so that graphical analysis can be integrated 
with statistical and econometric analysis within one piece of software and 
using one set of syntax. 
 
The review of methods that have been developed for health care cost 
regressions is complemented by an empirical case study that 



 

 5 

focuses on objectively measured health outcomes, whose 
distributions share many of the features of cost data. The case study 
applies the econometric and graphical methods to blood-based 
biomarkers as the dependent variables. The dataset is the UK 
Household Longitudinal Study (UKHLS), known as Understanding 
Society, which is a large nationally representative longitudinal study 
(Benzeval et al. 2016).  
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2 

Data Visualization – a Primer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

“Greatest number of ideas in the shortest time with the least ink in 
the smallest space” 

Edward Tufte (1983) 
 
 
Edward Tufte’s ideas, expressed in his 1983 book The Visual Display of 
Quantitative Information and in subsequent publications, have been 
highly influential in the field of data visualization (Tufte 1983, 1990, 1997, 
2001, 2006). Tufte has developed a set of principles of graphical 
excellence which are summarised here: 
 

- Show the data. 
- Induce thought about substance (not methods, visual style…). 
- Do not distort the data. 
- Present many numbers in a small space. 
- Make large data coherent. 
- Encourage the eye to compare. 
- Reveal levels of details – from overview to fine structure. 
- Serve a clear purpose (whether it be description, exploration, 

decoration, etc). 
- Integrate the graphics within the analysis. 
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It is clear that this perspective favours functionalism, minimalism and 
clarity of design over embellishment and visual “fireworks”. Tufte’s 
influence is evident in the recent article by Jonathan Schwabish (2014) in 
the Journal of Economic Literature, “An economist’s guide to visualizing 
data”, which aims to bring Tufte’s philosophy of graphical design to an 
economics audience by critically appraising and redesigning graphics 
that have appeared in articles published in the American Economic 
Review. 
 
In addition to Edward Tufte’s work other sources for the ideas and 
material presented in this brief primer include the books of Stephen Few 
(2009, 2012, 2013, 2015) which share the same focus on simplicity of 
design and clarity of purpose but with a more pragmatic approach aimed 
at those providing business information in tabular and graphical formats. 
Few’s web page, Perceptual Edge, provides a useful source of case 
studies and critical appraisals of published visualizations (see the 
Appendix for information on this and other web links that are relevant 
sources of ideas for data visualization). 
 
Nathan Yau’s blog Flowing Data and his books Visualize This and Data 
Points (Yau, 2011, 2013) provide a visually elegant and contemporary 
guide to good practice that is rooted in statistical analysis with an 
emphasis on online resources and interactive graphics.  
 
Alberto Cairo (2012, 2016) comes from a background of experience in 
data journalism and working with infographics. His books The Functional 
Art and The Truthful Art draw on the lessons of cognitive psychology and 
their implications for graphical design. Jorge Camoes’s (2016) Data at 
Work shares a similar perspective. It provides an impressive glimpse of 
how far Microsoft Excel can be taken to produce effective and visually 
appealing graphics. 
 
Lessons for statistical graphics from the psychology of visual perception 
are tested and put into practice in a classic article by Cleveland and 
McGill (1984) and are covered in a book by William Cleveland (1985) 
The Elements of Graphing Data. These lessons are put into practical 
form by Naomi Robbins (2005) in her book Creating More Effective 
Graphs. 
 
A useful guide for anyone who wishes to explore and select graphical 
methods and see how they can be implemented within Stata is Michael 
Mitchell’s (2012) A Visual Guide to Stata Graphics. The Guide allows 
readers to browse a catalogue of graphical styles, all produced in Stata, 
to find the one that best suits their own needs and to see the 
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corresponding code alongside. Mitchell’s Guide is complemented by an 
encyclopaedic source of the various forms of statistical graphic that have 
been used in practice across a broad range of disciplines in Robert 
Harris’s (1999) Information Graphics: A Comprehensive Illustrated 
Reference. 
 
One feature of Mitchell (2012) is to stress the usefulness of graphics 
schemes in Stata. Schemes are text files that can be called upon to set 
options that affect the appearance of Stata graphics. This saves having 
to add numerous sub-commands when using individual graphics 
commands. The default colour graphics scheme used by Stata is called 
s2color, which can be set explicitly using: 

 
set scheme s2color 

 
Many other schemes are available. For example to adopt the visual style 
of the Economist magazine use: 
 
set scheme economist 
 

Alternatively a custom written scheme can be created and installed. The 
graphics illustrated in this article were mainly done using a very simple 
custom scheme that begins by including the default scheme and then 
modifies some of the colour options that are used by default to give a 
palette based on dark orange: 
 
#include s2color 
color background ltbluishgray 
color histogram dkorange 
color boxplot dkorgange 
color p2 dkorange 
color bar dkorange 
color hbar dkorange 
 
 

Figure 2.1 compares histograms and overlaid kernel density plots of 
the same set of raw data on the logarithm of annual medical costs 
produced using the custom scheme shown above and the Economist 
scheme. These schemes produce graphics that appear quite different 
despite displaying the same information. 
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Fig 2.1 Histograms drawn with different schemes 

 
 
Returning to Edward Tufte. Following his principles of graphical 
excellence, Tufte (1983) has identified many of the pitfalls that can 
arise when visualisation is done badly. These include: 
 
Distortion: when a graphic creates a distorted picture of the 
underlying data. For example if the angles in a pie chart or the areas 
in a histogram do not match the variation in the data. A classic 
example is the way in which a non-zero baseline in a bar chart can 
be used to create a biased impression of the difference between the 
height of the bars. 
 
Design variation: when the visual features of a graphic, such as 
shading or colouring do not match the variation in data that is being 
represented. The implication is that in good visual design the 
graphical variation - whether it is differences in the position of points, 
lengths of lines, size of areas or differences in shading or colour - will 
reflect and illuminate the underlying statistical variation in the data 
and hence will make the variation visible and “encourage the eye to 
compare”. 
 
“Chartjunk”: which is essentially the use of uninformative 
embellishment in graphics, such as the vibrations and grid patterns 
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that are sometimes used to fill bars in a bar chart. A notorious 
example is the use of 3-D effects in graphics, such as bar charts, 
where the addition of 3-D typically reduces the clarity of the graphic. 
 
Lack of content: where excessive space is devoted to graphing 
relatively little quantitative data. This is the antithesis of Tufte’s call to 
present many numbers in a small space. In these cases tabulating 
may be more effective than graphing the data. 
 
To put these ideas into practice and to help sift effective from 
ineffective graphics, Tufte (1983) introduced a couple of simple 
concepts that can be used to evaluate a graphic: the data-ink ratio 
and the data density. Data ink corresponds to marks on the page that 
represent data points, such as the dots in a scatter plot, while the 
remaining non-data ink represents all the other marks, which may be 
functional such as titles, labels, axes, gridlines and tick points or may 
be purely decorative. So: 
 

Data-ink ratio = data ink/total ink 
 
Implicit in this concept is the notion that the data-ink ratio equals one 
minus the proportion of ink that could be erased without loss of 
statistical information and that the design of a graphic should aim to 
minimize non-data ink. In practice there are limits on how far this can 
be taken as non-data ink often helps the eye to navigate and 
interpret a graphic and may help to make it eye-catching and 
memorable. 
 
The data density takes the number of data points that are being 
graphed relative to the physical size of the graphic to capture the 
principle of aiming to present many numbers in a small space: 
 

Data density = number of entries in data matrix 
                                                   area of data graphic 
 
For example this may come up with a value such as 3.8 numbers per 
square centimetre. This notion is rooted in graphics that appear on a 
printed page, whereas many now appear in digital format and are 
scalable, but the basic idea here is that, within reason, the data 
density should be maximized. This is an idea that is especially 
relevant for work with microdata and, in particular, ‘big data’ where 
graphics provide a way of managing the dimensionality of large 
volumes of data.  
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Tufte has suggested a related concept: the Shrink principle that 
“graphics can be shrunk way down” and that readers can cope with 
quite small graphics and with multiple graphics presented alongside 
each other. This principle is embodied in the use of information 
dashboards to combine multiple graphical and tabular views of data 
in a single dashboard format (Few, 2013). 
 
Tufte is not alone in taking a prescriptive approach to visualization. 
Cairo (2016) also provides a couple of ‘checklists’ to guide 
practitioners. In the first he argues that “a good visualization is: 

- reliable information; 
- visually encoded so relevant patterns become noticeable; 
- organised in a way that enables at least some exploration, 

when it’s appropriate; 
- and presented in an attractive manner, but always 

remembering that honesty, clarity and depth come first”. 
 

In the second, influenced by Enrico Bertini, Cairo (2016) argues that 
the qualities of a good chart are: 
 

- It is truthful (based on thorough and honest research). 
- It is functional (accurate depiction of the data). 
- It is beautiful (pleasing for audience). 
- It is insightful (reveals evidence). 
- It is enlightening (changes minds for the better). 

 
 
To illustrate how Edward Tufte’s ideas might be put into practice start 
with a histogram of individual data on annual medical costs. These 
data are from the 1987 US National Medical Expenditure Survey 
(NMES). Data that have been used as part of the evidence 
surrounding tobacco litigation in the United States and in analyses of 
the health care costs attributable to smoking (Rubin, 2001; Johnson 
et al., 2003; Imai and Van Dyk, 2004). The dataset used here 
includes total annual health care costs measured in US dollars, 
measures of smoking that include indicators for current, ex- and 
never smokers and a variable for pack years, the product of years of 
smoking and packs per day, along with controls for age, sex, 
education, marital status, poverty status and region1. 
In Figure 2.2 the top left-hand panel shows the histogram for the 
logarithm of medical costs that is produced using the Stata default 
graphics settings. To modify these the top right-hand panel removes 

                                                
1
 I am grateful to Elizabeth Johnson for supplying the dataset used in her paper. 
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the axis lines, which are non-data ink, and rotates the labels on the 
axis to make them more legible, while adding a note of the data 
source. The bottom-left panel takes the elimination of non-data ink a 
step further by removing the grid lines while keeping them as a 
reference point by superimposing white lines over the shaded area of 
the histogram and by removing the axis label. This process of 
elimination could have been taken further. For example, the shading 
of the bars is non-data ink and could be eliminated to leave hollow 
outlines, or simply horizontal lines to mark the height of each bar. In 
practice the elimination of non-data ink typically reaches a point 
where further simplification hampers the legibility of a graphic and 
here the process stops at shaded bars. In this case the purpose of 
the histogram is more qualitative, to give an impression of the overall 
shape of the distribution - is it symmetric, unimodal, heavy tailed? - 
rather than to read off precise quantitative information about the 
height of the density at different points. So the qualitative contrast 
between the shaded bars and the white background serves this 
purpose well. Finally, the bottom-right panel adds some further 
information by super-imposing a kernel density plot to smooth out the 
outline of the distribution.  
 

 
Fig 2.2 Refining the histogram 

 
Now consider the default version of a scatter plot produced in Stata. 
Figure 2.3 shows the logarithm of annual health care costs plotted 
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against a measure of individual smoking history based on pack years 
and reveals their joint distribution through the density of data points. 
This was produced and saved as an encapsulated postscript (eps) 
file to be used for publication. This is a vector graphics format which, 
like pdf format, is scalable and should look sharp at any size. This is 
an alternative to raster graphics formats such as tif, jpeg and gif files. 
The following code is used: 
 
tw scatter lny treat, title(Default scatter plot)    
   name(scatter, replace)  
graph export scatter.eps, replace 
 

 

 
Fig 2.3 Scatter plot of log(costs) and pack years 

 
 
One way to reduce the proportion of non-data ink used in this 
standard scatter plot is to replace the standard horizontal and vertical 
axes by a range frame plot so that the length of the lines that 
appear on the axes represent the range of the y and x variables and 
hence become data themselves. This is show in Figure 2.4. Note that 
the default scatter of ‘dots’ has been replaced by a cloud plot so that 
individual data points become visible and better represent the use of 
microdata and the extensive heterogeneity that is typical of such 
data. Also the tick points on the vertical axis have been rotated so 
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that they are easier to read. In this case using the range on the 
horizontal axis does not really add much but the vertical axis does 
reveal the limits on the range of the logarithm of costs. 
 

 

 
Fig 2.4 Range-frame plot of log(costs) and pack years 

 
 
The range-frame plot was drawn with the following code where the 
axes are drawn as functions: 
 
tw (scatter lny treat, msymbol(p) legend(off)   
    ylabel( , angle(horizontal)) ) 
   (function y=0, range(0 216) lcolor(black)) 
   (function y=0, range(0.57 12.2) lcolor(black)   
    horizontal), title(Range frame plot)   
    ysca(noline) xsca(noline) name(rangeframe,  
    replace) note($note) 
 

 
A more informative alternative to the range frame plot is a dot-dash 
plot where the marginal distributions of y and x are shown using 
dashes for individual data points. Figure 2.5 reveals detail in the tails 
of these marginal distributions rather than just showing the overall 
range of the data so that the horizontal axis now becomes 
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informative as well as the vertical. In particular the skewness and 
sparsity of the observations in the right-hand tail of the distribution of 
pack years is revealed. 
 
 

 
 Fig 2.5 Dot-dash plot of log(costs) and pack years 

 
 
The dot-dash plot was produced using the following code where the 
axes are drawn using scatter plots: 
 
* Dot-Dash plot  
gen where_x=0 
gen where_y=-6 
gen pipe = "|" 
gen bar ="_" 
tw (scatter lny treat, msymbol(p) xsca(noline)  
    ysca(noline) legend(off)  
   (scatter where_xtreat, ms(none) mlabel(pipe)) 
   (scatter lny where_y, ms(none) mlabel(bar)), 
    note($note) title(Dot-Dash plot) name(dotdash,    
    replace) 
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The idea of turning the axes of the figure into data can be taken a 
step further by showing the marginal distributions of y and x as 
histograms.  This complements the scatter of points that show their 
joint distribution. At the same time both linear and quadratic fits of the 
data are added to the scatter plot to reflect the conditional 
relationship between y and x (see Figure 2.6). 
 
 

 
 

Fig 2.6 Scatter plot and histograms combined 
 
 
The Stata code required to do this is rather trickier in order to 
correctly rotate and align the three graphs that are combined in the 
final image:  
 
clonevar y_s=lny 
clonevar x_s=treat 
tw  (scatter y_s x_s, msymbol(p))  
    (lfit y_s x_s)  
    (qfit y_s x_s)  

if d==1,legend(off) yscale(alt noline)  
xscale(alt noline) xlabel(,grid gmax  
angle(horizontal))  
ylabel( , angle(vertical)) saving(yt, replace) 
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quietly tw histogram y_s if d==1, 
    xsca(alt reverse noline) ysca(noline)  
     fxsize(20) horiz ylabel( , angle(horizontal))  
     xt(" ") saving(hy,replace) 
quietly tw histogram x_s if d==1,  

yscale(alt reverse noline) xsca(noline)  
ylabel(0(.01).02, nogrid) yt("")  
xlabel(, grid gmax) fysize(20) saving(ht,   
replace) 

graph combine hy.gph yt.gph ht.gph, hole(3)  
imargin(0 0 0 0) graphregion(margin(l=15   
r=15)) note($note) title("Joint and marginal  
distributions") subtitle("for those who ever  
smoked") saving(scatter&margs, replace) 

 

Note in particular how the x and y scales for the component graphics 
have to be reversed (reverse) and moved to the alternative side 

(alt) of the graphics from the default settings and how the axis lines 
are removed (noline). The graphic is drawn for the sub-sample who 

have ever smoked, reflected in the condition if d==1. The 

command graph combine allows the three component graphics to 

be spliced together and note how the hole(3) subcommand is used 

to control their positioning by placing a space in the bottom left-hand 
corner. 
 
Experimental research and statistical analysis by Cleveland and 
McGill (1984) has been highly influential and is cited by many recent 
authors (e.g., Cairo, 2012; Robbins, 2005; Yau, 2011). They 
demonstrated how there is a hierarchy in terms of the perception of 
visual cues and in how accurately people are able to read 
quantitative information from these cues. The hierarchy runs from the 
most accurate which is our ability to distinguish points along a 
common scale, or on different scales, then through differences in 
length, angles, direction, areas, volumes, shading/saturation, and 
finally colour/hue. The position of volume in this list is one reason 
that 3-D plots are inadvisable compared to simple 2-D plots.  
 
If numerical precision is the primary goal of a graphic then the 
hierarchy of visual cues can be a helpful guide. For example, 
Cleveland and McGill (1984) show that a dot plot is likely to be more 
effective than a pie chart, that uses comparisons of angles. Similarly 
a bar chart, that also uses comparison of points along a common 
scale, will be more effective than a tree map, that relies on 
comparisons of areas. 
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Cairo (2013) and Nussbaumer Knaflic (2015) draw on further lessons 
from cognitive psychology and discuss the ways in which the gestalt 
principles of visual perception can be used to aid graphical design. 
These principles include: 
 
Proximity: objects which appear close to each other are perceived as 
groups. 
 
Similarity: visually identical objects are perceived as belonging to a 
group. 
 
Connectedness: objects that are linked, for example by a line, are 
perceived as a group. 
 
Closure: objects within crisp boundaries are perceived as belonging 
to a group. 
 
Continuity: it is easier to perceive shapes when contours are smooth 
and rounded. 
 
As an illustration of some of these ideas consider the horizontal bar 
chart in Figure 2.7.  
 
 

 
Fig 2.7 Using saturation and hue to suggest groups 
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The length of the bars represents average levels of medical costs 
and these are split between those who had never smoked and those 
who had ever smoked. So, despite the fact that there are no labels 
on the graphic, due to their proximity and the use of space to 
separate them, the pairs of bars labelled 1, 2, 3 and 4 are likely to be 
perceived as a group. These groups do in fact correspond to four 
levels of educational attainment. In the top left panel it is hard to 
distinguish the bars for smokers and non-smokers as they have the 
same shading and colour. The distinction becomes clearer in the 
other two panels that use differences in shading or in hue. Again 
there are no labels to make this explicit but the dark shaded bars in 
the top panel or the dark orange bars in the bottom panel will be 
perceived as a group. In this case the darker/orange bars represent 
the smokers within each level of education. 
 
Similarity and difference can be used to draw attention to particular 
features of a graphic and to highlight certain results. Figure 2.8 
shows lowess fits of the relationship between medical costs and age 
for those aged over 40 for different sub-samples. The right-hand 
panels show how contrasts in saturation or hue can be used to 
highlight one particular line, such as the results for the full sample or 
for a particular group of interest. 
 

 
 

Fig 2.8 Using saturation and hue to highlight 
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Figure 2.9 uses the idea that identical objects will be perceived as a 
group, here squares are used to denote smokers and diamonds are 
non-smokers in a scatter plot of the logarithm of medical costs 
against age for those aged 80 and over. The difference between the 
two groups is clearer to see when colour is added and the orange 
squares can be distinguished from the blue diamonds. 
 

 
Fig 2.9 Using shape and hue to suggest groups 

 
The code for Figure 2.9, which sets the shape, size and colour used 
for the data points, is: 
 
tw (scatter lny $xc if d==0 & age>80, msize(vlarge)  
    msymbol(Dh) mcolor(black) ysca(noline)  
    xsca(noline) legend(off) ytitle(log costs))    
   (scatter lny $xc if d==1 & age>80, msize(vlarge)  
    msymbol(Sh) mcolor(black) ysca(noline)    
    xsca(noline) legend(off) ytitle(log costs)  
    xtitle(age)), saving(sc1, replace)  
tw (scatter lny $xc if d==0 & age>80, msize(vlarge)  
    msymbol(Dh) mcolor(ltblue) ysca(noline)  
    xsca(noline) legend(off) ytitle(log costs)) 
   (scatter lny $xc if d==1 & age>80, msize(vlarge)  
    msymbol(Sh) mcolor(orange) ysca(noline)  
    xsca(noline) legend(off) ytitle(log costs)  
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    xtitle(age)), saving(sc2, replace)  
graph combine sc1.gph sc2.gph, note($note) 

 
The findings of Cleveland and McGill (1984) on how visual cues are 
perceived may create the impression that points along a common 
scale should always be preferred over the use of differences in 
saturation or hue. In fact, extracting precise quantitative comparisons 
is only one purpose of an effective graphic and very often making 
broad qualitative comparisons is important as well. The lesson of the 
preceding examples is that the use colour or shading often works 
best to create an immediate and bold impression of groups and 
proximity. 
 
Camoes (2016) summarises the uses of colour in graphics as being 
to: 

- Categorise. 
- Group. 
- Emphasize. 
- Sequence. 
- Diverge. 
- Alert. 

 
A software package, such as Stata, will typically offer a palette of 
“built in” colours such as the shade of dkorange used in the custom 

scheme for this article. The available colours can be found under 
colorstyle.  At a more fundamental level colour is typically defined 

and controlled using colour systems that can be used to mix your own 
colours. The RGB model defines colours in terms of their mix of red, 
green and blue. For example: 
 
(0,0,0)               - black 
(255,0,0)           - red 
(0,255,0)           - green 
(0,0,255)           - blue 
(255,0,255)       - magenta 
(255,255,255)   - white 
 
Alternatively the HSL model defines colours in terms of their hue, 
saturation and luminance where each element varies from 0 to 255. 
Hues varies from red (0) to violet (255) and a luminance score of 128 
corresponds to pure colour. Stata uses a variant of this known as the 
HSV (hue, saturation and value) where the first term is on a 360 degree 
scale and the other two are expressed as proportions.  
 



 

 22 

Camoes (2016) notes that when colours are ordered by hue there is an 
analogy with qualitative (ordinal or categorical) data. While when they are 
ordered by luminance there is an analogy with continuous quantitative 
variables. So, for example, hue can be used to create a “diverging scale” 
that might be used to represent data from a Likert scale in a sequence 
such as red-orange-yellow-blue. This is typical of the heat map and tree 
map styles of graph. While “colour ramps”, created by selecting a hue 
and progressively changing the level of luminance, can capture the 
sense of continuous variation (if not the magnitudes). In Stata this can be 
done by taking a particular colorstyle and modifying its intensity, for 
example, dkorange*.6. Or if an RGB value is used, 0 255 255*.8.  

 
Figure 2.10 uses a diverging scale to represent self-assessed health 
(SAH) data. SAH is an ordinal variable with responses ranging from poor, 
fair, good, very good, to excellent, This is represented by a scale that 
borrows the idea of a heat map and runs from a cool blue for excellent 
health to a hot red for poor health, The bar charts show the distribution 
of SAH over vigiciles of household income ranging from 1 which is the 
poorest group to 20 which is the richest. The greater concentration of 
poor and fair health among poorer households is clear. 
 
 

Fig 2.10 Income gradients in SAH in UKHLS 
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Figure 2.11 shows the relationship between cholesterol, age, gender and 
income. It presents a set of smoothed lowess plots for the ratio of total 
to HDL cholesterol against age in years. A diverging scale of blue 
(ebblue) and dark orange (dkorange) is used to contrast results for 

men, in blue, and women, in orange. Within these a colour ramp 
distinguishes separate plots by deciles of household income, with lighter 
hues corresponding to lower incomes.  The graphic reveals higher levels 
of the cholesterol ratio and a more pronounced hump shape in middle 
age for men as well as evidence of income gradients for both men and 
women. 
 
 

 
Fig 2.11 Cholesterol ratio by age, gender and income in UKHLS 

 
 
A colour wheel can be used as a guide to select the particular palette of 
colours to use in a graphic in order to have a pleasing and harmonious 
appearance and hence capture and retain the reader’s attention. When a 
two-colour scheme is used these can be complementary and appear at 
180o from each other on the colour wheel. Three-colour schemes include 
triadic harmony (120o from each other), split complementary, analogous 
colours (close together on the wheel), or warm and cool combinations. A 
four-colour scheme might be based on the rectangle rule (90o from each 
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It is worth bearing in mind that the best colour scheme to use will depend 
on the purpose of the graphic. For example, if the graphic is designed to 
appear on screen, in a presentation or web page, a dark background 
colour will often work best, while if it is to appear in a printed document a 
light or white background will work better. To achieve a white background 
color background white should be included in the graphics 

scheme or within a graphics command (the custom graphics scheme 
shown earlier was modified in this way to prepare the graphics for print 
publication). 
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3 
Methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.1 Data Description and Regression 
  
For a visual description of the marginal distribution of non-zero health 
care costs an obvious place to start is the histogram. Figure 3.1 
shows histograms for annual medical costs in the 1987 NMES on the 
raw scale (truncated at $40,000) and after taking square root and 
logarithmic transformations. The distributions are shown separately 
for those who have never smoked (0) and those who have ever 
smoked (1). As in Jones (2011) these plots exclude the zero 
observations – which are relatively rare as these data are for totoal 
annual costs for an elderly population. Discussion of the use of two-
part models and other limited dependent variable approaches to 
model the spike at zero can be found in Jones (2000) and Jones et 
al. (2013). The heavy degree of skewness and long right-hand tail 
makes the detail of the plot hard to read for the raw data, while the 
square root and logarithmic transformations make the distribution 
progressively more symmetric and closer to a Gaussian distribution.  
 
The histogram gives a sense of the shape of the marginal 
distribution of the outcome and could be complemented by kernel 
density plots to give a smoother image of the outline shape of the 
distribution. Box-and-whisker plots provide more detail of the tails 
and outliers in the distribution, as shown in Figure 3.2. 
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Fig 3.1 Histograms for medical costs 

 
 

 
 

Fig 3.2 Box plots for medical costs 
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The approximate log-normality of the marginal distribution of medical 
costs in the NMES data is reinforced by a ladder of powers of 
normal quantile-quantile (QQ) plots, where the empirical quantiles 
are plotted against those expected from a normal distribution with the 
same mean and variance. These plots are automated in Stata using 
the qladder command as shown in Figure 3.3: 
 
qladder y, saving(qladder, replace) title(ladder of  
     powers: normal QQ plots) ysca(noline)  
     xsca(noline) ylabel( , angle(horizontal))       
     note($note) 

 
 

 
Fig 3.3 Normal QQ plots for medical costs 
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men and women separately and divided into vigiciles of age for those 
aged 40 and over. 
 
 

 
Fig 3.4 Pyramid plot of medical costs by age and gender 

 
 
This modified pyramid plot is produced and saved using the following 
code which creates two horizontal bar charts one of which is 
reversed so that they can be combined together as an (inverted) 
pyramid: 

 
xtile ageq=age, nq(20) 
graph hbar y if male==0, yrev over(ageq, reverse     
      label(nolabels) gap(0)) bar(1, color(sand))    
      ytitle(women) saving(hb1, replace) 
graph hbar y if male==1, over(ageq, reverse  
      label(nolabels) gap(0)) bar(1, color(stone))  
      ytitle(men) saving(hb2, replace) 
graph combine hb1.gph hb2.gph, title(Population  
      Pyramid) note($note) imargin(0 0 0 0) 
graph export pyramid.tif, replace 
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A strip plot, as shown in Figure 3.5, provides another way of 
visualizing the conditional distribution and emphasizes the variation 
in the individual observations for the logarithm of costs at each level 
of age. 
 

 

 
Fig 3.5 Strip plot for medical costs and age 

 
 
 
The strip plot is produced and saved using the following code. 
Jittering is used here to add some artificial variation along the 
horizontal scale and produce the cloud of data points at each 
quantile of age. Without this jittering the vertical bars would become 
solid lines and would not be legible. Note that a seed is set so that 
the figure can be replicated each time the random jittering is carried 
out: 

 
tw (scatter lny ageq, msymbol(p) jitter(3)  
    jitterseed(12345))  

 (lfit lny ageq), ytitle(log y) ysca(noline)   
  xsca(noline r(0 21)) legend(off) note($note)  
  saving(strip, replace) 
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The strip plot provides an impressionistic view of the distribution of y 
at different levels of x based on the intensity of the cloud of data 
points. Another perspective on this is given by stacking together 
histograms for y at each level of x to show the conditional 
distributions. This can be done for an observed x variable such as by 
deciles of age, as shown in Figure 3.6. Alternatively, in Figure 3.7, a 
composite measure of the covariates as a whole is used by first 
running a linear regression, then computing deciles of the fitted 
values and plotting histograms and kernel density plots for the 
logarithm of health care costs for the sub-sample of observations 
within each decile. Both of these plots show that there are not only 
changes in the conditional mean and median of the logarithm of 
costs moving across the deciles of the covariates but also that, 
although the conditional distributions all seem roughly log-normal, 
there are differences in the range, dispersion and tail probabilities 
across the conditional distributions.  
 
 

 
 

Fig 3.6 Histograms for medical costs and age 
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Fig 3.7 Histograms for medical costs and fitted values 

 
 
The plot based on the fitted values is computed as follows. Note the 
use of the global $xs to save having to provide the full list of 

regressors each time the regression model is run: 
 

* Drop any zero expenditures and run a regression 
drop if y==0 
quietly regress y $xs  
predict yf_q 
 
* Plot of distribution by deciles of the fitted 
values  
xtile yq10=yf_q, nq(10) 
tw   (histogram lny, horiz)  
     (kdensity lny, horiz), 

ysca(noline) xsca(noline) by(yq10, row(1))  
saving(hist_deciles_yf, replace)  
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hand and heavy tails. This reflects the underlying data-generating 
process (Jones, 2011). Patients with severe health conditions may 
attract substantial services and relatively rare events and medical 
procedures might be very expensive. This means that a relative 
minority of patients are responsible for a high proportion of health 
care costs, reflected in the fact that mean costs are often much 
greater than the median. The variability of costs over different risk 
adjusters means that the data tend to be inherently heteroskedastic. 
Survey data might feature a mass point at zero, as costs are 
truncated at zero. Finally, the relationship between costs and 
covariates may not be linear for example the impact of risk adjusters 
may be multiplicative rather than additive. 

  
A simple diagnostic of the performance of the linear regression 
model with the NMES data is provided by plotting means of the 
actual values of y against the fitted values and comparing these to a 
45o line that shows a perfect fit as shown in Figure 3.8. These means 
are computed within sub-samples defined by the deciles of the fitted 
values. 
 
 

 
Fig 3.8 Observed versus fitted medical costs  
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This plot is created by first running the regression model and then 
saving the fitted values using predict: 
 
regress y $xs 
predict yf if e(sample) 
xtile yfd=yf, nq(10) 
bysort yfd:egen yfbar=mean(yf) 
bysort yfd: egen ybar=mean(y) 
 
tw line ybar yfbar yfbar, title(OLS on y)  

ytitle(mean of actuals) xtitle(mean of fitted)  
ylabel( , angle(horizontal)) xsca(noline)  
ysca(noline) legend(off) saving(dec_y_olsy,  
replace) 

 

 
The non-normality of medical costs often leads researchers to  
consider transforming the dependent variable to produce a more 
symmetric distribution prior to running a regression. Most often this 
involves taking a log transformation or a square-root transformation. 
A consequence is that the analysis is no longer working on the raw 
cost scale and retransformation becomes an issue when computing 
predictions of costs on the original scale (see Jones (2000, 2011) for 
further discussion).  
 

 
3.2 Generalized Linear Models  
 
Unlike regressions on transformed costs, Generalized Linear Models 
(GLMs) specify the conditional mean directly: 
 

𝐸 𝑦 𝑥 = 𝜇 = 𝑓(𝑥!𝛽)                               (3.1) 
 
For example, with a “log link”: 
 

𝐸 𝑦 𝑥 = exp  (𝑥!𝛽)                                (3.2) 
 
An advantage of this approach is that predictions are made on the 
original cost scale and that no retransformation is required. By 
specifying a distribution as well they allow for heteroskedasticity 
through the choice of distributional family (albeit limited to functions 
of the mean). 
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So, the full GLM framework requires a link function and a distribution. 
In general, the link function, g(.), relates the conditional mean to a 
linear index of covariates: 
 

𝑔 𝜇 = 𝑥
!𝛽⟹ 𝜇 = 𝐸 𝑦 𝑥 = 𝑔!! 𝑥!𝛽 = 𝑓(𝑥!𝛽)       (3.3) 

 
A distribution, that belongs to the natural exponential family (NEF), is 
used to specify the relationship between the conditional variance and 
the conditional mean: 
 

𝑉𝑎𝑟 𝑦 𝑥 = 𝜈(𝜇)                                  (3.4) 
 
The power function form of the variance: 
 

𝑉𝑎𝑟(𝑦|𝑥) ∝ (𝐸 𝑦 𝑥 )!                          (3.5) 
 
gives a menu of well-known distributions: 
 

– Gaussian:  constant variance; θ=0. 

– Poisson: variance proportional to the mean; θ=1. 
– Gamma: variance proportional to the square of the 

mean; θ=2. 
– Inverse Gaussian: variance proportional to cube of the 

mean;  θ=3. 
 

These distributions and link functions can be used in any 
combination, although there are canonical links such as the log link 
used with Poisson variance and identity link with Gaussian variance. 
 
As described by Holly (2009), in GLMs “all the moments of the 
distribution are functions of the mean, and those functions depend of 
the particular specification of the members of the NEF”. In particular 
the skewness and kurtosis are “completely and uniquely determined 
once the member of the exponential family has been specified”. The 
implication of this is that the higher moments that are likely to be of 
interest in our modelling work can be tied back to the conditional 
mean. As shown above, for most distributions included in the NEF 
the variance function is a polynomial in µ. Also following Holly (2009), 
within this family of distributions, skewness (S) and kurtosis (K) take 
the form: 
 

𝑆 = 𝛼𝐶𝑉                                          (3.6) 
 

𝐾 = 𝛽 + 𝛾𝐶𝑉                                    (3.7) 
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where CV is the coefficient of variation. The implication of these 
results is that prior to adopting the GLM approach and to choosing a 
particular GLM specification it may be helpful to describe the 
relationship between the conditional mean and conditional variance 
and to assess whether there is a linear relationship between 
conditional skewness and the coefficient of variation and a quadratic 
relationship between conditional kurtosis and the coefficient of 
variation. 
 
A simple way to produce plots that describe the relationships 
between the conditional moments of the sample data is shown here. 
This takes the predicted values from a simple linear regression of y 
on x to condition on the covariates.  The sample is then divided into 
equal sized groups according to these predicted values, here 20 
groups, or vigiciles, are used. Within each of these groups the mean, 
variance, skewness, kurtosis and coefficient of variation are 
computed and saved:  
 
xtile yq=yf_q, nq(20) 
gen yqmean=0 
gen yqvar=0 
gen yqskew=0 
gen yqkurt=0 
gen yqCV=0 
forvalues i=1/$qy { 
 quietly summ y if yq==`i', detail 
 replace yqmean=r(mean) if yq==`i' 
 replace yqvar=r(Var) if yq==`i' 
 replace yqskew=r(skewness) if yq==`i' 
 replace yqkurt=r(kurtosis) if yq==`i' 
 replace yqCV=r(sd)/r(mean) if yq==`i' 
 } 

 
Armed with these statistics various plots can be produced. The first, 
Figure 3.9, is intended to show the relationship between conditional 
mean and conditional variance and hence, give an indication which 
distribution is relevant within the GLM framework. For the NMES data 
it is clear that there is a positive relationship between mean and 
variance suggesting that a Gaussian constant variance would not be 
appropriate but that linear (Poisson) and quadratic (gamma or 
negative binomial) fits might work well. 
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Fig 3.9 Conditional variance versus mean 

 
 

The code used to produce Figure 3.9 combines a scatter plot with 
both linear and quadratic fits: 
 
tw   (lfit yqvar yqmean) 
     (qfit yqvar yqmean) 
     (scatter yqvar yqmean, msize(medium)),  

title("Mean and variance") subtitle(for quantiles 
conditional on x) ytitle(variance) xtitle(mean)  
ylabel( , angle(horizontal)) ysca(noline)  
xsca(noline) note($note) legend(off) saving(mean&var, 
replace)  

 
Then, to assess whether a linear relationship does appear to hold a 
scatter plot of skewness against the coefficient of variation from each 
of the sub-samples can be drawn (Figure 3.10). Similarly a scatter 
plot of kurtosis against the coefficient of variation can be used to 
check for a quadratic relationship (Figure 3.11). Note that both of 
these plots are heavily influenced by the sub-sample that contains 
those with the highest predicted medical costs that appears as an 
outlier in the graphs. 
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Fig 3.10 Conditional skewness versus coefficient of variation 

 
 

 
 

Fig 3.11 Conditional kurtosis versus coefficient of variation 
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As emphasised by Holly (2009), using a GLM and hence a 
distribution drawn from the natural exponential family limits the 
combinations of skewness and kurtosis values that are allowed. This 
is most obvious if a Gaussian distribution is fitted to the data as 
skewness is then constrained to equal 0 and kurtosis to equal 3. 
McDonald et al. (2011) develop a graphical approach to show how 
distributional choices limit the values of higher moments that can be 
estimated. For example, with a gamma distribution the values of 
skewness and kurtosis are constrained to lie on a particular locus of 
points. This is illustrated by the curve in Figure 3.12 which can be 
compared to the sample values of skewness and kurtosis. Note that 
this curve is a theoretical property of the gamma distribution and is 
not a fitted curve of the type shown in the two previous Figures. In 
this case the NMES data appear to be compatible with the curve 
implied by a gamma distribution. The implications of this issue are 
explored further in the next section that looks at flexible parametric 
models. 
 
 

 
Fig 3.12 Limits on skewness and kurtosis 
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(function gamma_locus=3+(3/2)*x^2, range(0 13)),  
title(Skewness and Kurtosis)  
subtitle(for quantiles conditional on x)  
ytitle(kurtosis) xtitle(skewness) saving(skew&kurt,   
replace) ylabel( , angle(horizontal)) ysca(noline)  
xsca(noline) legend(off) note($note)  

  

 
The descriptive graphs shown above provide guidance on whether a 
GLM is appropriate and, if so, which link and distribution function to 
use. This can be handled more formally. In particular, Basu and 
Rathouz (2005) suggest a flexible semiparametric approach to the 
problem of selecting the appropriate link and variance functions for 
the GLM model. Their extended estimating equations (EEE) 
approach, uses a Box-Cox transformation for the link function: 
 

𝑥
!
𝑏 =

!!!!

!
      𝑤ℎ𝑒𝑟𝑒    𝜇 = 𝐸(𝑦|𝑥)                   (3.8) 

 
This includes the log, square root and identity links as special cases 
along with other power functions of y.  
 
This is combined with a general power function for the variance: 
 

𝑉𝑎𝑟 𝑦 𝑥 = 𝜃!𝜇
!!                               (3.9) 

 
which gives a flexible specification that nests the common GLM 
distributions and allows these nested models to be tested. The 
additional parameters are estimated, along with the regression 
coefficients, by quasi-maximum likelihood estimation. 

 
 

3.3 Flexible Parametric Models 
 
The widely used log-link version of the GLM is connected to a 
broader range of what can be called Exponential Conditional Mean 
(ECM) models (Jones, 2011). The ECM directly assumes a nonlinear 
relationship: 
 

𝐸 𝑦 𝑥 = 𝜇 = exp 𝑥!𝛽                          (3.10) 
 
Or, more generally: 
 

𝐸 𝑦 𝑥 ∝ exp 𝑥!𝛽   𝑜𝑟    𝐸 𝑦 𝑥 = 𝜙exp  (𝑥!𝛽)      (3.11) 
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Note that this implies that the effect of the covariates is “proportional” 
rather than additive, as in a proportional hazard model. 
 
The ECM, and extensions, can be estimated in a variety of ways 
including nonlinear least squares (NLS); the Poisson quasi-ML 
estimator (QML); and by using ML estimation for parametric hazard 
models such as the exponential, Weibull, or generalized gamma. In 
particular, Manning et al. (2005) propose that the generalized 
gamma, which is typically used as a flexible “3-parameter” 
distribution for survival models, is well suited for use with medical 
cost data. The generalized gamma has a density function and 
conditional expectation that take the form (using notation taken from 
the Stata manual): 
 

(3.12) 
 

Special or limiting cases of the generalized gamma are the Weibull 
(κ=1), exponential (κ=1,σ=1), and lognormal (κ=0) distributions. 
 
Jones et al. (2014) suggest adding further flexibility by modelling 
medical cost data based on the generalized beta of the second kind 
(GB2) distribution and its nested and limiting cases. The GB2 
provides a useful tool for choosing between competing distributions.  
The GB2 is a 4-parameter distribution that is often used to model the 
size distribution of earnings and in analyses of income inequality 
(e.g., Jenkins, 2009). The mean of the GB2 distribution is: 
 

𝐸 𝑦 = 𝑏
! !!

!

!
! !!

!

!

! ! ! !
                              (3.13) 

 
 
Using 𝑏 = exp  (𝑥!𝛽) and treating the other parameters as scalars 
puts this in the ECM class of models. The Burr-Singh-Maddala 

{ }2

2
2

2

( ; , , ) exp( )
( )

, ( ) ln( ) , exp( ),

1

( | ) exp( ) exp( )
1

f y z u
t

where z sign y u z x

E y x x x

γ

σ κ

γ
κ µ σ γ

σ γ γ

γ κ κ µ γ κ µ β

σ

κκβ κ β φ

κ

−

= −
Γ

ʹ′= = − = =

⎡ ⎤⎛ ⎞
Γ +⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥ʹ′ ʹ′= =

⎢ ⎥⎛ ⎞
Γ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦



 

 41 

distribution is a special case when p=1, the Dagum is a special case 
when q=1 and p=q=1 gives the log-logistic. Also, the generalized 
gamma, and hence the gamma and Weibull, are limiting cases of the 
GB2. Figure 3.13 shows the nesting of distributions within the GB2 
family. 
 
 
 

 
 

Fig 3.13 The GB2 and nested distributions 
(source: Jones et al., 2014) 
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find that the GB2 can be a useful starting point for selecting which 
distribution to apply, with the beta-2 distribution and generalized 
gamma distribution performing the best within their dataset.  
Figure 3.14 extends the analysis introduced above in Figure 3.12. It 
shows how the values of skewness and kurtosis measured in the 
HES data compare to the values that are compatible with the upper 
and lower limits implied by the GB2 distribution (GB2U and GB2L) and 
the distributions nested within it. The dots relate to deciles of the 
fitted values and the ‘target’ symbol shows the overall sample values. 
Note that these all lie within the range implied by the generalized 
gamma distribution (between GGU and GGL). 
 
 
 

 
Fig 3.14 Skewness and kurtosis in HES data 

(source: Jones et al., 2014) 
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Deb and Trivedi (1997) proposed the use of finite mixture models 
(FMM) as an alternative to the hurdle model in the empirical 
modelling of count data measures of health care utilisation such as 
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in C distinct components in proportions 𝜋!,… ,𝜋!   𝑤ℎ𝑒𝑟𝑒   𝜋! = 1,!

!!!

0 ≤ 𝜋! ≤ 1. The C-point finite mixture model is given by: 

 

𝑓 𝑦 . = 𝜋!𝑓! 𝑦|.
!

!!!                             (3.14) 

 
where fj(.) is the specified parametric distribution for each component 
and the mixing probabilities 𝜋! are estimated along with all the other 

parameters of the model. Finite mixture models have been applied to 
cost data by, for example, Deb and Holmes (2000) and Conway and 
Deb (2005). 
 
The use of a discrete conditional density estimator (CDE) for the 
moments of the distribution of medical costs was proposed by 
Gilleskie & Mroz (2004).  The method divides the support of y into 
fixed number (K) of discrete intervals and then uses the 
approximation: 
 

𝐸 𝑦 𝑥 = 𝑦𝑓 𝑦 𝑥 𝑑𝑦 ≈ 𝑦! 𝑝(𝑦!!! ≤ 𝑌 < 𝑦!)       (3.15) 
    
Gilleskie and Mroz (2004) suggest a discrete hazard specification to 
estimate the probabilities 𝑝(𝑦!!! ≤ 𝑌 < 𝑦!). 
 
Jones et al. (2016) provide a comprehensive assessment of the 
relative performance of many of the approaches that are used in the 
literature again using a quasi-Monte Carlo design. The range of 
methods compared includes GLMs, flexible parametric models based 
on the GB2 family as well as the semiparametric finite density and 
finite mixture models. The models are compared in terms of their 
ability to predict the conditional mean of costs in the forecast sample. 
For their HES dataset the best performing model in terms of bias is 
linear regression with a square root transformed dependent variable, 
and a GLM with square root link function and Poisson distribution 
performs best in terms of goodness-of-fit.  

 

3.5 Distributional Methods 
 

Jones et al. (2015) compare methods that are designed to estimate 
the full conditional distribution of healthcare costs. This is motivated 
by the idea that it can be important to go ‘beyond the mean’. Much of 
the work done on modelling health care costs has focused on   
prediction of the conditional mean of costs. But this can neglect other 
features of the full conditional distribution such as quantiles and tail 
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probabilities. For example, the varying size and shape of the tail 
probability associated with annual costs greater than £10,000 in the 
HES data is shown in Figure 3.15. Here the conditional distributions 
of log(costs) are split into quintiles ranging from those patients whose 
risk adjusters are associated with the lowest level of costs to those in 
the top quintile who are associated with the highest levels. 
 

 
Fig 3.15 Tail probabilities in HES data  

(source: Jones et al., 2015) 

 
 
Jones et al. (2015) again use the English NHS inpatient data in a 
quasi-Monte Carlo design that compares fourteen different methods 
for modelling the distribution of healthcare costs. Nine of the methods 
use flexible parametric models, based on distributions that have been 
used in the literature to fit healthcare costs. These include the 
generalized gamma and the generalized beta of the second kind 
(GB2) models as well as the use of finite mixture models. Linear 
regressions and GLMs are not included in the comparison as they do 
not offer a ready way to estimate tail probabilities. 
 
The remaining five methods are drawn from recent developments on 
the literature on regression-based decomposition analysis and 
methods that are designed to estimate counterfactual distributions. 
These methods involve distributional regressions and are estimated 
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using two broad approaches. The first set aim to estimate the 
distribution function directly and are essentially based on logit models 
for step functions (Han and Hausman, 1990; Foresi and Peracchi, 
1995; Chernozhukov et al., 2013). The second set estimate quantile 
functions, either directly or through the use recentred influence 
function (RIF) regression, which are then inverted to give the 
distribution function and corresponding tail probabilities (Machado 
and Mata, 2005; Melly, 2005; Firpo et al., 2009).  
 
Once again the design of the study split the data between an 
estimation set, used to draw random samples of varying sizes to fit 
the models, and a validation set, used to check the predictions of tail 
probabilities. The quasi-Monte Carlo comparisons focus on the 
estimation of specific tail probabilities rather than the distribution as a 
whole. They show that no single method is dominant and indicate 
that there is a trade-off between bias and precision in the forecasts. It 
is clear that the distributional regression methods demonstrate 
significant potential for estimating conditional tail probabilities, 
particularly with larger sample sizes when the variability of 
predictions is reduced. The parametric models including the log-
normal, generalized gamma and GB2 estimate tail probabilities with 
high precision, but with varying bias depending upon the threshold 
for the tail probability that is used. 
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4 
An Application to Biomarkers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This section puts the econometric and graphical methods described 
above into practice with a new application to health outcomes. This 
uses objective blood-based biomarkers, rather than medical costs, as 
the dependent variables. Biomarkers are biological or physiological 
measures used to indicate the presence of a disease or the likelihood 
of developing a disease. They are used to identify risk factors and as 
objective measures of health that avoid contamination by reporting 
bias (Benzeval et al. 2016). The distributions of these biomarkers 
vary and the descriptive and analytical methods, including graphical 
approaches, outlined above can be used to select appropriate 
models for each of them.  
 
The dataset is the new UK national panel; the UK Household 
Longitudinal Study (UKHLS), known as Understanding Society, is a 
large nationally representative longitudinal study. The study began at 
wave 1 with a new sample of the members of about 32,000 
households, known as the general population sample or GPS (Knies, 
2015). Then at wave 2 (2010-2011), the existing sample of around 
8,000 households from the previous national panel, the British 
Household Panel Study (BHPS) was incorporated into the UKHLS. 
The BHPS has been used heavily by economists and has 18 waves 
collected annually between 1991 and 2009.  
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The UKHLS, and the BHPS before it, involves annual interviews for 
each member of the household aged 16 and over. In the UKHLS the 
fieldwork for each wave takes two calendar years. The questionnaire 
covers a broad set of questions about family composition, 
employment, education, housing, neighbourhoods, consumer 
durables, savings, wealth and income, health, health behaviours, 
well-being, cognition and personality, social support and 
engagement, transport, leisure, environmental and political 
behaviours.  
 
As part of the UKHLS data collection a set of objective health 
measures (biomeasures), such as height, weight and blood pressure, 
as well as a non-fasted blood sample (for biomarkers) were collected 
by trained nurses. This was done at wave 2 for the general 
population sample and as part of wave 3 for the members of the 
BHPS sample (Benzeval et al., 2014; McFall et al., 2014). These 
nurse visits have not been repeated as yet so the health and 
biomarkers data are cross-sectional and the analysis presented here 
pools the available observations from waves 2 and 3. To be eligible 
for the nurse visit and collection of the blood samples respondents 
had to take part in the main survey, be aged 16 and over, be resident 
in Great Britain (thereby excluding Northern Ireland), and not be 
pregnant (McFall et al., 2014). In addition blood samples were 
restricted to those without clotting or bleeding disorders and who had 
not had a fit (Benzeval et al., 2014).  
 
Following Davillas et al. (2017), four biomarkers are compared here. 
These are selected because of their differing distributions and 
because they are linked to major chronic health problems including 
coronary heart disease and diabetes. Two biomarkers of 
inflammation are used: c-reactive protein (CRP) and fibrinogen. CRP 
(in mg/ L) indicates general chronic or systemic inflammation. It has 
been shown that the risk of ischaemic vascular disease, metabolic 
syndrome and mortality are gradually increasing in CRP. Fibrinogen 
(in g/L) is a glycoprotein that stops bleeding by helping blood clots to 
form. As such, fibrinogen is directly related to coronary artery 
thrombosis; however, it is also regarded as an inflammatory 
biomarker. Glycated haemoglobin (HbA1c) measures ‘sugar in the 
blood’ and is used as an indicator for diabetes. Cholesterol measures 
“fat in the blood”. The cholesterol ratio is calculated as the ratio of 
total cholesterol over the high-density lipoprotein (HDL) cholesterol 
concentration in the blood. This is a predictor of cardiovascular 
morbidity and mortality risks.  
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Following Davillas et al. (2017), the biomarkers are modelled as a 
function of household income and other socioeconomic variables. 
The UKHLS includes current household income as a derived 
variable. In the regression models the logarithm of income is used in 
order to allow for the concavity of the biomarker-income 
relationships. The other covariates include fourteen age dummies for 
each gender to allow for a flexible association between health, age 
and sex. Ethnicity dummies are also included along with marital 
status, education attainment and dummies to capture regional 
variations. For the application presented a complete case analysis is 
used using all non-missing observations for the four biomarkers and 
associated regressors and excluding those with CRP values above 
10 mg/L who are most likely experiencing an acute infection at the 
time of the blood sample. This sample includes 10,683 individuals. 
 
Now consider the shape of the marginal distributions of each of the 
four biomarkers, as represented by histograms in Figure 4.1. Each 
exhibits distinctive and ‘non-normal’ features. Fibrinogen appears 
symmetric but with heaping at particular values. CRP is highly 
skewed, even though the plot has been truncated at a value of 10 
mg/L. HbA1c and the cholesterol ratio are less skewed than CRP but 
both exhibit long right-hand tails. 
 

 
 

Fig 4.1 Histograms of the biomarkers 
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Figure 4.1 pools the data across men and women. To assess 
whether the shape of the distributions differ conditional on gender 
Figure 4.2 shows quantile-quantile (QQ) plots. These indicate little 
difference between men and women in the distributions of fibrinogen 
CRP and HbA1c but show a difference, indicated by deviations from 
the 45o line, especially in the right-hand tail, for the cholesterol ratio. 
This would need to be controlled for either by splitting the sample or 
by the way gender is included in the regression models. 
 
 
 

 

Fig 4.2 QQ plots of the biomarkers by gender 
 
The code used for the QQ plots is illustrated here for the case of 

fibrinogen: 

gen cfib_m=cfib if male==1 
gen cfib_f=cfib if male==0 
qqplot cfib_m cfib_f, xtitle(Women) ytitle(Men)  
    title(Fibrinogen) graphregion(color(white))  
    msize(vsmall) mc(black) rlopt(lw(thin)  
    lc(dkorange)) nodraw saving(qqcfib, replace) 
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The way in which the distributions of the biomarkers vary by age is 
illustrated for CRP and HbA1c, both of which have commonly applied 
clinical thresholds (see e.g., Davillas et al., 2017). Values of CRP 
over 3 mg/L are used to indicate elevated risk for cardiovascular 
diseases. Values over 10mg/L are typically seen as a sign of a 
current acute infection and these cases are excluded here. Levels of 
HbA1c between 42 and 48 mmol/mol are used to indicate pre-
diabetes risk, with values above 48 indicating a diagnosis of 
diabetes. Figure 4.3 shows how the likelihood of crossing these 
thresholds varies with age. It plots both density functions and Pareto 
charts of the inverted empirical distribution functions for both of the 
biomarkers split by quintiles of the individual’s age. The clinical 
thresholds are included as horizontal bars to show how the tail 
probabilities increase with age. This is most visible in the distribution 
plots, especially for HbA1c, showing the growing burden of pre-
diabetes risk and diabetes with ageing. 
 
 

   

Fig 4.3 Distributions of CRP and HbA1c by age 
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palette, and changes its intensity for each of the curves using the 
lcolor subcommand: 

 
* Create indicator of quintiles of age  
xtile yqage=age, nq(5) 
* Create clinical thresholds 
gen cutcrp=3 
gen cuthba1c=42 
 
* Pareto charts (edfs) using cumulated variables 
bysort yqage: cumul crp, gen(cmcrp) 
bysort yqage: cumul hba1c, gen(cmhba1c) 
 
tw (line cutcrp cmcrp, sort lwidth(medium)    
   lcolor(dkorange), ysca(noline) xsca(noline)  
   ylabel( , angle(horizontal))) 
   (line crp cmcrp if yqage==1, sort lwidth(medium)   
   lcolor(ebblue*.3), ysca(noline) xsca(noline)   
   ylabel( , angle(horizontal))) 
   (line crp cmcrp if yqage==2, sort lwidth(medium)  
   lcolor(ebblue*.6), ysca(noline) xsca(noline)  
   ylabel( , angle(horizontal))) 
   (line crp cmcrp if yqage==3, sort lwidth(medium)  
   lcolor(ebblue*.9), ysca(noline) xsca(noline)  
   ylabel( , angle(horizontal))) 
   (line crp cmcrp if yqage==4, sort lwidth(medium)    
   lcolor(ebblue*1.2), ysca(noline) xsca(noline)  
   ylabel( , angle(horizontal)))  
   (line crp cmcrp if yqage==5, sort lwidth(medium)  
    lcolor(ebblue*1.5), ysca(noline) xsca(noline)  
    ylabel( , angle(horizontal))) if crp<10,   
    legend(off) saving(cmcrp, replace) 
 

Similar code for HbA1c and for plotting the histograms has been 
omitted. 
 

Figure 4.4 shows the bivariate relationships between the biomarkers 
and the logarithm of household income using strip plots. Note that 
the biomarkers are increasing in poor health so the bivariate 
regression lines for the conditional mean of the biomarkers as a 
function of income, while shallow, are downward sloping and, on 
average, the biomarker scores improve (get smaller) with higher 
income. However the strip plots show considerable heterogeneity 
around the regression lines and they show the extent of the right-
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hand tails of the distributions, especially for CRP and the cholesterol 
ratio. HbA1c values are the most concentrated around the regression 
line. 
 

 

 

Fig 4.4 Strip plots of the biomarkers by ln(income) 
 
 
Linear regressions are fitted for each of the biomarkers, on their raw 
scale, using the list of regressors described earlier. The fit of these 
models is summarised in Figure 4.5, which plots the average of 
actual and fitted values for twenty intervals of the fitted values. As 
expected, based on Figure 4.4, HbA1c and the cholesterol ratio show 
the tightest fit with CRP showing deviations in the right-hand tail. 
 

The scatter of observed data around the fitted regression lines is 
displayed in Figure 4.6. This is drawn using a variant of the observed 
versus fitted values plot with the command ovfplot. This is taken 

from Nicholas Cox’s ‘Modeldiag’ package that extends the range of 
Stata graphical commands for regression diagnostics.   
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Fig 4.5 Actual versus fitted plots for linear regression models 

 
 

Fig 4.6 Ovfplot for linear regression models 
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Further insight is provided by another plot from the Modeldiag package. 
The qfrplot shown in Figure 4.7 shows the distribution of the quantiles 

of the fitted values and the residuals. This emphasizes the narrow range 
of variation in the fitted values of the conditional mean function. For most 
of the distributions the range of variation in the residuals is also quite 
narrow but the small fractions of very large positive residuals in the right-
hand tail reflect the skewness of the distributions of CRP, HbA1c and the 
cholesterol ratio. 
 
 
  

 
Fig 4.7 Qfrplot for linear regression models 

 
 
The syntax for the ovfplot and qfrplot, for the case of 

fibrinogen, is: 
 
ovfplot, legend(off) msymbol(p)  
         ylabel( , nogrid angle(horizontal))  
qfrplot, title(Fibrinogen)  
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The clouds of data points in Figure 4.6 shows that, on the raw scale, 
the conditional variance increases as the fitted values increase and, 
most likely, so do the higher conditional moments.  
 
As described above, GLM models specify the conditional mean (link) 
and conditional variance (distribution) as (potentially) nonlinear 
functions of a linear index of the regressors. Figure 4.8 graphs the 
relationship between the conditional mean and variance for each of 
the biomarkers, using vigiciles of fitted values. These suggest that 
the variance is an increasing function of the mean in all cases. 
 
 
 

 
Fig 4.8 Conditional mean and variance of biomarkers 

 
 
Figure 4.9 shows the relationship between conditional kurtosis and 
skewness. These are reasonably close to the locus implied by a 
gamma distribution (shown by the orange curves). 
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Fig 4.9 Conditional kurtosis and skewness of biomarkers 

 
 
The GLM framework is implemented based on the extended 
estimating equations (EEE) approach of Basu and Rathouz (2005) 
and the associated user-written program pglm.  There can be 

computational problems in fitting these models and here the outcome 
variable is scaled relative to its mean prior to estimation (shown here 
for fibrinogen): 
 
clonevar y=cfib 
quietly summ y, meanonly 
gen scy = y/r(mean) 
global sc = r(mean) 
pglm scy $xs  
pglmpredict yfc if e(sample), mu scale($sc) 
 

 
The fit of models estimated using the extended estimating equations 
(EEE) approach is shown in Figure 4.10. These look rather similar to 
those for the linear regressions shown above with the best fits for 
HbA1c and the cholesterol ratio and the poorest for CRP. 
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Fig 4.10 Actual versus fitted plot for EEE models 

 
The EEE approach shown here uses distributions based on power 
functions of the mean, for example the gamma distribution where the 
variance is proportional to the square of the mean. Another option, 
that might be consistent with Figure 4.8, is the negative binomial 
where the variance is a quadratic function with linear and squared 
terms. This can be accommodated in EEE using the option vf(q) 

but, to illustrate here, GLM models are estimated directly with the 
negative binomial family and using link functions close to those 
implied by the EEE estimates: 
 
glm cfib $xs, link(power 3) family(nb)  
      vce(robust) eform nolog 
glm crp $xs, link(power 0.5) family(nb)  
      vce(robust) eform nolog 
glm hba1c $xs, link(power -2) family(nb)  
      vce(robust) eform nolog 
glm tc_hdl $xs, link(power 3) family(nb)  
      vce(robust) eform nolog 
 

Figure 4.11 compares the fit of these GLM models, with CRP once 
again appearing problematic. 
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Fig 4.11 Actual versus fitted plot for GLM models 
 
Turn now to flexible parametric models; the generalized gamma 
model is estimated for each biomarker. The code to estimate the 
model and create predictions of the conditional means is: 
 
stset cfib 
streg $xs, dist(ggamma) vce(robust) skip  
      nonrtolerance nolog time  
predict yfs if e(sample), xb 
replace yfs=exp(yfs+(e(sigma)/e(kappa)) 
         *log(e(kappa)^2)+lngamma((1/e(kappa)^2) 
         +e(sigma)/e(kappa))-lngamma(1/e(kappa)^2)) 
 

Note that the dataset has to be stset prior to estimation in order to 
use the survival regression, streg, command. Figure 4.12 presents 

the actual versus fitted values. These show a good fit for fibrinogen 
and a reasonable fit for the cholesterol ratio but suggest that there is 
likely to be an issue of misspecification for CRP, where there is a 
poor fit in the right-hand tail, and HbA1c, where there is systematic 
over-prediction at the bottom end of the distribution and under-
prediction at the top end. Figure 4.13 compares the generalized 
gamma with the GB2 distribution for both fibrinogen and the 
cholesterol ratio. These are very similar in appearance. 
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Fig 4.12 Actual versus fitted plot for generalized gamma models 
 

 

Fig 4.13 Actual versus fitted plot for generalized gamma and GB2 models 
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Estimation of the GB2 model is by maximum likelihood and uses a 
program from Jones et al. (2014) along with commands to compute and 
graph the fitted values of the conditional mean (shown here for 
fibrinogen): 
 
program gb2log 
 args lnf lnb a p q 
 local y1 "$ML_y1" 
 quietly { 
 replace `lnf' = ln(abs(`a')) +   
     (abs(`a')*abs(`p') - 1)*ln(`y1')  
      - (abs(`p') + abs(`q')) 
     *ln(1+(`y1'/exp(`lnb'))^abs(`a'))  
      - abs(`a')*abs(`p')*`lnb' - lngamma(abs(`p'))  
      - lngamma(abs(`q'))+lngamma(abs(`p')+abs(`q')) 
  }   
 end 
 
* Estimation 
ml model lf gb2log (lnb:  cfib = $xs) /a /p /q 
ml search 
ml max, noclear 
ml display 
* Predictions 
predict double a_gb2, eq(a)  
predict double p_gb2, eq(p)  
predict double q_gb2, eq(q)  
gen double gb2_lnbest = [lnb]_b[_cons] 
foreach var of varlist $xs { 
 replace gb2_lnbest = gb2_lnbest+[lnb]_b[`var']*`var' 
} 
gen double b_gb2 = exp(gb2_lnbest) 
gen double yf=b_gb2*((exp(lngamma(p_gb2+(1/a_gb2))) 
    *exp(lngamma(q_gb2-(1/a_gb2)))))              
    /(exp(lngamma(p_gb2))*exp(lngamma(q_gb2))) 
 
* Plot of averages of actual and fitted 
xtile yfd=yf, nq(20) 
bysort yfd: egen yfbar=mean(yf) 
bysort yfd: egen ybar=mean(cfib) 
tw line ybar yfbar yfbar, title(Fibrinogen)  
  subtitle(GB2) ytitle(mean of actuals)  
  xtitle(mean of fitted) ylabel( , angle(horizontal))   
  xsca(noline) ysca(noline) legend(off)  
  saving(deccfib, replace) note($note) 
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Figures 4.12 and 4.13 evaluate the generalized gamma and GB2 models 
in terms of their ability to fit the conditional mean of the data. However the 
attraction of these flexible 3 and 4-parameter distributions is more about 
their ability to fit the higher moments of the distribution, especially 
skewness and kurtosis, as well as conditional tail probabilities. The 
moments of the GB2 distribution are defined by (Jones et al., 2014): 
 
 

𝐸 𝑦! = 𝑏
!

! !!
!

!
! !!

!

!

! ! ! !
                              (4.1) 

 
 
So, to give a sense of the performance of the GB2 model in this respect, 
Figure 4.14 plots the actual and fitted values of the third and fourth 
moments of the cholesterol ratio. These are complemented by spike 
plots to show the absolute differences between the actual and fitted 
values of the third and fourth moments, shown at each of the 20 intervals 
of the fitted values of the mean that are used to split the sample and 
hence condition on different levels of the regressors. 
 
 
 

 
Fig 4.14 Actual versus fitted higher moments for GB2 
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The code used for the plots of the third moments is shown here: 
 
gen double yf_3=((b_gb2)^3) 
    *((exp(lngamma(p_gb2+(3/a_gb2))) 
    *exp(lngamma(q_gb2-(3/a_gb2))))) 
    /(exp(lngamma(p_gb2))*exp(lngamma(q_gb2))) 
gen y_3=tc_hdl^3 
bysort yfd: egen yf3bar=mean(yf_3) 
bysort yfd: egen y3bar=mean(y_3) 
tw line y3bar yf3bar yf3bar, title(Cholesterol Ratio)  
   subtitle(3rd moment) ytitle(actual)  
   xtitle(fitted) ylabel( , angle(horizontal))  
   xsca(off) ysca(noline) legend(off)    
   saving(sk3, replace) 
 
gen diff3=y3bar-yf3bar 
tw spike diff3 yfd, nodraw xsca(noline)  
   ysca(noline) lcolor(ebblue) legend(off)  
   ylabel( , angle(horizontal)) ytitle(Difference)  
   xtitle(fitted) saving(spk3, replace) 
graph combine sk3.gph spk3.gph, cols(1)    
   saving(skspk3, replace) 

 
 
Finally, Figure 4.15 shows how the GB2 model fits the conditional tail 
probabilities of the distribution. The tail probabilities for the GB2 model 
involve the incomplete beta function ibeta (see Jones et al., 2014). The 

tail probabilities are computed at different levels of the cholesterol ratio 
that span the distribution, ranging from 2 to 9.  Once again line plots are 
combined with spike plots of the absolute difference between the 
average of the actual and fitted values (the bias) at different levels of the 
fitted mean: 
 
foreach j of numlist 2 3 4 5 6 7 8 9 10 { 
      gen tp_`j'=0 
      replace tp_`j'=1 if tc_hdl>`j' 
      gen tpf_`j' =  
           1 - ibeta(p_gb2,q_gb2,((`j'/b_gb2)^a_gb2) 
               /(1+(`j'/b_gb2)^a_gb2)) 
      bysort yfd: egen tpfbar_`j'=mean(tpf_`j') 
      bysort yfd: egen tpbar_`j'=mean(tp_`j') 
  gen diff_`j'=tpbar_`j'-tpfbar_`j' 
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      tw line tpbar_`j' tpfbar_`j' tpfbar_`j',    
         title(p(y>`j')) ytitle(actual)  
         xtitle(fitted) ylabel( , angle(horizontal))  
          xsca(off) ysca(noline) legend(off) 
          nodraw saving(tptc_hdl_`j', replace) 
   tw spike diff_`j' yfd, nodraw xsca(noline)  
          ysca(noline) lcolor(ebblue) legend(off) 
      ylabel( , angle(horizontal))  
          ytitle(Difference) xtitle(fitted)  
          saving(spk_`j', replace) 
        graph combine tptc_hdl_`j'.gph spk_`j'.gph,  
          cols(1) nodraw saving(tpspk_`j', replace) 
} 
graph combine tpspk_2.gph tpspk_3.gph tpspk_4.gph  
      tpspk_5.gph tpspk_6.gph tpspk_7.gph tpspk_8.gph  
      tpspk_9.gph,  cols(4) note($note) 

 

 
 

 
Fig 4.15 Actual versus fitted tail probabilities 

 
Figure 4.15 shows that the ability of the model to predict the 

conditional tail probabilities is reasonable up to a cholesterol ratio of 
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6, corresponding to probabilities of 0.05 to 0.15, but the performance 

deteriorates beyond that.  
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5 
Conclusion 

 
 
 
 
 
 
 
 
 
 
 
 

 
This article introduces the principles and practice of data visualization 
and aims to show how these can enhance empirical analysis of 
health care costs and outcomes, especially for skewed and heavy-
tailed distributions. The survey of regression methods for health care 
costs is complemented by an application of the econometric and 
graphical methods to blood-based biomarkers from the UK 
Household Longitudinal Study (UKHLS), known as Understanding 
Society (Benzeval et al. 2016; Davillas et al., 2017).  
 
The article has shown how graphical methods can be applied using 
Stata so that the graphics can be integrated with statistical and 
econometric analysis within one piece of software and using one set of 
syntax. This means that the graphics presented have been designed for 
publication in print rather than online and are static and non-interactive. 
Of course other software packages are available and are well suited 
for data visualization. Many visualization practitioners use the open 
source programming language and software environment R; often by 
installing the package ggplot, which is a purpose built plotting system 
for R (Wickham, 2011). Specialist commercial packages such as 
Tableau provide interactive data visualization products and specialist 
tools are available for those who wish to prepare dynamic and 
interactive visualizations to be used in web browsers, such as D3.js 
(Data-Driven Documents), which is a JavaScript library. A source of 
inspiration for the use of interactivity and animation in health-related 
visualizations is the Gapminder project, initiated by the late Hans Rosling. 
This and a selection of other web resources are listed in the Appendix.  
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Appendix 

A.1 Web Resources 
 
 
Useful web pages and resources for data visualisation methods can 
be found at: 
 
Excel Charts (Jorge Camoes): 
https://excelcharts.com/author/jorge-camoes/  
 
Flowing Data (Nathan Yau): 
http://flowingdata.com 
 
Perceptual Edge (Stephen Few): 
http://www.perceptualedge.com 
 
PolicyViz (Jonathan Schwabish): 
https://policyviz.com 
 
The Functional Art (Alberto Cairo): 
http://www.thefunctionalart.com 
 
Pages that focus on health issues and take a visual approach 
include: 
 
Gapminder: 
http://www.gapminder.org 
 
Institute for Health Metrics and Evaluation (IHME): 
http://www.healthdata.org/results/data-visualizations 
 
Programs and data for health care cost regressions can be found at: 
 
Health, Econometrics and Data Group (HEDG) 
https://www.york.ac.uk/economics/postgrad/herc/hedg/ 
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