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Abstract

RNA sequencing (RNA-seq) is widely used for RNA quantification in the environmental, bio-

logical and medical sciences. It enables the description of genome-wide patterns of expres-

sion and the identification of regulatory interactions and networks. The aim of RNA-seq data

analyses is to achieve rigorous quantification of genes/transcripts to allow a reliable predic-

tion of differential expression (DE), despite variation in levels of noise and inherent biases in

sequencing data. This can be especially challenging for datasets in which gene expression

differences are subtle, as in the behavioural transcriptomics test dataset from D. melanoga-

ster that we used here. We investigated the power of existing approaches for quality check-

ing mRNA-seq data and explored additional, quantitative quality checks. To accommodate

nested, multi-level experimental designs, we incorporated sample layout into our analyses.

We employed a subsampling without replacement-based normalization and an identification

of DE that accounted for the hierarchy and amplitude of effect sizes within samples, then

evaluated the resulting differential expression call in comparison to existing approaches. In

a final step to test for broader applicability, we applied our approaches to a published set of

H. sapiens mRNA-seq samples, The dataset-tailored methods improved sample compara-

bility and delivered a robust prediction of subtle gene expression changes. The proposed

approaches have the potential to improve key steps in the analysis of RNA-seq data by

incorporating the structure and characteristics of biological experiments.

Introduction

RNA sequencing (RNA-seq) has revolutionized the field of transcriptomics [1, 2], giving pow-

erful insight into the identity and abundance of RNAs in cells, tissues and whole organisms

[3]. In contrast to the fixed, predefined set of probes used for microarray experiments, RNA-

seq generates a diverse set of reads and facilitates analyses of expression level variation for

known and unknown RNA transcripts and variants. It also offers the possibility to study addi-

tional facets of the transcriptome [4], such as those arising from (re)annotations of reference

genomes [5], or to identify alternative splicing events [6] and variation in abundance across
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transcripts [7, 8]. Several bioinformatics methods have been developed for the analysis of the

rapidly rising number of RNA-seq datasets (reviewed in [4, 7, 9]). However, to accommodate

the use of RNA-seq in complex experimental designs, there is scope for further advances in: (i)

minimising the effect of normalisation on the pattern of DE, hence facilitating the robust

detection of subtle signatures of gene expression, the concordance of which is often very low

between different bioinformatics methods [10, 11]; (ii) the incorporation of hierarchical (e.g.

nested) experimental designs [12–14], e.g. as often used in evolutionary experiments [15].

Quality checks (QC)

A key step in the analysis of RNA-seq data consists of sample quality checks and the identifica-

tion, characterization and potential exclusion of sample outliers, e.g. those samples that are

compromised due to technical issues [16]. Tools such as FastQC [17], SeqMonk [17] or Tag-

Cleaner [18] evaluate the sequencing and per-base quality. Additional QC may include an

analysis of the per-base nucleotide composition and an evaluation of overall GC content [19–

21]. QC procedures focused on sequencing bias include the characterization of k-mer distribu-

tions [22] as well as detection of other adapter ligation effects [23, 24].

Quantitative analysis of sequencing output currently considers measures such as yield, cov-

erage, 3’/5’ bias, number of detectable transcripts, strand specificity and read distribution

across the genome [16]. Additional steps, at the transcript level, include the classification of

reads into annotation classes, which can highlight the presence of potential contaminant

ncRNAs such as tRNAs and rRNAs [19, 21]. Such analyses can reveal over-represented classes

of sequences, which can then be removed to minimise distortion in the subsequent normaliza-

tion and reduce changes in the ranking of abundances.

A QC criterion often used is the Pearson Correlation Coefficient (PCC) between the expres-

sion levels of genes across replicates [25, 26]. Values of r2 2 [0.92,0.98] are considered accept-

able. If the PCC falls below 0.9 the suggestion is to exclude the problematic replicates/samples

[4]. However, this criterion can lack discriminatory power, because, due the high number of

data points (expressed genes, e.g. vector containing >15K genes for D. melanogaster), the

resulting correlations will often be very high between all samples.

We suggest that there are some potentially useful, and as yet under-utilized, additional steps

for quantitative evaluation of RNA-seq samples. These include analyses of per-sample or per-

gene complexities, defined as the ratio of non–redundant (NR, unique) to redundant (R, total)

reads [27], similarity comparisons [28, 29] and enhanced PCC-based analyses. Complexity is

an informative measure of the number of unique reads, average abundance of reads per tran-

script and average coverage (a complexity of ~0 would indicate a sample in which all reads

were the same and 1 a sample where every read was different). Sample complexity is influenced

by sequencing depth. Samples with high sequencing depth have a lower overall complexity and

vice versa. However, samples with comparable sequencing depths, but very different numbers

of unique reads, can suggest the presence transcripts/replicates that are not comparable. Other

quantitative checks include the Jaccard similarity index [27, 28], which evaluates the propor-

tion of the top most abundant genes that are shared across samples. Because this index is calcu-

lated on highly-expressed genes it is not biased by low level, noise-derived, variability in

expression.

Additional insight into the reproducibility of gene quantification can be achieved by using

the ‘point-to-point’ Pearson correlation coefficient (p2pPCC). A standard PCC uses one

expression value for each gene (the sum of abundances of all incident reads). In contrast, the

p2pPCC is calculated using the distribution of expression across the whole transcript. For

example, consider a gene with 2 exons (A, B). In sample 1, A has abundance of 5 and B of 0. In
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sample 2, A has 0 and B has 5. The standard PCC = 1 and the expression in the two samples is

correlated. However, the p2pPCC = 0 indicating that, in reality, the distribution of expression

is not the same. Hence, the p2pPCC can provide an accurate evaluation of replicate-to-repli-

cate variability. However, its accuracy falls if alternative splicing events are common or vari-

able in the samples being compared. However, alternative splicing appears more prevalent

between different tissues and developmental stages than between environmental conditions or

manipulations [30] such as those compared in this study.

Normalizations

The next key stage in the analysis of RNA-seq data is the normalization of gene expression

levels [4, 11, 31], [7, 32]. Normalization is designed to transform the distributions of abun-

dances for each sample, without distortion, into distributions that can be compared. An effec-

tive normalization increases the chances of an accurate call of DE. It accounts for differences

in sequencing depths and in biases arising from the library preparation or its sequencing [33–

35]. Nevertheless, despite extensive attention from the community [36], there is as yet no clear

consensus on whether any single normalization method is optimal [7, 11]. Nor is there any

general appreciation of the potential magnitude of the consequences of ineffectively normaliz-

ing data. The extent of this problem depends on the amplitude and distribution of DE, with

small gene expression differences being more sensitive than larger ones to the method of nor-

malization. Therefore, particularly for analyses of subtle gene expression differences, as in the

D. melanogaster test data used here, it can be important to assess how well the data are normal-

ized by different methods [37]. However, such tests are not a routine part of bioinformatics

analyses [9].

In this study, in addition to the extra QC described above, we used a normalization based

on subsampling without replacement [38]. This was subsampling of the original set of reads, to

a smaller, predetermined and fixed total. Each read that was selected and assigned to the nor-

malized sample was not returned to the original pool (‘without replacement’), hence could not

be selected again. We also conducted additional checks and downstream enhancements in the

calculation of DE [39]. We chose this normalization method because subsampling normaliza-

tions are distribution-free and circumvent the need of scaling factors, which lack consistency

across all abundances and can lead to downstream biases [38, 40]. A subsampling with replace-

ment normalisation (in which reads that are selected and assigned to the normalized sample

are returned to the original pool and hence can be selected again) has previously been pro-

posed [25, 40, 41]. The main difference between the two approaches is that ‘with replacement’,

the probabilities for selecting reads remain constant throughout subsampling, whereas for

‘without replacement’ they do not and are updated as the subsampling progresses. Subsam-

pling with replacement [40] was introduced for its potential suitability for samples with low

sequencing depth that could be subsampled to higher total read number. However, this may

over-amplify high abundance and exclude low abundance reads, with attendant downstream

knock-on effects. To our knowledge, no direct comparison of the two subsampling approaches

to RNA-seq, has yet been conducted.

Identification of differential expression

The goal of transcriptomics analyses is the accurate and unbiased identification of expressed

genes and genes showing DE between treatments. The majority of existing methods exhibit a

good level of overlap in terms of highly differentially expressed genes [11, 42]. However, the

agreement is far less when DE is subtle. Comparative analyses of existing normalization
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procedures on real and simulated data sets show that only ~50% of significantly differentially

expressed genes are identified by all methods [10, 35].

ANOVA-based methods are a powerful and extensively applied approach for the analysis of

microarray data [43]. However, such methods are based on a priori, to some extent arbitrary,

significance thresholds. In addition, the type of experiment can greatly influence the expected

number of genes showing DE. For example, if the frequency distribution of DE is narrow, P-

values will indicate as statistically significant genes that typically show only very small fold

change differences. Such differences are also unlikely to be validated by low throughput meth-

ods [9]. Therefore, the set of DE genes identified by a fixed P-value may not necessarily reflect

biologically important facets of the data.

Newer methods such as DESeq2 [12] and edgeR [44] are based on the negative binomial

distribution model for expression levels, using the variance and mean linked by local regres-

sion to detect DE genes (DESeq2) and empirical Bayes methods for moderating the degree of

over dispersion across transcripts (edgeR). However, additional options for analysis could be

useful to accommodate hierarchical experimental designs [45], e.g. those in which the different

levels of an experiment are nested within each other.

In the D. melanogaster study that provided the test data examined here, we applied both

known and novel qualitative and quantitative quality checks for the analysis of a hierarchical

RNA-seq dataset of the behavioural responses to conspecific rivals in D. melanogaster [39]. We

accounted for the different hierarchical levels of the experimental design (i.e. body part, then

presence or absence of rivals) by including the magnitude of gene expression differences at

each level into our analysis, prior to the DE call. We structured the analysis for the mRNA-seq

data (S1 Fig) and conducted QC tests, a subsampling without replacement-based normaliza-

tion and finally a hierarchical approach for the identification of transcripts showing DE. The

analysis also featured the use of an adjustable, empirically-determined offset to filter out low

abundance genes and a DE call based on maximal confidence intervals. We then compared the

adapted normalization method to existing approaches in the analysis of an additional, publicly

available, H. sapiens mRNA-seq dataset [46]. Overall, the adapted methods complemented

existing approaches and performed well in the analysis of complex, challenging datasets.

Results and discussion

We first used the D. melanogaster dataset from [39] in which we analysed the subtle effects on

gene expression of exposure of males to conspecific mating rivals. The steps of this analysis (S1

Fig) followed the approaches described in [4]. We then compared the output of our pipeline

with that of existing methods on the same input data. The final step was to assess the broader

applicability of our adapted normalization to a publicly available H. sapiens mRNA-seq dataset

[46].

Quality checking

Stage 1: QC of sequencing quality. The D. melanogaster test data comprised of 3 replicate

mRNA-seq samples of 2 rival treatments (rivals versus no rivals), 2 body parts (Head+Thorax

(HT) and Abdomen (A)) and one exposure treatment (2h after the exposure to conspecific

rivals). The first stage of the QC (S1 Fig) focussed on existing approaches and comprised of the

analysis of: (i) FastQ quality scores [17], (ii) sequencing depth, (iii) nucleotide (nt) composi-

tion / GC content [19, 21], (iv) strand bias and (v) proportions of genome and annotation clas-

ses—matching reads e.g. mRNAs, t/rRNAs, miRNAs, UTRs, introns, intergenic regions [4].

The FastQ QC indicated good quality reads for all 50nt, though we observed high variability in

sequencing depths. Variation in nucleotide content was observed across the first 12nt [24], but
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conformed after that to the nucleotide composition of the D. melanogaster transcriptome.

Strand bias was comparable across samples and the proportion of genome-mapping reads was

high. Based on these stage 1 quality checks, all samples were retained for further analyses and

entered stage 2 QC. The detailed results, supporting the conclusion that the samples were con-

sistent based on these criteria, are presented in S1 and S2 Tables.

Stage 2: Quantitative QC of replicate and sample comparability. We computed the Jac-

card similarity [27, 28] at the gene level, to compare the similarity in expression of the top

1000 most abundant genes present in each sample (S3 Table). Samples drawn from the same

body parts shared> 90% similarity, and between body parts (HT versus A) the similarity

dropped to ~50%. Similarity between the experimental (± rivals) treatments was sometimes

higher than between replicates, which highlighted the need for an alternative approach to nor-

malize gene expression levels.

As noted in the introduction, samples with comparable sequencing depths, but very differ-

ent number of unique reads, may represent non-comparable replicates. To understand how

this may influence the accuracy of DE, we calculated the variation in complexity, between rep-

licates at gene level (Fig 1). Highly comparable replicates should exhibit minimal differences in

complexity across all levels of abundance (i.e. form a flat horizontal line of low complexity dif-

ferences). However, in the non-normalized data (Fig 1A) there were sizeable differences in

complexity for most genes, especially in the comparisons between replicates 1 vs 3 and 2 vs 3.

The differences in the samples appeared to be due to the presence of highly variable numbers

of spurious reads, especially for low abundance genes, a conclusion also supported by the

point-to-point correlation (see below). To test whether the normalization would flatten out

and reduce this technical variation we tested the effect of subsampling with (Fig 1B) and with-

out (Fig 1C) replacement. This resulted in an overall reduction in complexity differences, and

hence an increase in similarity between replicates. However, the two methods showed different

results for replicate 3 (R3). Subsampling without replacement appeared to most reduce com-

plexity differences (Fig 1C) and indicated that all replicates were acceptable. However, our

analyses indicated that the calling of R3 as an outlier by the subsampling without replacement

method (Fig 1C) was actually more accurate. This is described in more detail under normaliza-

tion, below.

Correlations were first calculated between gene expression vectors in each sample to assess

their comparability (using Pearson (PCC), Spearman (SCC) and Kendall (KCC) correlation

coefficients) as in [25]. Using the raw expression levels, correlations were computed between

each sample and every other. Correlations between HT and A samples (in the range of 0.75–

0.8) were lower than correlations between same body part samples. This was expected on the

basis of HT- and A-specific genes whose expression is restricted to each body part. When only

A or HT samples were considered, all correlation coefficients were above 0.95 (S2 Fig), even

though, based on other quantitative QC measures, some samples represented potential outliers

(see below). Hence, these standard correlation metrics may not be sufficiently sensitive to fully

evaluate sample quality.

Next, we tested the correlation in gene expression versus gene abundances between the dif-

ferent replicates. This analysis revealed low correlation (PCC) and high variation between rep-

licates at low gene abundance (S3 Fig). This was evident in the subsequent analysis as greater

DE at low abundance. The p2pPCC was then used to determine a noise threshold, or “offset”,

below which replicates were not correlated and hence data should not be considered. Noise

between replicates occurs for low abundance genes because these have only a few reads that

align to random locations on the gene and these locations are likely to differ between repli-

cates, resulting in low p2pPCC. As abundance increases, the alignments ‘pile up’ and become

more similar across the whole gene in each replicate leading to an increase in the p2pPCC.

Alternative approaches for multi-level RNA-seq data
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Hence the value of the p2pPCC can be used to determine an offset, which we defined here

as the gene abundance for which the median p2pPCC > 0.7 between replicates. A similar

approach, based on the entropy of strand bias, was implemented for sRNA sequencing in [28].

Overall the additional quantitative QC metrics we applied, which focused on the compara-

bility at gene level by analyses of complexity and similarity, had good discriminatory power

and represented a potentially valuable addition to overall QC.

Normalization

To attenuate the effect of the variable sequencing depth between replicates and samples, we

implemented a subsampling (without replacement) normalization on read expression levels

(adapted from [40]), which we enriched with additional checks on the per gene consistency of

the subsample plus its similarity to the original sample. Existing subsampling approaches have

employed subsampling with replacement, applied on the aligned reads [25], on gene abun-

dances [41], or subsampling without replacement applied on all reads [38].

Fig 1. Differences in gene level complexity between replicates in the D. melanogaster mRNA-seq

data. X-axis shows binned transcript abundances (log2 scale) and the Y-axis the absolute difference in

complexity (non-redundant/redundant, NR/R ratio) between biological replicates: left column, replicate 1 vs 2

(R1,R2); middle, replicate 1 vs 3 (R1,R3); right, replicate 2 vs 3 (R2,R3). The differences in complexities were

calculated on the raw data (top row), the data after subsampling normalization with replacement (middle row)

and without replacement (bottom row). To ease visual comparison, the red horizontal lines indicate 0.05 and

0.1 complexity difference. In the raw data, complexity differences were high for the R1,R3 and R2,R3 plots.

Both subsampling approaches (with or without replacement) reduced complexity differences across all

transcript abundances. The subsampling without replacement suggested that the third replicate (R3) was an

outlier (‘hump’ in complexity remaining in R1,R3 and R2,R3 comparisons), whereas the subsampling with

replacement did not. The example data shown are for the three biological replicates of the 02+H (2 hours,

rivals present, head thorax) samples of the D. melanogaster mRNA-seq data.

https://doi.org/10.1371/journal.pone.0182694.g001
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First we tested the homogeneity of each sample [38]. To check for the presence of high

abundance reads which, due to their higher probability of being selected, could distort the nor-

malized distributions, we conducted a subsampling exercise, from 95% down to 45% (in steps

of 5%) of the original redundant reads. We undertook an additional step to assess the consis-

tency of each subsample by checking if the proportion of redundant genome matching reads

had been affected by the subsampling (S4 Table and S4 Fig). We found that even when the

data were subsampled to 45% of the original sequencing depth, the proportion of redundant

genome matching reads remained unchanged. However, the complexity of the sample

increased and became comparable to other samples with similar number of reads.

Next we evaluated the extent to which the data could be subsampled without affecting its

structure. We calculated the point-to-point PCC on expression levels of the original versus

subsampled data from 95% to 40% of the original R set (S4 Fig). This showed that the correla-

tions of abundantly expressed genes remained high over all subsamples, but that the correla-

tion of low abundance transcripts decreased as the proportion of data subsampled dropped

(note though that the variability between the original versus subsamples was lower than the

variability between the biological replicates). We concluded that the subsampling was effective

as it maintained high p2pPCC and strong concordance between the expression levels of the

raw versus normalized data (S4 Fig).

The number of genes ‘lost’ due to the exclusion of some low abundance reads was<2%.

Once we had determined that all samples passed the consistency check, we subsampled every

sample to a fixed total of 50M reads and checked whether subsamples were representative of

the original data using bootstrapping (S1 Methods). Following this step, one subsample was

selected at random for each sample and used in the subsequent downstream analysis. This sub-

sampling was efficient at correcting wide variation in read number, complexity differences and

minimising the impact of normalization on the original data structure (Fig 1).

The analysis of the distributions of complexity differences between replicates, coupled with

the Jaccard similarity analyses applied on the normalized data, was used to identify outlier rep-

licates, which were excluded from subsequent analyses. We classified as outliers, samples for

which the between-replicate similarity was higher than between-sample similarity, as shown

by the Jaccard, complexity and p2pPCC analyses. In the 02+H example data (Fig 1), the sub-

sampling without replacement correctly highlighted replicate 3 as an outlier, while subsam-

pling with replacement did not. Following this post-normalization QC, we retained two

biological replicates for each treatment for downstream analysis data. In general, we advocate

the use of as many biological replicates as possible. However, as in [39], the analysis of subtle

gene expression even with a limited number of replicates is possible and can be validated. To

exclude the little variation that remained in the samples, using the summarised expression lev-

els, we applied a further quantile normalization to our data for subsequent downstream analy-

ses. This correction did not change the distributions of gene abundances.

Subsampling with replacement vs subsampling without replacement

We compared the effect of the subsampling normalization with and without replacement. The

MA plots were used to compare the with- versus without- subsampling, on the same replicates,

to the same total (Fig 2A). This showed that the two approaches agreed for higher abundances

(>210) but exhibited some variability for the lower abundance range. The presence plots, on

the three 02+H sample replicates for an example gene (FBgn0033865) exhibited 0.4 difference

in complexity between the two approaches (Fig 2B). This highlighted that the omission of the

low abundance reads changed the expression profiles across transcripts (differences indicated
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by the red arrows). In addition, the change in expression profile for the third replicate, visible

on the first exon, supported the earlier indication that this replicate was an outlier.

The direct comparison between the with- and without- replacement approaches illustrated that

the resulting expression levels differed. Specifically, the subsampling without replacement correctly

identified an outlier replicate, whereas the with-replacement subsampling masked this result.

Calling of DE using a hierarchical approach

To incorporate the different levels (body part, presence or absence of rivals) of the experi-

mental design into the DE call [45] we used a hierarchical approach for the prediction of DE

transcripts (S2 Methods). The order of levels in the hierarchy was determined based on the

magnitude of DE for each level in the experiment (S5 Fig). For the D. melanogaster dataset

the highest level (i.e. that showed most DE) was body part (HT vs A), the second was ± rivals

treatment. The distribution of DE between treatments and between replicates overlapped

(S5A and S5B Fig), which indicated that the treatment DE was subtle.

Fig 2. Comparison of results obtained using the subsampling with or without replacement

normalization. In the top panel we present the MA plots on the gene expression levels, normalized using

either the with- or without- replacement approaches, for the three replicates of the 02+H sample (02h, rivals,

HT body part). Although the variability between the two approaches was contained within the +/- 0.5

log2(OFC) boundary, we observed a higher variability in expression for the low abundance genes. The bottom

panel shows the presence plots for the gene FBgn0033865 for each of the three replicates (on individual

panels) obtained using either the subsampling without replacement (black solid line) or subsampling with

replacement (red solid line). The arrows indicate the regions where the two approaches provided different

answers. The arrow indicating the first exon of the gene highlighted the difference observed for the third

replicate (02+H, rep3).

https://doi.org/10.1371/journal.pone.0182694.g002
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We observed direct evidence of the biasing effect of low abundance FC (Fig 3A). For exam-

ple, using standard FC, numerous low abundance DE genes in the HT were in fact a signature

from the A body part (e.g. sperm and semen genes are specific to the A body part, but detected

as differentially expressed in the HT at lower abundance than in the A samples; Fig 3A and 3B).

The RNA-seq technique is highly sensitive and detected these transcripts due to leak through,

contamination with small amounts of non-target tissues during dissections, or movement of

mRNAs. Without applying a correction, the list of DE genes is likely to contain numerous spuri-

ous (often low-abundance) entries. A practical solution was to use offset fold change (OFC),

with an offset determined empirically from the data (as described above) instead of FC (Fig 3A

vs 3B) and to apply the hierarchical DE (Fig 3C; S2 Methods). The introduction of the offset

reduced the number of DE transcripts; however some variation in the medium-expression

range was retained. The genes with higher variability between replicates, found in this region

were mainly leaky genes (identified based on the location information from FlyAtlas [47]). A

comparison of the MA plots for all genes (Fig 3B) versus the A- and the HT-specific genes

highlighted the effect of the hierarchical differential expression (Fig 3C) i.e. a reduction in the

replicate-to-replicate variability which ensured a more accurate DE call, especially when the

treatment DE is subtle (S5 Fig).

Comparisons with existing approaches

The final stage of analysis of the D. melanogaster data was to evaluate the output gained from

our pipeline, with that obtained from the analysis of the same, original input data (consisting of

all 3 replicates for each condition) using DESeq2 [12] and edgeR [44, 48]. The input data for

edgeR and DEseq2 comprised the H and A samples and the results for the analysis of DE in the

H samples is presented. It should be noted that we compared the results from edgeR or DEseq2

(all replicates, as the QC of neither method required any exclusions) with that from our pipe-

line, in which the exclusion of an outlier replicate was recommended (and performed).

Effect of the normalization

An a priori (and necessary, but not sufficient) condition for reliable DE call is good compara-

bility between the distributions of expression levels. We compared the distributions of

Fig 3. Distribution of DE as calculated by using fold change (FC) versus offset fold change (OFC) and the effect of incorporating hierarchical DE

(HDE). Shown are MA plots (x-axis showing gene abundance (log2), y-axis indicating FC/OFC for replicate-to-replicate comparisons for the 2h samples.

Panels A1, B1, C1 show 02-A comparisons, panels A2, B2, C2 02+A samples, A3, B3, C3 for 02-H and A4, B4, C4 for 02+HT samples (sample codes:

02 = 2h of exposure, A = abdomen, HT = head-thorax, + = with rivals,— = without rivals). Panel A shows the distribution of DE calculated using FC,

highlighting how the low abundance genes distorted the distribution of DE. Panel B shows the DE distribution using OFC (offset = 20). Here the low

abundance genes were no longer underlined as DE. Panel C shows the DE distribution following hierarchical DE analysis using OFC for A- and HT-specific

genes emphasizing the effect of excluding potentially leaky genes. The red horizontal lines denote 0 log2 FC/OFC and the blue lines ± 0.5 log2 FC/OFC.

https://doi.org/10.1371/journal.pone.0182694.g003
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expression levels (log2 scale) of the raw data versus RPM, quantile, subsampling with and with-

out replacement, DEseq2 and edgeR normalizations (Fig 4). The boxplot of the raw abun-

dances (Fig 4A) illustrated the variation among the replicates and samples and the need for

normalization. The RPM normalization (Fig 4B) rendered the A and HT distributions compa-

rable to some extent. However, the variability between samples was still present (especially for

the HT samples). The quantile normalization (Fig 4C) resulted in comparable distributions, as

did both the subsampling with and without replacement (Fig 4D1 and 4D2). DEseq2 per-

formed well (Fig 4E)–although residual differences in the distributions of the A vs HT samples

remained. EdgeR (Fig 4F) did not effectively equalize the distributions of abundances. We con-

clude that the subsampling, quantile and DESeq2 normalizations (Fig 4C, 4D1, 4D2 and 4E)

were most effective at producing comparable distributions of normalized expression levels for

this dataset. However, we note that inspection of the distributions of abundances (Fig 4) did

not fully reveal which methods are most effective at reducing gene level replicate to replicate

variation. This is instead best illustrated by MA plots (Fig 5 and S6 Fig), which indicated that it

was the DESeq2 and the subsampling approaches that appeared to perform well in terms of

minimizing both overall and per gene variation.

Differences in the DE call between methods

To evaluate the effect of the normalization and hierarchical DE call we compared analyses of

the D. melanogaster 2h HT and A samples ±rivals with the output of DEseq2 and edgeR (Fig

5). The subsampling without replacement normalization and hierarchical DE call (Fig 5A)

showed a relatively low number of up/down-regulated genes with relevant biological functions.

The equivalent analysis for DEseq2 (Fig 5B) called many more genes as DE that fell in the

region of +/- 0.5 log2 FC (i.e. below the validatable threshold [49]). The analysis using edgeR

(Fig 5C) showed a high frequency of low abundance DE and of leaky genes, which is likely to

either represent noise or biological signal of an insufficient magnitude to be captured effec-

tively in the low throughput validation. The degree of overlap between the three methods (Fig

5D) revealed a small number of core genes present in the intersection. edgeR and DEseq2

called many more genes as DE and the number of genes uniquely identified by edgeR and

DEseq2 was also larger than the number identified in common between the two. These results

show that the analysis pipeline chosen may have a strong effect on the biological interpretation

of the DE analysis.

For the ±rivals comparison for the HT samples, out of the 575 genes that were specific to

edgeR, 14 were HT genes (all with max abundance > 50) and 561 were A genes (327 with max

abundance > 50 and 234< 50; S7 Fig). Out of the 578 genes specific to DESeq2, 101 were HT

genes (100 with abundance > 50) and 477 were A genes (271 with max abundance > 50 and

206< 50; S7 Fig). The predominance of A genes in the DE call supported the use of the hierar-

chical DE approach. The presence of low abundance genes supported the use of an offset for

the calculation of DE. Of some concern was that for genes with a reasonable abundance (> 50)

the expression intervals for the ± rivals differences called by DEseq2 and edgeR were close/

overlapping, which could make independent validation using low throughput methods chal-

lenging. Samples of the high number of DE genes called by both or either of DEseq2 and

edgeR could be difficult to validate independently.

Reasons for the differences in DE call between different analysis methods could result from

many sources. These potentially include poor comparability of normalized gene expression

between replicates and an inadequate incorporation of differences in the magnitude of DE

across the different experimental levels. In DEseq2, replicate-to-replicate variability is averaged

and it is DE over and above this variation that is called. The accuracy of the calling procedure
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Fig 4. Comparison of expression distributions resulting from different normalization methods. Shown are standard

boxplots of normalized gene expressions. On the x-axis are the different samples (e.g. 02A-1 = 2h time point abdomen body part,
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is increased if replicates have a low coefficient of variation (CV = standard deviation/mean).

However, in the D. melanogaster data, the CV was often > 0.25 and for some was> 0.5 (S8

Fig). In the example shown (S8A–S8D Fig), there was clearly higher dispersion (CV) at low

transcript abundance and consistently high CV across higher abundances. This variation was

reduced here by the subsampling normalization and the use of the offset (S8E–S8H Fig, in

which dispersion showed minimal variation across transcript abundance and the CV was con-

sistently low (generally < 0.1)). DESeq2 [12] notes this effect of high replicate variation and

no rivals, replicate 1) and the on the y-axis the log2 gene expression. Panel A shows raw expression levels, B RPM normalization to

a fixed total of 50M reads, C quantile normalization, D subsampling without replacement + quantile correction, E the DESeq2

normalization and F the edgeR normalization. D1 and D2 show normalization by subsampling (to 50M reads) with and without

replacement normalization, respectively.

https://doi.org/10.1371/journal.pone.0182694.g004

Fig 5. Comparison of distribution of DE obtained using different approaches. MA plots, with x-axis showing log2 average abundances against OFC

with an offset of 20 (panel A) and FC (panels B and C). The example shown is the 02H ± rivals DE comparison. The red line indicates 0 log2 FC/OFC and the

blue lines ±0.5 log2 FC/OFC. Red data points represent the genes ‘called’ differentially expressed by each of the methods. Panel A shows the results for

subsampling normalization with DE calculated using the hierarchical approach, Panel B for DEseq2 and Panel C for edgeR. Panel D shows a Venn diagram

identifying the number of differentially expressed genes identified by two or more methods versus uniquely by each.

https://doi.org/10.1371/journal.pone.0182694.g005
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proposes a shrinkage estimation for dispersions based on empirical Bayes and FC, to improve

stability and interpretability of estimates. These changes do appear to minimize to some extent

the overall issue of high variability in transcript abundance.

Comparison of low throughput validated genes with DESeq2 and edgeR

outputs

We next investigated whether the set of DE genes identified using the hierarchical approach

from our D. melanogaster dataset, and validated by qRT-PCR [39], were present in the output of

DEseq2 and edgeR. Reassuringly, based on DESeq2 our qRT-PCR reference genes were not

called DE. Two other genes of interest from the A samples that were validated as DE, had a P-

value< 0.05 by DESeq2 (although adjusted P-value> 0.05). One gene of interest validated from

the HT had a P-value< 0.05 (but again not according to the adjusted P-value). For DESeq2 the

log2(FC) values were small (0.15 and 0.16, respectively). Hence these genes were not likely to

have been selected for further investigation. Based on the edgeR output, our reference genes

were also determined as not significantly DE. For the validated A genes of interest (GOI), only

one was called marginally DE by edgeR (p = 0.08, FBgn0259998, but with small log2(FC) = 0.24).

For the HT, one GOI, with log2(FC) = 0.58, was called as significantly DE (the same gene as iden-

tified by DESeq2). Another GOI, FBgn0044812, was identified with log2(FC) = 0.82 yet with a p-

value of 0.49 from edgeR and therefore would not have been selected (S5 Table).

Comparing the validated gene set with the output of edgeR and DESeq2, we conclude that

some GOIs failed to be identified and therefore the corresponding biological functions (immu-

nity, odorant perception) might have been overlooked.

Which normalization to choose?

An RNA-seq sample is a snapshot of RNA fragments present at a given time, randomly

selected according to the RNA abundances, to fill the sequencing space. Due to the stochastic

nature of the sequencing process, even technical replicates, at different sequencing depths, do

not exhibit a constant scaling factor for all abundances. Also, RNA-seq outputs have varying

fits to standard distributions, making it difficult to define “the best” choice. Although the sub-

sampling without replacement normalization was efficient in minimizing the effects of the var-

iable sequencing depth, while preserving a high similarity with the original samples (Fig 3), we

suggest that it is advisable to test different normalizations on mRNA-seq and choose the most

appropriate method for the given dataset, on a case-by-case basis [28]

Case study—Analysis of human mRNA-seq datasets using subsampling

(without replacement) normalization

RNA-seq is expected to have good external validity and produce comparable results when the

same RNA is used, across different laboratories. A recent study of mRNA-seq conducted on

the same human samples (expression level variation in lymphblastoid cell lines) involved the

use of the same samples sequenced in two different locations: Yale versus Argonne [46]. Some

variation between the results from the different laboratories was observed and these data were

further analysed to test whether edgeR could reduce the variability between replicates [48].

Here we tested whether our subsampling normalization could result in any additional variance

reduction. We randomly selected 5 sets of samples (144, 153, 201, 209 and 210) with two repli-

cates each, one from the Yale laboratory source and one from the Argonne source. For these

runs, the length of the reads was 36nt for Yale and 46nt for the Argonne-derived data. Since

the length of the sequencing read influences the number of unique fragments and the mapping
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to the reference transcriptome (and, as a result, the gene expression) we trimmed all reads to

comparable lengths (35nt) and mapped the reads to the reference human genome using full

length, no mismatch or gap criteria and using PatMaN [50]. The subsampling, without

replacement, was conducted on 7M reads (the number of reads for the smallest sample was

7.1M, and for the largest sample was 8.7M). This normalization was followed by a correction

using a quantile normalization applied on the matrix of gene expressions.

We created comparable plots to [48] for the data subjected to subsampling normalization

(S9 Fig). MA plots for the two replicates of each sample showed high reproducibility between

runs. The distribution of the coefficient of variation (CV) versus the abundance for the 5

selected sets of samples with two replicates each (one for Yale and one for Argonne) (S9 Fig)

showed that the CV for all 5 pairs of samples was consistently (< 0.1) lower than for the analysis

of [48]) indicating a very high similarity between the runs. The MA plots on the same sets of

two samples showed a high reproducibility between replicates (no genes showing |log2(OFC)|>

1). The genes showing DE were mainly localized in the 24 (16)– 26 (64) range, which is border-

line for validation/noise. Together, these analyses showed that: (i) the CV obtained when the

subsampling (without replacement) normalization was employed was lower than the CV

reported in [48], suggesting that our normalization was tighter, (ii) there was very little DE

between replicates, indicating good reproducibility between the sequencing runs.

Overall, we conclude that the subsampling, without replacement approach minimized the

technical differences between the two runs in the different laboratories and this approach ren-

dered the samples comparable, potentially improving the biological inference.

Conclusion

The main findings from this study highlight that both qualitative and quantitative QC can be

informative and that subsampling (without replacement) -based normalization and hierarchical

structuring of the DE call, is efficient in managing variation in read number and differences in

sample complexities. In comparison to existing approaches, our adapted methods performed

well and identified valid candidates that were confirmed using low throughput approaches [39].

We also successfully applied the subsampling (without replacement) normalization to existing

mRNA-seq datasets, and in doing so reduced inter-laboratory variation [46]. The adapted

approaches proved to be efficient in comparison with existing methods at minimizing poten-

tially confounding sources of variation. Evaluation of accurate gene expression levels is essential

for all mRNA profiles but is also key to successful correlation analysis between mRNAs and

sRNAs [51, 52]. Overall, the study shows the value of tailoring bioinformatics analyses and

checking multiple approaches to leverage maximum power and accuracy from the analysis of a

RNA-seq dataset.

Materials and methods

Quality check (QC)

For the mRNA-seq samples, the QC consisted of two stages. Stage 1 comprised of previously

described methods [4] including: (i) the analysis of FastQ quality scores [17], (ii) the total

number of reads (sequencing depth) and the read duplication rate, defined as complexity [27],

(iii) nucleotide composition relative to the genome and transcriptome of D. melanogaster, used

to highlight biases such as PCR and ligation bias [53], (iv) strand bias quantified on CDS inci-

dent reads as |P − 0.5| + |N − 0.5|, where P and N were the proportion of positive and negative

strand read matches, respectively [27] and (v) proportions of reads matching the different

genome annotation classes (e.g. mRNAs, t/rRNAs, miRNAs, UTRs, introns, intergenic regions

[4], with matching done using PatMaN, [50] on full length reads with no mismatches or gaps
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allowed). Stage 2 comprised of quantitative approaches, some applied/designed on mRNA-seq

data for the first time, which provided an increased insight into sample comparability and

enabled us to evaluate the effectiveness of the normalization. The expression level of a gene/

transcript was calculated as the algebraic sum of the raw/normalized abundances of the inci-

dent reads [31]. We examined: (i) sample similarity calculated using the Jaccard similarity

index [29] on the top 1000 most abundant genes, and intersection analyses). These measures

were calculated as the ratio between number of genes found in common to the number of

unique genes present in either sample, (ii) complexities (calculated at gene level and presented

as Bland-Altman (MA) plots) and (iii) point-to-point PCC between gene expression profiles in

different replicates/ samples. The latter were computed on the vector of expression defined for

each gene. For all positions i on a gene we computed y[i] which is the sum of abundances of

fragments incident with position i. The point-to-point PCC was computed as the standard

PCC on the corresponding vectors from the two samples which were compared.

Normalization

We adapted a normalization procedure based on subsampling (without replacement) [40].

The consistency of subsamples was validated using bootstrapping. The subsampling without

replacement was done on the redundant set of reads (before genome matching, with the

ncRNAs incident reads removed). The proportion of genome matching reads and the varia-

tion in gene complexities (coupled with the p2pPCC between the subsamples and the original

sample) were used as criteria for consistency of the subsamples. Each sample was first sub-

jected to incremental subsampling in order to investigate the effect on the data structure (com-

plexities, both for non-matching and genome-matching reads) of sampling 95% through to

45% of the data, with successive decreasing steps of 5%. A sample was deemed satisfactory if

the proportion of redundant genome matching reads remained constant and the average

point-to-point PCC were above 95% as the number of redundant reads was decreased from

95% to 45%. This step represented an empirical determination of the level of subsampling that

could be done whilst preserving the original data structure. The second step of the normaliza-

tion was the subsampling to a fixed total (the minimum sequencing depth of the accepted sam-

ples). Samples with low sequencing depths, which would lead to a heavy subsampling for the

samples with high read numbers (less than 55%, empirically determined), were treated on a

case-by-case basis. A quantile normalization [54] may be employed after this step, as in our

analysis of the D. melanogaster data, to render the distributions fully comparable. For the anal-

ysis of the D melanogaster and H. sapiens datasets the quantile correction was employed. If the

distributions of abundances, after the subsampling, are already perfectly aligned, then the

quantile correction would not be necessary. The pseudocode is presented in S1 Methods.

Existing procedures which were used for the comparison of the new normalization methods

were: scaling normalization [31], for which the scaling total was the mean of the sequencing

depths of the compared samples, quantile normalization [54] and the normalization

approaches from edgeR [48] and DESeq2 [12]. All were employed using the recommended

standard parameters.

Differential expression call

Existing methods for the DE call are often based on comparing the variability between repli-

cates with the difference between the treatments. However, coefficient of variance (or CV)

based on a small number of points may often not reflect the true variance of the given gene/

transcript [55–57]. Moreover, when small numbers of measurements are available, a more

conservative approach, which we used here, is to approximate that replicate measurements
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will fall within the limits of the maximal confidence interval (CI) [58]. These intervals are

defined on the minimum and maximum normalized expression levels for the replicated mea-

surements. The amplitude of the DE can then be calculated at varying levels of stringency,

depending upon the distance threshold selected between the proximal ends of the maximal

CIs [28, 59]. All genes called DE using these stringent rules would also called DE under statisti-

cal tests. Here, we used a threshold on the amplitude of the DE of 1.5 fold change, in line with

empirically determined high [39] and low throughput method detection thresholds [49]. This

prevented the selection of genes whose expression ranges did not differ markedly and also

ensured a higher chance of low throughput validation.

DE was calculated using a hierarchical approach and by applying an offset fold change

(OFC) method (with offset = 20, empirically determined, using the point-to-point PCC, for all

replicates within all samples). There were 3 steps to the hierarchical analysis used for the analysis

of the D. melanogaster transcriptome data. (i) Identification of levels for the hierarchical differ-

ential expression and the constituent internal classes. For the D. melanogaster data one ‘level’

was body part (with HT and A as internal classes) and the other was treatment (with presence

or absence of rivals as classes). (ii) The ordering of the hierarchical levels based on the amplitude

of differential expression. This was quantified by the width/ spread of the distribution of DE in

terms of mean/ median, IQR and min/max values. The amplitude of DE in descending order

provided the correct ordering of the levels for the hierarchical DE. (iii) The DE analysis on the

proximal ends of the CIs, using OFC [27]. The pseudocode is presented in S2 Methods.

The two-step DE procedure (using OFC) consisted of (i) calculation of the list of genes

showing DE between body parts, followed by (ii) calculation of the DE between genes in

the ± rivals treatment comparisons. Step (i) was conducted on the summed expression levels

in the ± rivals pairs (i.e. the ± HT samples combined, and the ± A samples combined, for all

time points). The genes were then separated into genes expressed only in HT, only in A, and in

both the HT and A. Step (ii) of the DE was then applied on the resulting 3 categories (HT; A;

HT+A) using the ± rival condition. The DE call was conducted on the +/- rivals condition,

using maximal CIs created on the normalized replicates. As outlined above, we called DE

genes with more than 1.5 fold between the proximal ends of the maximal CIs. The DE call as

determined by edgeR and DESeq2 were calculated using the default functions and parameters.

Data access

mRNA samples: (a) D melanogaster: males of D melanogaster exposed to conspecific rivals (or

not) for 3 time periods (GSE55930). (b) H sapiens: For the mRNA Human samples, we chose 5

samples from the Pickrell et al. 2010 [46] study (GSE19480) in order to compare gene expression

variation in RNA sequencing between the Argonne and the Yale laboratory sequencing runs.

The selected samples were: GSM485369 (NA19144_yale), GSM485380 (NA19144_argonne);

GSM485368 (NA19153_yale), GSM485383 (NA19153_argonne); GSM485367 (NA19201_yale),

GSM485381 (NA19201_argonne); GSM485365 (NA19209_yale), GSM485388 (NA19209_ar-

gonne); GSM485364 (NA19210_yale), GSM485382 (NA19210_argonne). These samples were

derived from lymphoblastoid cell lines (LCLs) derived from unrelated individuals from Nigeria

(extensively genotyped by the International HapMap Project). The sequencing was done on Illu-

mina GAII, with sequencing reads of 36nt, for the Yale sequencing samples and 46nt for the

Argonne sequencing.

Supporting information

S1 Methods. Subsampling normalization–pseudocode. A description with details for (1)

Incremental subsampling and bootstrapping check for consistency of a sample, and (2)
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Subsampling to a fixed total.

(PDF)

S2 Methods. Two step (hierarchical) differential expression (HDE)—Pseudocode. A

description with technical details for the two step (hierarchical) DE, including the identifica-

tion of levels in the hierarchy.

(PDF)

S1 Table. Overview of the D. melanogaster samples used for the comparative analysis of

different approaches for the identification of differentially expressed genes. From the study

described in Mohorianu et al. 2017, RNA 23:1048–1059 [39], we selected four samples (each

with 3 biological replicates, 1–3) comprising of 2 head-thorax (H) samples and 2 abdomen (A)

samples of flies exposed to rivals (+) or kept alone (-) for 02h. For each sequencing library,

before and after the matching to known annotations, we present the redundant/total number

of reads (R), the non-redundant/unique number of reads (NR) and the overall complexity (C),

defined as ratio of NR to R reads. The sequencing reads were matched to the genome, anno-

tated exons, introns, 5’ UTRs, 3’ UTRs, ncRNAs and intergenic regions. For all annotation

alignments we also present the proportions of R and NR reads. (%R and %NR, respectively).

For these samples, we observed a high variability in sequencing depth, from 38M reads (sample

02+A3) to 129.7M reads (02+H3), and, as a consequence, a high variability in the resulting

complexities, yet little variation in the %R for each annotation, suggesting a high quality of the

sequencing output.

(XLSX)

S2 Table. Example of intersection analysis for the 02-A, 02+A, 02-H and 02+H samples in

the D. melanogaster dataset. Replicate 1 samples 02-A, 02+A, 02-H and 02+H (sample codes:

02h of exposure, ± rivals, HT or A tissue) were used to illustrate the proportion of reads map-

ping simultaneously to pairwise groups of CDSs, exons, 5’ and 3’ UTRs, introns and intergenic

regions; on the diagonal, the proportion is 1.00 since each category is compared to itself; the

matrix is not symmetric because each proportion is calculated relative to the number of reads

present in the category indicated by the column. We observe that a high proportion of reads is

incident with protein coding genes, with few reads showing multiple matching to protein cod-

ing-genes and introns or intergenic regions; overall, these results suggest a high quality of the

data. In the main study we computed the expression levels using gene mapping reads.

(XLSX)

S3 Table. Jaccard similarity indices computed on the top 1000 most abundant genes in

each sample (out of a total of 15 513 genes expressed in at least one sample). Shown is a 12

by 12 matrix of all the original samples compared with each other. Samples are labelled by

time point (2h), by ± rivals treatment, by body part (A or HT) and then by replicate number.

Each sample tested against itself along the diagonal is therefore 100% similar and shares the

top 1000 most abundant genes in common. A to A comparisons are shaded in purple, HT to

HT comparisons in peach. Samples drawn from the same body parts shared> 90% similarity,

and between body parts the similarity dropped to ~50%. Similarity between the ± rivals treat-

ments tended to be higher than between replicates. Two illustrative examples are highlighted,

in which ± rivals indices (in red bold) were generally higher than replicate to replicate similar-

ity (blue bold). This highlighted the need for adapted normalization methods.

(XLSX)

S4 Table. Example of incremental check for consistency done using subsampling without

replacement for sample 02-H2 in the D. melanogaster dataset. For sample 02-H2 (sample
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code: 02h, no exposure to rivals, HT body part, replicate 2) we present the incremental sub-

sampling, without replacement, from 99% to 40% of the data. To judge whether a sample is

consistent, and to determine the consistency threshold, we used the proportion of redundant

reads matching to the reference genome (D. melanogaster, v 6.11). As a consequence of the

incremental subsampling, the complexity, defined as the ratio of non-redundant to redundant

reads, increased, and became comparable to the complexity of the other replicates, when sub-

sampled at the same sequencing depth. A replicate was accepted if it exhibited a similar com-

plexity (and distribution of per-gene complexities) with the other replicates for the same type

of sample.

(XLSX)

S5 Table. Results from (A) DEseq2 and (B) edgeR analyses of the Drosophila melanogaster
qRT-PCR ’validated’ gene set from Mohorianu et al. 2017 (RNA 23:1048–1059). For the

validations we used 3 reference genes and validated 15 A genes and 6 HT genes based on the

DE selection using subsampling normalization and hierarchical DE. We investigated whether

these genes were called DE by either (A) DESeq2 or (B) edgeR. In S5A Table we present the

results for DESeq2, in S5B Table the results for edgeR. For each of the three categories of genes

(reference genes, A genes and HT genes) we show the average of normalized abundances

(baseMean for DESeq2 and logCPM for edgeR), the fold change between treatments (log2

FoldChange for DESeq2 and log2FC for edgeR) and the DE P-value and adjusted P-value

(used for the DE call).

(XLSX)

S1 Fig. Analysis framework for the D. melanogaster mRNA-seq data. Required inputs

(sequencing data in FASTQ format, the corresponding reference genome and transcriptome

in FASTA/GFF) and the six main steps of the analysis are shown in a workflow diagram, fol-

lowing Conesa et al. 2016 (Genome Biology, 17:13). The steps, for which additional details are

included, are: Quality check (QC), alignment, normalization of gene abundances, identifica-

tion of DE, functional enrichment and finally low-throughput validation.

(PDF)

S2 Fig. Correlation analyses (Pearson (PCC), Spearman (SCC) and Kendall correlation

coefficients (KCC)) between the gene expression levels for the D. melanogaster data for (A) all

samples, (B) HT samples, (C) A samples. A1, B1, C1 show the PCC; A2, B2, C2 show the SCC;

A3, B3 and C3 show the KCC. Each panel shows the distributions of correlation coefficients

for all pairwise comparisons. For example, in panel A.1, sample 1 on the x-axis shows the dis-

tribution of the n = 35 correlation coefficients calculated between the gene expressions in sam-

ple 1 compared with gene expressions in all other 35 samples, using the PCC. The results are

presented as a standard boxplots i.e. the box indicates the inter-quartile range, the middle line

is the median and the whiskers extend to 5% and 95%; the outliers are represented with circles.

All three approaches supported the same conclusion i.e. the A and H gene expression levels in

the A and H samples, respectively, correlated very well (minimum correlation between any

two samples was >0.97, B and C panels B), whereas, if we compared between A and H samples

(A panels), the minimum correlation dropped to 0.5.

(PDF)

S3 Fig. Distribution of point-to-point Pearson correlation coefficient (PCC) (y-axis)

between gene expression profiles against gene expression levels (x-axis, log2 scale) for pair-

wise comparisons for the D. melanogaster data for the 3 replicates of the 02-H sample as an

example (2h, HT body part, no rivals). Panel A shows replicate 1 vs 2, B replicate 1 vs 3, and C

replicate 2 vs 3. Shown are the raw data, prior to normalization. For all replicate comparisons,
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more variability was consistently observed at lower abundances and derived mostly from the

small number or scattered incident reads. For the higher abundance genes, the p2pPCC was

tight, indicating a high reproducibility of the expression profile and a low incidence of alterna-

tive splicing events. This analysis formed the basis of the offset identification i.e. the offset was

selected to be the value for which, for all replicates, for all samples, the median of the p2pPCC

was above 0.5.

(PDF)

S4 Fig. Point-to-point Pearson correlation coefficient (PCC) between the raw and subsam-

pled data for the 02+H3 sample of the D. melanogaster data (sample code: 02h, + rivals.

HT body part replicate 3). To indicate the consistency during the subsampling, without

replacement, the plots show the point-to-point PCC between the original and incrementally

subsampled (from 40% to 95%) data (Panels A to L; A: 40%, B: 45%, C: 50%, D: 55%, E: 60%,

F: 65%, G: 70%, H: 75% I: 80%, J: 85%, K: 90%, L: 95%). On the x-axis is the gene abundance

(log2) and on the y-axis the distribution of point-to-point PCCs calculated for each expressed

gene.

(PDF)

S5 Fig. Identification of the hierarchy levels for the hierarchical differential expression

(HDE) analysis based on the distribution of DE for the different classes of samples, i.e. rep-

licates, body parts and ± rivals treatments (for the D. melanogaster data). Frequency density

plots were used to show the distribution of DE between samples (offset fold change, log2 scale).

Panel A shows the replicate-replicate DE (blue) and the with/without rivals DE (red) for the

abdomen (A) samples. Panel B shows the corresponding data for the HT (H) body part. Panel

C shows the distribution of DE for the with/without rivals treatments (blue for HT and green

for A samples) and the DE between H and A (orange). The DE distribution for the treatment

(+/- rivals, red) was overlapping with the DE distribution between the replicates (blue), indi-

cating a subtle DE signature. However, the DE distribution between body parts (orange)

showed a good separation between HT- and AB- specific genes. These DE distributions sup-

ported the choice of a hierarchical design for the identification of DE genes between the treat-

ments.

(PDF)

S6 Fig. Replicate-to-replicate MA plot on the 02-A samples for checking the efficiency of

the A RPM, B quantile, C DESeq2 and D edgeR normalization methods. (Sample code: 02h,

no rivals, A body part). On the x-axis we represent the average abundance between replicates

(log2 scale), on the y-axis the FC (log2 scale). Although the quantile and the DESeq2 produced

very similar distributions of abundances between replicates/samples, the former did not pro-

duce a tight MA plot when variability in expression at gene level was assessed. For the compa-

rable results for the subsampling (without replacement) approach, see main Fig 3C.

(PDF)

S7 Fig. Distribution of abundances for the D. melanogaster data (for the ± rivals treatment

DE) for the full set of genes identified as DE exclusively by each method. EdgeR only genes

shown in S7A Fig, DEseq2 only in S7B Fig and subsampling normalization (without replace-

ment) only in S7C Fig Genes are denoted by their FBgn identifiers. For each gene identified as

DE exclusively by each method, the normalized abundance is given for each of the 2h HT (H)

and A ± rivals samples. The leaky genes visible in the DE calls of edgeR and DESeq2 are not

highlighted as DE using our adapted DE approach (i.e. hierarchical design and use of offset).

(PDF)
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S8 Fig. Comparison of the coefficients of variation across abundance (D. melanogaster
data). On the x-axis is the abundance in log2 scale, on the y-axis the coefficient of variation

(CV)—the ratio between the standard deviation and the mean. For clarity, the distributions

are represented as standard boxplots. The upper panels (A,B,C,D) show the CV for the original

data for A samples without rivals (A), A samples with rivals (B), HT samples without rivals (C)

and HT samples with rivals (D), respectively. The lower panels (E,F,G,H) give the CV for the

same samples, after the subsampling normalization (without replacement). The red horizontal

lines indicate 0.5 and 0,25 CV. It is clear that the subsampling normalization reduced the vari-

ance between the replicates to< 0.25 CV across most abundances (panels E-H), whereas the

CV was much higher across all abundances for the raw data (panels A-D).

(PDF)

S9 Fig. Analysis of the effect of the subsampling normalization on technical (laboratory-lab-

oratory) variation in mRNA-seq for human mRNA-seq data (Pickrell et al. 2010, Nature,

464:768–772). In the upper plots we show the coefficient of variation (CV), y-axis vs the average

abundance, x-axis, obtained after the subsampling normalization (without replacement) for 5

sequencing pairs (each pair consisted of a Yale laboratory run compared to an Argonne run:

A1,A2 = Sample 144; B1,B2 = Sample 153; C1,C2 = Sample 201; D1,D2 = Sample 209; E1,

E2 = Sample 210). The F1 and F2 plots show the CV for the combined pairs for the Yale and

Argonne replicates, respectively. For individual comparisons we achieved lower CVs in com-

parison to Zhou et al. 2014 (Nucleic Acids Res, 42:e91) analysis of these sample data. For the

sets of lab replicates, Yale and Argonne, respectively, the results using subsampling without

replacement are in line with the edgeR results (in red we represent the CV of these data obtained

using edgeR, in blue the CV using DESeq2). Based on these distributions we concluded that the

samples from the different laboratories could be rendered comparable using our subsampling

approach (because it removed technical differences between the two different laboratory runs).

In the lower panels, we present the MA plots, after the subsampling normalization, for the same

pairs of samples. The tightness of these plots (all falling within ±0.5 OFC) supported the conclu-

sion that the subsampling made these samples derived from sequencing in different laboratories

highly comparable.

(PDF)
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