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A comparison of non-local electron transport models for laser-plasmas relevant to
inertial confinement fusion

M.Sherlock*
Lawrence Livermore National Laboratory, P.O. Boxz 808, Livermore, CA 94551, USA

J.P.Brodrick and C.P.Ridgers
York Plasma Institute, University of York, York, YO10 5DD, UK
(Dated: 1st Nov 2016)

We compare the reduced non-local electron transport model developed by Schurtz et al. (Phys.
Plasmas 7, 4238 (2000)) to Vlasov-Fokker-Planck simulations. Two new test cases are considered:
the propagation of a heat wave through a high density region into a lower density gas, and a 1-
dimensional hohlraum ablation problem. We find the reduced model reproduces the peak heat flux
well in the ablation region but significantly over-predicts the coronal preheat. The suitability of
the reduced model for computing non-local transport effects other than thermal conductivity is
considered by comparing the computed distribution function to the Vlasov-Fokker-Planck distribu-
tion function. It is shown that even when the reduced model reproduces the correct heat flux, the
distribution function is significantly different to the Vlasov-Fokker-Planck prediction. Two simple
modifications are considered which improve agreement between models in the coronal region.

I. INTRODUCTION

In laser-produced plasmas relevant to Inertial Confine-
ment Fusion (ICF) the electron temperature gradients
are often so strong that the scale-length of the tempera-
ture variation becomes comparable to the mean-free-path
of the electrons which transport thermal energy. As a re-
sult, the heat flux can not be determined by the local con-
ditions in the plasma and the finite electron mean-free-
path must be taken into account (i.e. the thermal energy
transport across the gradient is no longer purely diffu-
sive). In these situations, the heat flux can be calculated
with Vlasov-Fokker-Planck (VFP) models [1], which re-
solve the motion, scattering and acceleration of electrons,
but with much greater computational cost in comparison
to local thermal transport models.

A widely used alternative to the full VFP models is the
reduced multi-group model proposed by Schurtz, Nico-
lai and Busquet (the “SNB” model) [2]. Marrocchino et
al. have also compared the SNB model to a VFP model
which retains higher order terms in the expanded dis-
tribution function [3]. The purpose of this paper is to
compare the SNB model to two further test cases rel-
evant to ICF: (1) a “burn-through” problem in which
a heat-front breaks out of a high density region into a
lower density gas and (2) a physically realistic simula-
tion of a laser-ablated plasma over hydrodynamic time-
scales. These scenarios are typically more challenging for
Vlasov-Fokker-Planck simulations codes (than the usual
hotspot relaxation problems studied previously) due to
the presence of large density gradients.

We are also interested in checking the applicability of
SNB-like models to study transport effects other than
heat flow, for example non-local Nernst advection of
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magnetic field and non-local corrections to electron Lan-
dau damping rates (which are important for determin-
ing Stimulated Raman Scattering gain spectra). These
effects rely on a correct representation of the electron
distribution function, so we also present some compar-
isons of the SNB and VFP distribution functions for the
simple case of a linear temperature gradient. We find
that even when the SNB model predicts the correct heat
flow, it may not predict the correct underlying electron
distribution function (somewhat paradoxically).

II. COMPUTATIONAL MODELS

The VFP model used in this paper (“K2”) solves
the Vlasov-Fokker-Planck equation for the elec-
tron distribution function f(t,z,y,pe, Py, ) =
Zn,m fm(t,z,y,p) Y (0,0) expanded in spherical
harmonics in momentum-space (p,d,¢) to arbitrary
order. The details of the K2 model are described in
the Appendix, here we give a brief overview. The
electron VFP equation is coupled to the equations of
radiation hydrodynamics which account for ion motion,
PdV work, electron-ion equilibration and radiative
cooling. These effects are coupled to the electron VFP
equation via heating and cooling operators, and the
electron distribution function is advected with the ion
background to maintain quasineutrality. The electron
VFP part of the model accounts for thermal transport,
including the determination of a self-consistent electric
field and return current. Laser absorption is modelled
by solving a simple ray equation, with the heating
of electrons determined by an inverse-bremsstrahlung
heating operator (which accounts for the distortion
of the electron distribution function due to electron
oscillation in the laser field).

We use the iterative/implicit algorithm proposed by



Cao et al [11] to solve the SNB multi-group energy trans-
port equations, with only two iteration cycles. We see no
significant difference in results when using more iteration
cycles in a few test runs, and this is probably due to the
fact that the timestep used is significantly shorter than
typical hydrodynamic simulation timesteps (as we resolve
the electron-ion collision frequency). We have developed
two SNB models independently and benchmarked them
against each other, for a number of test cases.

Our implementation of the SNB model contains a
subtle modification to the mean-free-path which is dif-
ferent to that in the original model. For a particle
with energy e, (where “g” is the energy group index),
we use the geometrically averaged mean-free-path A\, =

2v/2 (eg/Te)2 Ao,where (in cgs units):
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and ¢ = (Z* +4.2) /(Z* +0.24). Our definition can
be compared to Equation 23 in the original SNB model
[2]. We find that use of this mean-free-path improves
agreement between the SNB and VFP models in high-Z
plasmas. See [14] for a full discussion of this choice of
mean-free-path (in the notation used in [14], our model
is equivalent to the choice of “r=2"). The reason for this
modification stems from the fact that the original SNB
model employs a Krook electron-electron collision oper-
ator. Since a Krook operator is only an approximation
to the Fokker-Planck operator, there is some degree of
freedom in choosing the exact form of the collision fre-
quency. The factor ¢, originally introduced in [15], is
a common feature in VFP simulation models, allowing
them to reproduce Spitzer’s thermal conductivity in the
low-Z limit without the need for an anisotropic collision
operator. This allows the SNB model to more accurately
account for the effect of electron-electron collisions in the
non-local contribution to the heat flow.

All of the following test problems use fp and f; only
(i.e. higher order harmonics are not included), except
those in section IV, which also include fo. We verified
in each case that the inclusion of higher order terms did
not produce any significant differences in the results. Al-
though the code is 2-dimensional, the test cases consid-
ered in this paper are 1-dimensional (and only require a
Legendre expansion in momentum-space). Note that the
same Coulomb logarithm is used in both the SNB model
and the K2 VFP model in each simulation (see below).

A (1)

I1III. SIMPLE HEAT-BATH PROBLEM

We are interested in comparing the electron velocity
distribution function (EDF) in the SNB model to that
given by the K2 VFP model, as this gives us insight
into how useful the SNB model could be in determin-
ing transport effects other than non-local heat flow in
the unmagnetized regime. For example, heat flow in
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Figure 1. Heat Bath Problem: The electron temperatures at
t=80ps. The initial temperature profile is also shown. (Note
that the simulation box extends from Oum to 700um, but
we reduced the range of the x-axis in the plot to allow the
gradient’s features to be more visible).

magnetized plasmas involves thermoelectric coefficients
which are not the same velocity moments of the EDF as
the thermal conductivity coefficients, and the damping
of electrostatic waves is determined by the shape of the
EDF near the wave phase velocity. These thermoelectric
coefficients, along with other moments of the EDF, also
contribute to the electric field (which in turn affects the
magnetic field) through an effective Ohm’s Law.

Our first test case is a simple non-linear heat-bath
problem, in which the initial temperature (plotted in Fig-
ure 1) is 1000V for x < 400um, with a linear ramp over
100pum down to 100eV (over 100 computational spatial
cells). The typical ratio of the electron mean-free-path
to temperature-gradient scale-length is A.;/Lp =~ 0.013.
The total computational box size is 700um. The electron
density and charge state are fixed at 2.47 x 10%6m =3,
Z* = 50, and the coulomb logarithm was held fixed
throughout, log A = 7.1. The relatively high value of Z*
was chosen to compliment the comparisons in [3] (which
used the values Z* = 1,2,4). We plot the electron tem-
peratures after 80ps in Figure 1 and the VFP heat flux
is compared to the SNB heat flux in Figure 2, showing
reasonably good agreement for the characteristic reduc-
tion of the peak relative to Spitzer. In this test-case, we
do not include harmonics above f; (fy is set to zero).
Simulations including fs do not show any significant dif-
ferences in the heat flux. The temperature profiles in
Figure 1 indicate that the SNB model tends to overpre-
dict the preheating. This type of simulation comparison
is not new (hotspot relaxation was simulated and com-
pared to SNB in [3]), but we address the question of how
well the SNB model predicts the energy distribution of
heat-flux-carrying electrons in simple scenarios such as
this.

The distribution of heat flux for this test case, dg, x
v®f1 (v), is plotted in Figure 3 at = 500um, where
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Figure 2. Heat Bath Problem: The electron heat fluxes at
10ps.

the K2 and SNB heat fluxes are in very good agreement.
However, the underlying distributions that give rise to
this heat flux are significantly different. This indicates
some modifications to the SNB model may be required
in order for it to reproduce other aspects of transport
(mentioned above). In particular, we note the heat flux
according to K2 is carried by higher energy electrons on
average, and K2 predicts a significant return heat flux
(associated with the return current). Although return
electrons do not contribute significantly to delocalization,
their population is enhanced when the heat flux exceeds
the local value due to the enhanced current carried by
the energetic forward electrons.

In the original paper [2], no way of recovering f; is
given explicitly. In general, if f; is known, the heat flux
can be calculated with the following relation:

471' m / hi (v 5d1} @)

where m is the electron mass and v the velocity magni-
tude. This integral is numerically represented as a sum:

4t m
= ?5 1 (vg) V5 Avg (3)
g
(where g numbers the velocity group v, and Avy is the
velocity bin size of group ¢g). The SNB model expresses
the heat flux, qsnp, in terms of the Spitzer value (qsgy)
and a non-local correction:

’

A
AsNB = qsH — ) ggVHg (4)
g

where H, is the principle function to be solved for in
the SNB model, defined in Equation 27 of [2], and )\; is

the electron mean-free-path of energy group g, defined in
Equation 23 of [2] (and adjusted in our formulation, as
mentioned in the previous chapter).

The Spitzer heat flux qgg appearing in the above equa-

tion can be expressed in terms of the Spitzer expression
for f; (denoted fI"’) as

4
qsH =X 7Tm/ fm (v) vPdv (5)
where
2
mbyy U mv* mb o VI
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In the above, T is the electron temperature, fi (v)is
the Maxwell-Boltzmann distribution and v,.; is the
electron-ion collision frequency|[15].

Again, the integral in Equation 5 is represented nu-
merically as a sum:

4T m
Qo = X— Zf ) v A, (7)

This expression can be substituted into Equation 4,
allowing us to rewrite it as:

dsNB

mm ., A
= Z <x32 b (vg) V5 Avy — SgVHg> (8)

g
In order to find an expression for f; according to the

SNB model, we note that Equations 8 and 3 refer to the
same heat flux and can therefore be equated:

§VH9) ©)

and we therefore infer a possible definition for f; (vg)
could be the expression:

XA (vg) 05 Av, / (10
— Az m pmb ()5 Av, — 22 VH,

In other words, we have assumed that the quantity
which is integrated to get the heat flux is oc fiv®. This
definition for f; is consistent with the Vlasov-Fokker-
Planck derivation of the SNB equations, which give
xv,,Afi = —vV (Afo) /3 (see Equation 56 of [2] and the
text preceding it).
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Figure 3. Heat Bath Problem: The “heat flux distribution
function”, dg, o v° f1 (v) , at £ = 500um and t = 10ps, which
indicates how the heat flux is carried by each velocity group.
Although K2 and the SNB model predict the same total heat
flux, the underlying distribution function is different.

IV. BURN-THROUGH PROBLEM

In this test case we consider a thin “target” with peak
density = 2 x 1028m =3 (~ 2 X i for 3w light) which
is heated on the RHS by a laser (0.35um wavelength),
with a linear Ins rise time up to a peak intensity of
10Wem ™2 . On the LHS of the target, the electron den-
sity drops to a constant low value = 1.45 x 1026m =3, rep-
resenting a gas fill. The density is held fixed throughout
the simulation (hydrodynamic motion is turned off). The
initial electron temperature was 50eV’, and the coulomb
logarithm log A = 7.1 and charge state Z* = 2 were
held fixed throughout the simulation. Harmonics up to
and including fo were used in this test case. The ini-
tial density profile is shown in Figure 4, along with the
temperature (according to K2) at 70ps, showing the hot
coronal plasma on the RHS. Again we use 100 computa-
tional spatial cells.

The temperatures according to K2 and the SNB model
are plotted at 170ps (after the heat front has penetrated
the shell and entered the gas) in Figure 5.

The SNB model overpredicts the preheat of the shell
(similarly to the “linear ramp” test-case), as is evident
from the increased temperature at x ~ 220um. The ini-
tial preheat of the gas, close to the gas-shell interface at
x = 170pm, is also overpredicted by the SNB model. The
dip in temperature at © ~ 200um, apparent in both mod-
els, is due to hot electrons traversing this region without
depositing much energy. Interestingly, the K2 model pre-
dicts enhanced long-range heating of the gas (in the re-
gion = < 100pm), probably indicating a breakdown of
diffusive transport. This is consistent with the fact that
we find fo makes significant contributions to the heat
flux in this region, which will allow for a strong depar-
ture from equilibrium. As a result of this, the heat flux
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Figure 4. Burn-Through Problem: The initial density pro-
file and electron temperature (according to the K2 code) at
t=T70ps.
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Figure 5. Burn-Through Problem: The temperatures at

t=170ps (after the heat front has penetrated the shell and
entered the gas region). The SNB model overpredicts the
preheat of the shell, and the initial preheat close to the gas-
shell interface, but it underpredicts the long-range heating of
the gas. The initial temperature was 50eV.

in this region (x ~ 100um) is about twice as large as
that predicted by the SNB model (at ¢t = 170ps). Con-
tributions from f3 have been checked-for and found to be
negligible.

Although this test case bears many similarities with
the ICF scenario of capsule gas preheat, we caution
against drawing too many conclusions regarding their
similarity because the two scenarios differ in important
ways: (a) the ICF shell has a much higher pR, so
the spectrum of hot electrons (generated by LPI in the
corona) that reach the gas may be different, and (b)
the gas is initially much colder than in our simulation,
so a Fokker-Planck/Spitzer transport treatment is not
valid (which is the reason we did not choose to tackle



the full problem with our models). However, this prob-
lem represents an important benchmark for reduced non-
local models, and highlights the interesting discrepancy
in both short- and long-range heating.

V. HOHLRAUM ABLATION PROBLEM

In this test case, we consider the ablation of a Au-like
wall next to a He gas, including hydrodynamics. We use
an artifical material to represent the Au wall, which has a
reduced solid mass density of 3.9g/cc (to enable us to run
with a shorter timestep) and the ionization state is arti-
ficially capped at Z* < 40 (which allows us to take into
account the fact that the Thomas-Fermi ionization level
is too high compared to non-LTE models). The solid Au
material initially occupies the region z < 100um, and He
occupies the region 100 < z < 700pm. The laser pulse
shape is shown in Figure 6. The hydrodynamic part of
the K2 model is run alone (i.e. with VFP and SNB trans-
port turned off and Spitzer transport turned on) for the
first 1500ps to produce realistic density and temperature
conditions (shown in Figure 7), after which we allow the
hydrodynamics to evolve with the heat flux calculated
from the VFP solver. The SNB heat flux and temper-
atures are self-consistently evolved separately from the
VFP temperature, although both “temperature” mod-
els use the same hydrodynamics heating/cooling terms
(PAV work, radiation cooling etc). The previous test
cases were somewhat artificial/simplified in their design
- here we attempt to give an indication of how the mod-
els compare in a more realistic scenario. This scenario
is similar to the 2D test case compared against in the
original SNB work (taken from Epperlein’s work[12]),
except we include the effects of hydrodynamic motion,
electron-ion equilibration, ionization and radiation cool-
ing etc, and simulate the Au-gas interface and longer
pulse lengths, which should be more directly relevant to
hohlraum transport. Since simulations in this section are
designed to be more physically realistic than the previ-
ous cases, the Coulomb logarithm is calculated locally at
each time-step using the NRL prescription [13].

The heat flux profiles are compared at t—=1640ps (i.e.
140ps after kinetic effects were turned on) in Figure 8.
The SNB model predicts the peak heat flux very well
near the ablation surface (x ~ 110um), but overpredicts
the heat flux into the corona by a factor of ~ 2. We find
this type of behavior persists over 100’s of picoseconds.
The overestimation of heat flux in coronal regions was
predicted and commented on by Schurtz et al. in their
original paper[2] and also observed in [14].

The coronal (He gas) temperature in this simulation is
relatively low (~ 2keV), so we also performed a simula-
tion over a longer timescale and at higher laser intensity
(~ 4ns foot, peaking at ~ 10"°Wem™2), giving typical
peak gas temperatures ~ 3.5keV . The initial conditions
for the K2 simulation (i.e. just after the thermal trans-
port is switched from the hydrodynamic model to the
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Figure 6. Hohlraum Ablation Problem: The laser pulse shape
for the hohlraum ablation test case.
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Figure 7. Hohlraum Ablation Problem: The density and tem-
perature profiles at the time (t=1500ps) at which the VFP
thermal transport model is turned on in the K2 code (for the
hohlraum ablation test case). This represents the initial con-
ditions (as provided by pure radiation-hydrodynamics) for the
study of thermal transport with the SNB and VFP models.
The vertical line shows the location of the Au-He boundary
(He is on the right).

Fokker-Planck model) in this case are shown in Figure 9.
In this case, we find reasonable agreement between the
K2 and SNB heat fluxes at the ablation surface (the SNB
peak ablation heat flux is around 10-20% higher than K2
throughout the simulation), though not as good as at
lower laser intensity (see Figure 10). Again, the peak
heat flux into the corona predicted by K2 is a factor of
~ 2 lower than the SNB prediction.

In all hohlraum-relevant cases, we find the peak flux
is typically =~ 0.035 of the free-streaming value, as il-
lustrated in Figure 11 (also at t=5300ps). However, we
caution against interpreting the value of ¢/qrg as corre-
sponding to the value of the flux-limiter that could be
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Figure 8. Hohlraum Ablation Problem: The heat fluxes at
t=1640ps. The SNB model predicts the peak flux very well

near the ablation surface, but overpredicts the flux into the
corona.
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Figure 9. Hohlraum Ablation Problem (higher intensity): The
density and temperature profiles at the time (t=5160ps) at
which the VFP thermal transport model is turned on in
the K2 code (for the higher-intensity hohlraum ablation test
case). This represents the initial conditions (as provided by
pure radiation-hydrodynamics) for the study of thermal trans-
port with the SNB and VFP models. The vertical line shows
the location of the Au-He boundary (He is on the right). The
laser intensity has a ~ 4ns foot, peaking at ~ 105Wem ™2 at
t = 5ns.

used with a flux-limited Spitzer model (necessary to re-
produce the actual VFP heat flux). We also mention in
passing that we have postprocessed data from fully inte-
grated 2D radiation-hydrodynamics simulations of NIF-
scale hohlraums and find there that the peak flux may
be a higher fraction of the free-streaming value than the
factor 0.035 in these simulations.

Note that in this section we computed the SNB heat
flux from the VFP temperature profile, since the aim
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Figure 10. Hohlraum Ablation Problem (higher intensity):

The heat fluxes at t=5300ps. The SNB model predicts the
peak flux reasonably well near the ablation surface, but over-
predicts the flux into the corona by a factor of around 2.
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Figure 11. Hohlraum Ablation Problem (higher intensity):

The ratio of the VFP heat flux to the free-streaming value
(q/qrs), at t=5300ps.

was to focus on the difference between the predicted heat
fluxes for a given temperature and density profile. In the
next section we explore how the heat fluxes actually affect
the temperature profiles.

VI. INLINE COMPARISON

We showed in the previous section that in hot
hohlraums, the SNB peak heat flux near the ablation sur-
face is overpredicted by 10-20%. However, simply com-
puting heat fluxes from given temperature profiles may
not be a fair comparison of how well the SNB model per-
forms when run inline (compared to an inline simulation
with VFP). The argument can be made that if the SNB
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Figure 12. The electron density (in units of critical density
for 3w light) and ionization state profiles at t—11.8ns for the
inline hohlraum VFP and SNB simulations.

model overpredicts the heat flux in a region, the temper-
ature will drop there at a faster rate, which will in turn
lead to a reduction in the local temperature gradient and
hence a reduction in the heat flux. Therefore small er-
rors in the model may be “self-correcting”. To explore
this possibility we have made a comparison between fully
inline SNB and VFP (by “inline” we mean that the heat
flux is used to update the temperature during the simula-
tion). For this case we freeze the hydrodynamic motion
after a significant amount of ablation has occured, re-
sulting in the density profile shown in Figure 12. After
hydrodynamic motion is turned off, the laser continues to
heat the plasma which then evolves to an approximately
steady-state via a combination of thermal transport and
radiative cooling over ~ 100ps. The corona becomes hot
enough in this steady-state (~ 5keV) to drive significant
non-local transport.

The temperature profiles corresponding to this steady-
state are shown in Figure 13 for each of the two mod-
els. As can be seen, the temperature profiles are in good
agreement in the ablation/absorption region and only dif-
fer by ~ 300eV in the coronal region. This suggests that
typical errors on the order of 10-20% in the peak ablative
heat-flux predicted by SNB can effectively “self-correct”.
We expect that the improvements discussed in the next
section will further reduce the coronal error.

We have not performed all SNB calculations inline
in this paper due to the very large computational de-
mands of resolving the electron collision time in the high
density regions of the plasma over the long timescales
needed for an inline comparison - the results in this sec-
tion simply serve to bring attention to the possibility of
“self-correction” in a relatively simple scenario. Improve-
ments to the standard computational techniques used in
VFP codes will be necessary in order to allow them to
overcome the timestep limitation. This highlights the
fact that one of the major design advantages of the SNB
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Figure 13. The electron temperatures at t=11.8ns for the
inline hohlraum simulations, according to the SNB model and
the K2 VFP model.

model is its natural ability to relax to Spitzer transport
in regions of high collisionality (which is due to its ex-
pansion of f about the Spitzer distribution function). A
similar expansion (or equivalent relaxation process) of
the VFP equation should be possible. A related problem
is the difficulty of maintaining quasineutrality in the high
density regions in VFP simulation models without resolv-
ing the plasma period: implicit electric field solvers do
not guarantee quasineutrality over long (hydrodynamic)
timescales, but this problem can be largely overcome by
the fully-implicit simulation technique employed by the
IMPACT model [17].

VII. IMPROVEMENTS TO THE SNB MODEL

We have found it is possible to increase the agreement
between the SNB model and the VFP model in the coro-
nal regions by simply modifying the mean-free-path def-
initions. The SNB model employs a somewhat artificial
combination of electron-electron (Aee) and electron-ion
(Xei) mean-free-paths into a single mean-free-path (“A.”).
This is only possible when the ionization Z* is assumed
to be constant. The use of separated mean-free-paths
(considered in detail in [14] and alluded to in [16]) is a
straightforward modification of the original model, and it
correctly accounts for ionization gradients. The resulting
heat flux is shown in Figure 14 for the higher intensity
case described in Section V. The heat flux is significantly
improved in the coronal region, with the error in the peak
coronal heat flux reducing from about 90% to about 27%.

A very similar improvement in the heat-flux is obtained
by simply neglecting the “electric field correction” to the
mean-free-path. The original SNB paper [2] distinguishes
between the standard collisional mean-free-path A, and

an electric-field-corrected mean-free-path )\; related via:
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Figure 14. Hohlraum Ablation Problem (higher intensity):
The improved heat fluxes at t=5120ps. The curve labelled
“SNB no E” is the SNB model without the electric field correc-
tion to the mean-free-path. Neglect of this correction signifi-
cantly improves the agreement of the SNB model with VFP
in the coronal region. The dashed curve labelled “SNB sep.”
corresponds to the SNB model rewritten to make use of sep-
arate electron-electron and electron-ion mean-free-paths.

(11)

which serves to further limit the particle stopping dis-
tance in regions where the electric field may be the domi-
nant cause of electron stopping (see the discussion in [2]).
In the above expression, F is the electric field and ¢, is
the energy of the electron (in energy group “g”). The
green curve in Figure 14 shows the heat flux when the
electric field is neglected in the definition of the mean-
free-path (i.e. by simply setting )\; = )gy) - the level of
improvement is similar to the use of separated mean-free-
paths.

SUMMARY

We have compared the SNB non-local transport model
to fully kinetic Vlasov-Fokker-Planck simulations in a va-
riety of realistic situations relevant to inertial confine-

ment fusion. In hohlraum-like situations, we find good
agreement between the SNB model and VFP simulations
at the ablation front (where the heat flux peaks). The
heat flow out into the coronal region, however, is typi-
cally overpredicted by the SNB model by a factor of ~ 2.
This overprediction can be substantially reduced by ig-
noring electric field corrections to the mean-free-path or
properly separating the electron-electron and electron-
ion mean-free-paths. However, the distribution function
predicted by the SNB model may be significantly differ-
ent to the VFP distribution function even when the total
heat fluxes are in good agreement, suggesting improve-
ments need to be made in order to make the SNB model
more generally useful as a predictive tool for a wider va-
riety of kinetic effects. In the more demanding case of
hot electron penetration through a thin shell into a gas,
the SNB model significantly overpredicts the short-range
heat flux while underestimating the long-range heat flux.
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APPENDIX

The VFP model used in this paper (“K2”) solves

the Vlasov-Fokker-Planck equation for the elec-
tron distribution function f (¢, 2,y, Pz, Dy, p:) =
Zn’m fm(t,x,y,p) Y™ (0,6) expanded in spherical

harmonics in momentum-space (p,6,¢) to arbitrary
order. The expansion coefficients f7" (¢, z,y,p) evolve as

[4]:
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where v is the electron velocity magnitude relative to
the ion velocity, v.; (v) is the electron-ion scattering fre-
quency [10], F,, F,, F, are the components of the elec-
tric force, B, By, B, are the components of the magnetic
field and the functions G}' and H," are defined as:

(

where p = ymu is the magnitude of electron momen-
tum. The electron-electron collision term (Ce.) is com-
posed of isotropic (C%°) and anisotropic (C%*) compo-
nents:

o ( _,o0fm 0
G =p"— (p n_n ) (13) iso ii 0 %
Op Op Feec =229 Co (v) fo + Do (v) o0 (15)
and
P ofm where Do (v) = 2{L (f§) + J-1 (fJ)} and Cy (v) =
H™ = p~ () 5 <p”+1a”> (14) Iy (f3), and (using Tzoufras’ notation [5]):
p p |
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Iee is defined in [5]. The term C;p represents the
inverse bremsstrahlung heating term, which is solved in
the form given by Weng [6], and can be added in to CY,.
The laser intensity I (x) is modelled in 1D by solving the
1D ray equation:

dI (x)

s (17)

=—k(x)I(z)



where & (x) is the inverse bremsstrahlung absorption
coefficient, which is self-consistently calculated from the
energy deposited by the term Cyp. Similarly, in 2D the
ray equations are solved by actually propagating rays,
but without the self-consistent calculation of .

The term C);pyp represents energy exchange between
the MHD model and the VFP model, and includes hydro-
dynamic PdV work, electron-ion equilibration, ioniza-
tion energy loss/gain and radiation emission/absorption.
These are computed by the MHD model and assumed
to heat the electrons while maintaining a thermal (i.e.
Maxwellian) distribution: deviations from this assump-
tion for ionization have been discussed by Robinson [7],
and for PdV work by Matte [8]. We have found no de-
viation from a Maxwellian distribution when including
the full electron-ion energy exchange terms (except in ex-
treme conditions not relevant to this study). Our implicit
assumption is that all hydrodynamic terms operate on
time-scales significantly longer than the electron-electron
thermalization time. In non-Cartesian geometry (cylin-
drical or spherical), the equations need to be modified to
include the correct geometric factors as in [9].

We follow the KALOS formulism [4], time-splitting the
VFP equation and integrating the advection and acceler-
ation terms to second-order accuracy in time, space and
momentum, including polynomial expansions of the f

n

10

close to p = 0. The electron-ion scattering, isotropic
electron-electron collision operator, and magnetic field
terms are solved fully implicitly. The anisotropic colli-
sion operator is solved semi-implicitly. The irrotational
electric field is found from an implicit solution of Gauss’
Law and the solenoidal component from an implicit solu-
tion of the fi™ equations (i.e. a generalized Ohm’s Law).
We find the use of Gauss’ Law improves quasineutrality
in the presence of large density gradients. Faraday’s Law
is solved for the magnetic field.

In this paper, we do not use the anisotropic electron-
electron collision operator, but instead implement the
simple electron-ion collision frequency multiplier given
by Epperlein [15], since this is used in many VFP models
as well as the SNB model. We use 180 energy groups in
both the SNB and VFP models, and reflective boundary
conditions in all cases.

K2 differs from SPARK [10] and IMPACT [17] by be-
ing fully explicit in space (which allows efficient paral-
lelization), being capable of using an arbitrary number
of polynomials in the momentum-space expansion, and
by its inclusion of laser propagation and MHD. It also
contains a number of other features, such as anisotropic
collisions, EM wave propagation, 3D magnetic fields and
coupling to Vlasov ions, but they are not relevant to the
work presented here.
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