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Abstract The formation of a protective protein container is an essential step in the life-

cycle of most viruses. In the case of single-stranded (ss)RNA viruses, this step occurs in

parallel with genome packaging in a co-assembly process. Previously, it had been thought

that this process can be explained entirely by electrostatics. Inspired by recent single-

molecule fluorescence experiments that recapitulate the RNA packaging specificity seen

in vivo for two model viruses, we present an alternative theory, which recognizes the

important cooperative roles played by RNA–coat protein interactions, at sites we have

termed packaging signals. The hypothesis is that multiple copies of packaging signals,

repeated according to capsid symmetry, aid formation of the required capsid protein

conformers at defined positions, resulting in significantly enhanced assembly efficiency.

The precise mechanistic roles of packaging signal interactions may vary between viruses,

as we have demonstrated for MS2 and STNV. We quantify the impact of packaging

signals on capsid assembly efficiency using a dodecahedral model system, showing that

heterogeneous affinity distributions of packaging signals for capsid protein out-compete

those of homogeneous affinities. These insights pave the way to a new anti-viral therapy,

reducing capsid assembly efficiency by targeting of the vital roles of the packaging signals,

and opens up new avenues for the efficient construction of protein nanocontainers in

bionanotechnology.
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1 Introduction

Viruses are major pathogens in all kingdoms of life. Single-stranded (ss)RNA viruses make

up a significant fraction of these pathogens with detrimental impacts on human health.

Their control via vaccination will only ever be possible for a limited subset of examples, so

innovative routes to antiviral therapy are urgently required. Virion formation and uncoating

are highly cooperative aspects of the viral lifecycle that are potential drug targets, but these

have largely not been exploited thus far. One reason for this, with respect to assembly, is

the apparent lack of specificity for RNA in in vitro assays of spontaneous co-assembly

to form virus-like particles. Many viral coat proteins (CPs) also seem able to assemble

correctly in the absence of RNA. The lack of sequence specificity has been interpreted to

mean that assembly is driven largely by electrostatics [1–4]. RNAs carry a large amount of

negative charge that can be neutralized by the positively charged domains or surfaces seen

on many viral CPs. However, these in vitro results do not reflect the apparent specificity of

genome encapsidation seen in vivo [5], where there is a clear biological imperative to (1)

form virions packed with cognate genomes and not cellular RNAs; and to (2) complete the

assembly process efficiently before the host defense mechanisms can clear the infection. We

review here our recent data that suggest that while electrostatics clearly plays an important

role in ssRNA virus capsid assembly, it overlooks the vital cooperative roles by which the

genomic RNA facilitates efficient encapsidation in an environment in which capsid protein

concentrations are much lower than in most in vitro studies. Thus the genome confers a

distinct evolutionary advantage to assembly of these pathogens, as well as encoding their

gene products. The deeper understanding of these mechanisms provided by our research

paves the way for novel antiviral strategies, targeting these additional roles of the genome

in capsid formation.

2 In vitro assembly assays demonstrating packaging specificity

We have recently established single-molecule fluorescence correlation spectroscopy (sm-

FCS) assays to monitor the fates of dye-labeled CPs or RNAs during in vitro reassembly at

the low CP concentrations typical of in vivo scenarios [6]. These allow the conformations of

genomic RNAs before, during, and after encapsidation to be followed by direct estimation

of their hydrodynamic radii (Rh). The assays are sensitive in the nanomolar concentrations

range (∼1 nM for RNA & ∼100 nM for CP), which are much more reflective of early

concentrations within infected cells than most in vitro assays where CP concentrations of

≥10 μM are common. Working with two model viruses, satellite tobacco necrosis virus

(STNV) and bacteriophage MS2 (Fig. 1), we were able to show that labeled proteins and

capsids had Rhs derived from smFCS similar to those determined by other techniques, such

as X-ray crystallography and mass spectrometry. Furthermore, the technique showed good

discrimination between the starting materials (dis-assembled RNAs and CPs) and the end

products (capsids) in in vitro reassembly reactions.

The most interesting information from these assays comes from dye-labeled genomic

RNAs to which a full complement of CPs is added, allowing each RNA to form a capsid
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Fig. 1 Demonstration of RNA packaging specificity for two model viruses. The top row shows external

views of the capsids of STNV and bacteriophage MS2 based on their PDB entries (3 S4G & 1AQ3,

respectively). These are examples of T = 1 and T = 3 capsids. Alongside are the sequences and secondary

structures of their known packaging signals, B3 & TR, respectively [13, 18]. The bottom row shows the

results of single-molecule fluorescence correlation spectroscopy (smFCS) assembly assays for both viruses.

The hydrodynamic radii (Rh), derived from the FCS curves, are plotted for both genomic RNAs (∼1 nM)

before and after (red arrow) the addition of sufficient coat protein subunits to allow assembly of completed

capsids around each RNA. The protein-free RNAs show the presence of multiple conformers in equilibrium,

most of which are too large to fit within their respective capsids (the dashed black lines and Rh values are for

the external radii of the respective capsids). On addition of the cognate, and only the cognate, CP subunits

there is a sudden collapse in the hydrodynamic radius of the resulting RNA-CP complexes. Electrostatic

models of assembly would not predict this specificity or the collapse. Electron micrographs of the assembly

reactions at the end of the FCS measurement show that the cognate reactions have produced the expected

capsids in high yield [6]

[6]. Initially in the absence of CPs, the genomic RNAs, and sub-fragments of the MS2

RNA (not shown), exhibit a broad range of Rh values, consistent with an ensemble of

differing conformers in equilibrium (Fig. 1). This is consistent with the necessity of these

RNAs playing multiple roles during the viral lifecycle, each of which requires a different

conformational state. Most of the conformers seen in the absence of CP are too large

to fit within the confines of their respective capsids. Upon addition of the cognate CPs

there is a sudden collapse by up to 20% in Rh values that makes the resultant complex

smaller than the diameter of the respective capsids. This event is followed by a slower

recovery in Rh values that then plateau close to the expected values for intact capsids. The

collapse only occurs with cognate CPs and RNAs. Non-cognate viral RNAs are equivalent

to non-cognate cellular RNAs in these assays. Electron microscopy shows that the cognate
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reactions produce the expected capsids with high yield and fidelity. Non-cognate reactions

also appear to stimulate assembly under these conditions, but do so highly inefficiently and

produce a majority of misshapen and aggregated species with very few structures equivalent

to a well-formed capsid. The collapse is a consequence of multiple CP-RNA and CP-CP

contacts, since an MS2 CP mutant (W82R) [7] that binds RNA normally but cannot make

the protein–protein contacts required for capsid formation does not induce collapse. It is also

not CP concentration-dependent above a threshold value, as the amplitude of the collapse

is constant. EMs of the MS2 reaction just after the collapse show partially formed capsid

shells of the correct size and symmetry, implying that the complex forms in an ordered way

and is not simply aggregated material that subsequently rearranges. The recovery stage is

dependent on CP concentration as expected for recruitment of additional CP subunits to

complete capsid formation. We interpret these data to mean that within each genome there

are specific CP binding sites that are arranged in three dimensions to facilitate the CP-CP

contacts seen in the capsid. The binding energy of these CP-RNA complexes is used to

overcome the entropic costs associated with RNA confinement during assembly. We term

the RNA sites involved in these contacts Packaging Signals (PSs). Some animal viruses,

e.g., polio, are known to package predominantly nascent genomic transcripts as they emerge

from the RNA-dependent RNA polymerase, rather than co-assembling with a fully formed

RNA as in these experiments. However, in such cases the genomic RNAs still need to be

confined and so a variant of the PS idea may still explain this behavior. In those cases, the

PSs may only fold correctly for CP binding on the nascent transcript.

3 The packaging signal hypothesis

The results described above suggest that there should be multiple PSs in the genomic

sequences that play important functional roles via contacts with CP at defined positions

in the capsid. For example, we have shown previously that contacts between characteristic

stem-loop motifs in the MS2 sequence and CP subunits result in a conformational change

of the symmetric, RNA-free CP dimer [7–11], the prevalent conformer in solution, to

the asymmetric form required at 60 of the 90 dimer positions in the fully assembled

capsid (Fig. 2a). Via such contacts, virus assembly is significantly accelerated from the

order of days in the RNA-free case, to minutes if genomic RNAs or multiple copies of

fragments encompassing PSs are present. This suggests a scenario of capsid assembly that

we previously termed the dimer switching model (DSM) of assembly [12], in which the

genomic RNA is organized in proximity of the capsid in such a way that it meets every

asymmetric dimer, extending a stem-loop contact (PS) to CP as it does so, hence enabling

the required conformer switch at defined positions in the assembling capsid.

Similarly, we have shown that contacts between RNA stem-loops in the STNV genome

sequence and CPs at the three-fold axes of symmetry of the T = 1 capsid help overcome

an electrostatic barrier between the CP monomers that prevents assembly in the absence of

RNA (Fig. 2b) [13, 14]. Both scenarios are incarnations of the same co-assembly principle,

that we call the Packaging Signal Hypothesis: Multiple copies of PSs fulfil the same

function, albeit different ones in different viruses, at defined positions, repeated according to

capsid symmetry, aiding formation of the correct/required CP conformers and thus resulting

in significantly enhanced assembly efficiency.

These ideas follow on from proposals based on the X-ray structure of satellite tobacco

mosaic virus (STMV), where up to 80% of the genomic RNA is ordered and has been
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Fig. 2 The effects of packaging signals. The left-hand panel shows the inferred assembly mechanism for

STNV based on an X-ray crystal structure of a virus-like particle containing multiple copies of its packaging

signal RNA and in vitro assembly assays [14]. The STNV CP in solution is monomeric and does not assemble

in the absence of RNA. In the presence of the PS RNA, it assembles rapidly and the VLP structure shows that

an additional section of the polypeptide chain towards the N-terminus becomes more ordered, extending the

existing alpha helix by four residues. Helices from three adjacent CP subunits meet at the capsid three-fold

axes. The additional amino acids being ordered contain several that are positively charged, suggesting that

RNA binding overcomes an electrostatic barrier to assembly within the CP. This is the opposite to many

views of assembly in this class of virus. The middle panel shows our current assembly model for MS2,

which is nucleated by binding of its high affinity PS, the TR stem-loop, and proceeds by recruitment of

further dimers, mediated via contacts with the other PSs. In this case, the CP is a dimer that is symmetrical

in the absence of RNA but adopts the asymmetric conformer when bound to a PS. Both CP conformers

are required to assemble the T = 3 shell. The right-hand panel shows a cartoon of the dodecahedral model

system that we have used to analyze the principles of these co-assembly scenarios. In this case, the 12

pentagonal building blocks represent the units of assembly (capsomeres, here pentagons), and interact with

the 12 packaging signals on a hypothetical RNA. PS-capsomere contacts are assumed to take place at the

centers of the building blocks. In the fully assembled capsid, all PSs are bound to capsomeres, and the

specific PS-capsomere pairing across the capsid defines the organization of the RNA in proximity to the

dodecahedral capsid surface

modeled as a series of stem-loops positioned along the particle two-fold axes [15]. Further

modeling based on a folded genomic RNA constrained to form 30 such stem-loops and

chemical footprinting [16], has allowed a full three-dimensional model of the RNA to be

built [17]. Unfortunately, in this case, it has not been possible to demonstrate the functional

roles of these putative packaging signals directly. In all these cases, the implication is

that genomic RNAs fulfil multiple functions, including formation of repeating motifs for

interaction with their coat proteins in the virion, as well as encoding of the viral proteins

and gene and replicative control elements.
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4 The nature of the packaging signals

High-affinity PSs have been identified in many viral systems, and their roles in initiating

capsid assembly and conferring packaging selectivity have been discussed. In MS2, there

is a single copy, high-affinity, stem-loop CP-binding site (TR) [18] that plays multiple roles

in the viral lifecycle. It serves as an operator for a CP-induced translational repression of

the replicase gene, and it is also believed to act as the point of assembly nucleation. In vitro

reassembly assays show that flanking sequences also contribute to assembly efficiency [19–

21] and there is genetic evidence that there are likely additional PSs throughout the genome

[22]. However, the existence of multiple packaging signals, potentially with medium to

low affinity for CP, as suggested by the above model, has previously been overlooked.

This is perhaps due to the fact that PS motifs vary in their primary structures and reveal

characteristic motifs only in the context of their secondary structures. We used clues from

RNA SELEX [23], a method providing insights into relative affinities of RNA fragments to

CP, to establish the existence of multiple PS consistent with the PS hypothesis in a number

of viral systems.

For example, STNV T = 1 capsids in vivo package a genomic RNA consisting only of

mRNA for the CP. There are three known viral strains. Unusually in this class of virus,

our recombinant mRNA in E. coli cells is expressed and the recombinant CP assembles to

T = 1 particles that encapsidate that mRNA, suggestive of packaging specificity [24]. We

tested this idea by selecting preferred RNA binding ligands using the SELEX technique

in combination with bioinformatics. This identified a short stem-loop (B3) with a single-

stranded loop motif of –A.X.X.A-, where X = any nucleotide. There are multiple versions

of this recognition signal, a putative PS, in all three STNV genomes [13]. We tested whether

this sequence was functionally important in in vitro reassembly assays comparing a mutant

sequence with a loop of –U.U.U.U- as a control [14]. The STNV CP does not assemble

beyond monomer in the absence of RNA. Both B3 and the 4U variant trigger self-assembly

of T = 1 capsids with STNV CP, but with dramatically different efficiencies, the –A.X.X.A-

version being much more efficient. X-ray structure determination of the virus-like particle

(VLP) created by B3-induced assembly reveals repeated RNA-CP contacts around the

helices that occur at the virion three-fold axes. Compared to the virion structure, these

helices have become more ordered allowing a cluster of positively charged side-chains

to come into close contact. These aptamer sequences appear to overcome the potential

electrostatic repulsion between CP monomers and are obvious candidates to be the PSs

in the STNV RNA inferred from the smFCS experiment.

Similarly, RNA SELEX and known structures for CP-binding RNA stem-loops sug-

gested a characteristic motif for PSs in MS2 [25–27]. Using a novel interdisciplinary

approach (Dykeman et al., in preparation), combining SELEX and structure function data

with graph theoretical tools (Hamiltonian paths) we were able to identify the 60 PSs

consistent with the DSM, and map them into the tertiary structure of the packaged genome,

i.e., we associated all PSs with defined positions in the capsid. This analysis revealed a

striking conclusion: the organization of the packaged genome in contact with capsid is

much more constrained than previously appreciated. This is consistent with a recent cryo-

tomographic structure determination of the MS2 virion in contact with its primary cellular

receptor, the bacterial pilus. Using the pilus for alignment, it has been possible to determine

a tomographic structure for the bound phage without symmetry averaging of the density

(Dent et al., submitted). Tomograms of individual particles have too low a signal-to-noise

ratio to provide useful information but by sub-tomographic averaging of many asymmetric

particles it is possible to generate an interpretable structure. This confirms that the capsid is
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based on icosahedral symmetry everywhere except the contact point with the pilus, where it

appears that a coat protein dimer has been replaced by the single copy of maturation protein.

Within the protein shell there is density that must correspond to the genomic RNA, both in

contact with the protein shell, as expected from the roles of the RNA packaging signals, and

at lower radii. Due to the averaging between particles, the strength of this density shows

that the conformation of encapsidated RNA in every particle must be very similar. Indeed,

we tested the data for correlation with the structures of any of the possible Hamiltonian

path organizations and identified a single path as the best fit (Geraets et al., in preparation).

Interestingly, it is the same path that had been identified earlier via an independent approach

based on assembly kinetics [12] as the path describing the likely organization of genomic

RNA in proximity to capsid.

A similar analysis of the PSs in an evolutionarily related phage, GA, revealed a different

PS motif and different PS distributions in the secondary structure of that packaged genome,

but the same contact pattern between PS in the RNA organization in proximity of the

capsid, pointing to an evolutionarily conserved packaging arrangement in this family of

RNA viruses.

5 Packaging signals and particle geometry

The tight link between the structure of the packaged genome and capsid assembly implies a

conserved assembly mechanism for these RNA viruses. This is because the positions of the

PSs and the way in which the genomic RNA is organized between them define the assembly

pathways and intermediates. For example, for MS2 assembly is assumed to nucleate at the

highest affinity PS (TR, Fig. 1), which in this case is located approximately at the center

of the genomic sequence. After this, assembly proceeds along the RNA towards the 5
′

and 3
′

ends simultaneously via recruitment of additional CP dimers, consistent with the

experimental observation of capsid intermediates seen via mass spectrometry. In such a co-

assembly scenario, formation of CP complexes is correlated with the organization of the

genomic RNA in contact with it. Hence, the organization of the genome and the associated

positioning of the PSs reflect the geometry of the capsid intermediates and the final virion.

Therefore, mathematical tools describing capsid geometry can be used to characterize the

assembly process. In particular, the concept of Hamiltonian paths, which we introduced as a

tool to enumerate all possible organizations of the packaged genomes in contact with capsid

[28, 29], allowed us, in combination with techniques from biochemistry and biophysics,

to characterize the local rules according to which these viruses form [12]. This work has

revealed a preferred assembly pathway, which is consistent both with the independent

analysis of the PS distribution, and with results of the recent cryo-TM study.

6 The function of packaging signals

These results pave the way for a better understanding of how the PSs contribute to making

capsid assembly both efficient and accurate. The existence of multiple PSs suggests that

they fulfil a regulatory role during capsid assembly, which is perhaps surprising, given

that the largest fraction of them (e.g., over 70% in MS2 (Dykeman et al., in preparation))

have relatively weak affinity for their cognate CP. In order to understand this phenomenon,

we have analyzed capsid assembly for a dodecahedral model system consisting of 12
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pentagonal building blocks that can interact with 12 packaging signals on a hypothetical

RNA (Fig. 2c) [30]. Assembly reactions (Fig. 3a) assume nucleation at a designated high

affinity signal via recruitment of a CP (pentagon). Further CP-RNA contacts can be formed

or broken with defined on- and off-rates, and CPs bound to neighboring PSs can associate

(and potentially dissociate again). We analyzed the efficiency of capsid assembly in terms

of particle yield depending on the strengths of the PS-CP contacts across the RNA genome

using a Gillespie-type algorithm to sample the possible assembly pathways. The Gillespie

algorithm uses a stochastic framework to compute the reaction kinetics of a solution

of chemicals. Given a set of possible reactions, such as a ligand-binding event or the

dissociation of a ligand–protein complex, the algorithm computes the probability that each

reaction would occur within a time increment and picks one reaction to “fire” based on these

probabilities. Our algorithm for capsid assembly in the presence of RNA uses the algorithm

to compute the reaction kinetics for a solution of CP and RNAs that contain multiple PSs

with varying affinities for CP [30]. The reaction probabilities are estimated from the forward

and backwards reaction rates, which satisfy the equilibrium equation:

k f

kb
= e−�G/RT

where R is the gas constant and T is the temperature (here chosen as 298 K).

The analysis revealed that heterogeneous PS affinity distributions (in this model of CP-

RNA affinities between 0 and −12 kcal/mol) performed consistently better than RNAs with

identical PSs, such as homogeneous polymers (i.e., the situation when all PS affinities are

equal). An example of each scenario is shown in Fig. 3b. An analysis of the assembly

pathways of better performing RNAs revealed that PSs of weak affinity are located

predominantly in positions where dissociation may be important for error correction on the

Fig. 3 Modeling the effects of different packaging signal affinities. In order to assess the impact of different

distributions of PS affinities to capsomeres, we analyze the assembly scenario given by the assembly

reactions in the left panel. These assume nucleation at a designated high affinity signal via recruitment of a

CP (pentagon). Further CP-RNA contacts can be formed or broken with defined on- and off-rates, and CPs

bound to neighboring PSs can associate (and potentially dissociate again). The right panel shows the resulting

particle yield depending on the strengths of the PS-CP contacts across the RNA genome (varying between

0 and −12 kcal/mol in increments of 0.1 kcal/mol), obtained via a Gillespie-type algorithm sampling the

possible assembly pathways. The analysis revealed that heterogeneous PS affinities performed consistently

better in terms of completed capsid than scenarios in which all PS affinities are equal; an example of each is

shown for illustration
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pathways, while strong packaging signals mark positions that do not require dissociation

to complete capsid formation. This suggests an intimate link between capsid geometry and

assembly kinetics that is mediated via the affinities of the PSs. Ongoing work suggests that

the PS are evolutionarily tunable (Dykeman et al., in preparation), like knobs on a radio,

adapting the RNA to capsid geometry so as to optimize capsid yield during assembly.

7 Conclusions

Inspired by the remarkable insights into RNA virus assembly provided by the single-

molecule experiments for MS2 and STNV [6], we have developed a new model for the

capsid-genome co-assembly process in ssRNA viruses. A central element of this approach

is the packaging signal hypothesis, which suggests that repeated contacts between RNA

and CP, mediated by the PS, have a regulatory role in capsid assembly, hence making

this process more efficient. This regulatory role can manifest itself in different ways, e.g.,

via allosteric dimer switching as in MS2, or overcoming of electrostatic barriers in capsid

protein association as in STNV. We have shown that the affinities of PS to capsid protein are

key in adapting the RNA for efficient packaging into a capsid of a defined geometry, making

the genomic RNA a finely tuned molecular machine primed to optimize capsid assembly.

This is vital given that capsid efficiency is important in each viral particle’s race against its

host’s natural defense mechanisms.

Our analysis has shown that electrostatics alone does not account for the packaging

mechanism in ssRNA viruses as it overlooks these subtle, yet vital, effects. Indeed, in vitro

studies at unnaturally high CP concentrations mask this effect, which is perhaps why it

had not been discovered previously. For instance, in the smFCS assays of STNV assembly

at low CP concentrations (100 nM), there is clear discrimination in favor of the cognate

CP-genomic RNA complex against MS2 genomic RNA and its fragments, and vice versa
(Fig. 1). However, MS2 PSs also have loop sequences that match those of STNV

(-A.U.U.A- vs. –A.X.X.A). The relative locations of these PSs in the respective RNAs

are, however, optimized to promote only the cognate CP-CP contacts required to form the

appropriate capsid, hence preventing assembly with non-cognate RNAs at low concentra-

tion [31]. This effect is reduced when we compare discrimination of MS2 and STNV RNAs

at typical in vitro reassembly concentrations (≥10 μM) [14]. As our modeling has shown,

capsids can be formed around any negatively charged polymers as long as they fit into

the volume of the capsid; however, for non-cognate RNAs, the efficiency of this process

is much reduced. Our approach is a vehicle to quantify this, and for relating PS affinities

with capsid yield. It is therefore essential for understanding virus assembly in vivo. We

have shown that under comparable conditions (solution conditions and assumptions on

on/off-rates), heterogeneous distributions of PS affinities perform consistently better, and

that there is at least a difference of 5% in capsid yield with regards to the best performing

polymer with a homogeneous PS distribution. This difference, albeit small, is important in

an evolutionary context, as a population of viruses would out-compete another over which

it has a 5% advantage in yield in only a couple of generation cycles.

These insights suggest a novel approach to anti-viral drug design, i.e., targeting the

formation of the vital PS-CP contacts, and/or their consequences. Indeed, we have shown

that blocking the CP-induced collapse of MS2 RNA ablates capsid assembly and others

have demonstrated that a clinically approved alkaloid that binds to extra helical bases in
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RNA blocks assembly of TMV in vitro from its known PS. The packaging signal hypothesis

may hence pave the way to a novel antiviral therapy.
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