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Summary 31 

Heparan sulfate proteoglycans (HSPGs) critically modulate adhesion-, growth- and migration-32 

related processes. Here we show that the transmembrane protein Nogo-A inhibits neurite 33 

outgrowth and cell spreading in neurons and Nogo-A-responsive cell lines via HSPGs. The 34 

extracellular, active, 180 aa Nogo-A region called Nogo-A-20 binds to heparin and brain-35 

derived heparan sulfate glycosaminoglycans (GAGs) but not to the closely related chondroitin 36 

sulfate GAGs. HSPGs are required for Nogo-A-20-induced inhibition of adhesion, cell 37 

spreading, neurite outgrowth as well as for RhoA activation. Surprisingly, we show that 38 

Nogo-A-20 can act via HSPGs independently of its receptor Sphingosine-1-Phosphate 39 

receptor 2 (S1PR2). We thereby identify a new functional binding receptor for Nogo-A-20 40 

and show that syndecan-3 and syndecan-4 are responsible for Nogo-A-20-induced effects. 41 

Finally, we show in explant cultures ex vivo that Nogo-A-20 promotes the migration of 42 

neuroblasts via HSPGs but not S1PR2.  43 
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Introduction 47 

Cell surface heparan sulfate proteoglycans (HSPGs) are highly expressed in the mammalian 48 

nervous system (Sarrazin et al., 2011; Yamaguchi, 2001). HSPGs regulate various 49 

developmental processes ranging from neuroblast migration, axon growth and guidance to 50 

synapse formation and neuronal connectivity (Inatani et al., 2003; Van Vactor et al., 2006; 51 

Yamaguchi, 2001). HSPGs transduce signals originating in the extracellular matrix (ECM) or 52 

act as obligate co-receptors for several morphogens, growth factors and axon guidance 53 

molecules (Bernfield et al., 1999; Sarrazin et al., 2011). Most studies on HSPGs have focused 54 

on the regulation of survival-, proliferation- or growth-promoting cues, e.g., fibroblast growth 55 

factor (FGF) (Sarrazin et al., 2011), rather than growth-inhibiting and repulsive factors. To 56 

our knowledge, only the repulsive activities of EphrinA3, Slit2 and S1P have been reported to 57 

critically depend on the presence of cell surface HSPGs so far (Hu, 2001; Irie et al., 2008; 58 

Strochlic et al., 2008). 59 

 60 

Nogo-A is a major anti-adhesive and neurite growth-inhibitory protein initially discovered for 61 

its role as myelin-associated inhibitor of axonal regeneration in the adult central nervous 62 

system (CNS) (Schwab, 2010). In addition to its role in the injured CNS, Nogo-A has been 63 

shown to regulate various developmental and plastic processes ranging from synapse 64 

formation to neuronal migration (Kempf and Schwab, 2013; Schwab and Strittmatter, 2014). 65 

In the adult brain, Nogo-A promotes cell motility and the tangential migration of neuroblasts 66 

along the rostral migratory stream (RMS) by triggering cell-cell repulsion (Rolando et al., 67 

2012). At hippocampal and cortical synapses, Nogo-A acts as a negative regulator of long 68 

term potentiation and memory stability (Karlsson et al., 2016; Schwab and Strittmatter, 2014). 69 

However, it is not known whether Nogo-A-evoked cellular responses are modulated by 70 

HSPGs. 71 

 72 
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In this study, we identified HSPGs as novel functional receptors for the active Nogo-A 73 

domain Nogo-A-20 (rat amino acid (aa) 544-725 (Oertle et al., 2003)). We found that Nogo-74 

A-20 activates RhoA and inhibits cell spreading and neurite outgrowth via HSPGs, 75 

specifically via the transmembrane HSPGs syndecan-4 and syndecan-3. In addition, we show 76 

that Nogo-A-20 inhibits cell adhesion of neuroblasts in an HSPG-dependent manner and 77 

increases neuroblast chain migration ex vivo. Our results propose a novel mechanism by 78 

which Nogo-A-20 affects cytoskeletal dynamics by interacting with HSPGs independently 79 

of the newly characterized Nogo-A-20 receptor Sphingosine-1-Phosphate receptor 2 80 

(S1PR2) (Kempf et al., 2014). 81 

  82 
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Results 83 

Cell surface heparan sulfate is required for Nogo-A-20-induced inhibition of cell 84 

spreading 85 

Outgrowth of neurites and spreading of cells, e.g. fibroblasts, are strongly inhibited by 86 

substrates containing Nogo-A or its active fragment Nogo-A-20 (Oertle et al., 2003) (Figure 87 

1A). To determine a possible role of heparan sulfate (HS), cell spreading inhibition was 88 

examined upon enzymatic cleavage of HS. Treatment of Swiss 3T3 cells with heparinase III 89 

(HepIII) significantly increased cell spreading by ~45% on the Nogo-A-20-coated culture 90 

dishes when compared to the vehicle (saline) control (Figure 1A,B). Treatment with 91 

heparinase I (HepI), which cleaves HS at the level of O-sulfated rather than non-sulfated or N-92 

sulfated disaccharides (Hovingh and Linker, 1970), resulted in a similar decrease of the Nogo-93 

A-20 inhibition but required higher enzyme concentrations (Figure S1A). 94 

If endogenous HS promotes the Nogo-A-20 inhibitory effects by directly binding to Nogo-95 

A, excess soluble HS in the culture medium may act as competitive inhibitor and neutralize 96 

Nogo-A-mediated cell spreading inhibition. Indeed, acute application of exogenous HS 97 

significantly increased cell spreading on a Nogo-A-20 substrate when compared to control 98 

treatment (Figure 1A,C). Similar effects were also observed when HS was added onto Nogo-99 

A-20-coated plates and washed prior to the plating of the cells, suggesting that Nogo-A-100 

20-bound HS neutralizes cell spreading inhibition (Figure S1B). 101 

To confirm the involvement of HS in Nogo-A-20 signaling, a HS-deficient mutant CHO cell 102 

line, pgsD-677 (Lidholt et al., 1992), was examined. Due to a mutation in the Ext1 gene 103 

encoding for a glycosyltransferase responsible for HS polymerization, pgsD-677 cells do not 104 

produce HS (Lidholt et al., 1992). Whereas wild type CHO cells were strongly inhibited in 105 

spreading by Nogo-A-20, spreading inhibition was almost fully abolished in the HSPG-106 

deficient pgsD-677 cells (Figure 1D,E). To confirm that these results are effectively due to the 107 
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lack of HS, we analysed cell spreading upon re-expression of Ext1 in pgsD-677 cells. Indeed, 108 

Ext1 re-expression fully restored Nogo-A-20-mediated cell spreading inhibition (Figure 109 

1D,F). The flow cytometry analysis of cell surface HSPGs expression confirmed their absence 110 

in pgsD-677 cells, as well as their partial reduction after HepIII treatment and their restoration 111 

after Ext1 re-expression (Figure 1G). 112 

Cell surface heparan sulfate is required for Nogo-A-20-induced inhibition of neurite 113 

outgrowth 114 

We examined the functional role of HS in Nogo-A-20-mediated inhibition of neurite 115 

outgrowth using postnatal day (P) 5-8 mouse cerebellar granule neurons (CGNs) as a model 116 

system. Notably, CGNs would not adhere if HepIII was applied acutely. Instead, HepIII was 117 

applied 12 h after plating for a total duration of 24 h. Delayed treatment of CGNs with HepIII 118 

fully abolished the growth-inhibitory effect of Nogo-A-20: neurite outgrowth was increased 119 

by ~92% when compared to the saline control (Figure 2A,B).  120 

To extend these findings to other neuronal populations, we analysed the effect of HepIII 121 

treatment in postnatal dorsal root ganglion (DRG) neurons and embryonic (E19) cortical 122 

neurons. Similar to CGNs, HepIII treatment fully abolished Nogo-A-20-induced inhibition 123 

of neurite outgrowth in DRG (Figure 2C,D) and cortical neurons (Figure 2E,F). Together, 124 

these results provide strong evidence for the requirement of HS chains on the surface of 125 

Nogo-A responsive cells to promote Nogo-A-20-mediated inhibition of neurite outgrowth. 126 

Nogo-A-20 binds heparan sulfate and brain-derived glycosaminoglycans 127 

To investigate a possible direct binding of Nogo-A-20 to HS, we used an ELISA assay. 128 

Biotinylated preparations of HS and heparin, a highly sulfated form of HS (Bernfield et al., 129 

1999), were immobilized and tested for T7-tagged Nogo-A-20 binding using two different 130 

antibodies: an anti-T7 tag and a Nogo-A-specific antibody targeting the 20 domain (11c7 131 

(Oertle et al., 2003)). To assess the binding specificity of Nogo-A-20 to HS, three different 132 
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variants of chondroitin sulfate (CS), another form of glycosaminoglycans (GAGs), were 133 

tested in parallel (CS-A, CS-C and CS-E). In addition, another inhibitory domain of Nogo-A, 134 

Nogo-66 (rat aa 1026-1091), which is known to interact with a different receptor complex 135 

(Kempf and Schwab, 2013), was tested. Importantly, Nogo-66 inhibits neurite outgrowth but 136 

not cell spreading (Kempf and Schwab, 2013). Recombinant Nogo-66-Fc was detected using 137 

an Fc-specific antibody. Nogo-A-20 but not Nogo-66 showed very strong binding to HS and 138 

to heparin and significantly less to CS-A, CS-C or CS-E (p < 0.001) (Figure 3A). These 139 

results were replicated using GAGs extracted from adult rat brains (total GAGs) treated with 140 

HepI/III or ChondroitinaseABC (ChABC) to obtain CS-containing GAGs (CS-GAGs) or HS-141 

containing GAGs (HS-GAGs), respectively. Consistent with the above results, Nogo-A-20 142 

bound total GAGs and HS-GAGs very strongly and showed significantly less binding to CS-143 

GAGs (p < 0.001) (Figure 3B). No binding of Nogo-66 to total GAGs, HS-GAGs or CS-144 

GAGs was observed (Figure 3B). In order to determine the specificity of the binding of Nogo-145 

A-20 to CS-GAGs, we tested the binding of the control protein Nogo-A-21 (rat aa 812-146 

918) (Oertle et al., 2003), which lacks inhibitory activity but is purified under identical 147 

conditions, to brain-derived GAGs. No difference in binding was observed between Nogo-A-148 

21, total GAGs, HS-GAGs or CS-GAGs (Figure S2). Moreover, the absorbance values lie in 149 

the same range than those of Nogo-A-20 binding to CS-GAGs, suggesting than the binding 150 

of Nogo-A-20 to CS-GAGs is likely to be unspecific. Given the fact that the results in 151 

Figure 3B, 3D and S2A are standardised against the total GAGs and that the HS:CS ratio in 152 

the brain is 1:10 (Deepa et al., 2006), Nogo-A-20 shows a strong binding preference to HS-153 

GAGs. Together, these results indicate that the key and main binding partner of Nogo-A-20 154 

is HS. 155 

Finally, to determine the binding affinity of Nogo-A-20 to heparin or HS-GAGs, a dose-156 

response binding curve was measured (Figure 3C,D). Binding was saturable and non-linear 157 
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fitting revealed that Nogo-A-20 binds to heparin and HS-GAGs with a dissociation constant 158 

(Kd) of ~234 nM and ~562 nM, respectively (Figure 3C, D). 159 

To assess the ability of Nogo-A-20 to bind HS under physiological conditions, cell surface 160 

binding assays were performed in CHO WT and pgsD-677 cells. Cells were incubated with 161 

HA-tagged Nogo-A-20 for 1 h at 4°C, washed and immunostained for the HA tag (Figure 162 

3E). Nogo-A-20 binding was assessed by measuring the number of Nogo-A-20 puncta per 163 

cell surface area calculated upon 3D reconstruction of the cells. High numbers of Nogo-A-164 

20 puncta per WT CHO cell were found, whereas no binding of Nogo-A-20 was detected 165 

in CHO pgs-D677 cells (Figure 3F). Similar results were also obtained in 3T3 cells after 166 

HepIII treatment (Figure 3G) showing that Nogo-A-20 binds HSPGs.  167 

Nogo-A-20 acts via HSPGs independently of S1PR2 168 

Cell surface HSPGs can act as co-receptors by promoting the binding of a ligand to its 169 

obligate receptor and thereby altering its activation (Bernfield et al., 1999; Sarrazin et al., 170 

2011). Given the prior identification of the G-protein-coupled receptor (GPCR) Sphingosine-171 

1-Phosphate receptor 2 (S1PR2) as a functional receptor for Nogo-A-20 (Kempf et al., 172 

2014), HSPGs may enhance or allow the formation of a Nogo-A-20/S1PR2 complex. 173 

Alternatively, HSPGs may transduce Nogo-A-20 signals independently of S1PR2. In the 174 

latter case, we reasoned that HepIII treatment of S1PR2-deficient cells should show a 175 

disinhibition effect; in the former case, no effect of HepIII should be observed given the 176 

requirement of S1PR2 as obligate receptor. To test this, S1PR2
-/-

 mouse embryonic fibroblasts 177 

(MEFs) (Kempf et al., 2014) were treated with HepIII or saline and plated on Nogo-A-20 178 

(Figure 4A, S3A). Strikingly, treatment of S1PR2
-/-

 MEFs with HepIII significantly further 179 

increased cell spreading on Nogo-A-20 when compared to HepIII-treated WT MEFs or 180 

S1PR2
-/-

 MEFs alone (Figure 4A, S3A). This suggests that Nogo-A-20 can act via HSPGs 181 

independently of S1PR2. 182 
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In CHO-K1 WT cells, the levels of endogenous S1PRs mRNAs were shown to be below 183 

detection limit, and these cells were unresponsive to the S1PR family ligand S1P in a variety 184 

of in vitro assays (e.g., (Gonda et al., 1999; Okamoto et al., 1998)). Based on these 185 

observations, CHO-K1 WT cells are considered as devoid of S1PR expression. To validate 186 

this under our experimental conditions, CHO WT cells were treated with the pharmacological 187 

S1PR2 antagonist JTE-013 and plated onto Nogo-A-20 and control substrates (Figure 4B, 188 

S3B). As expected, JTE-013 did not antagonize Nogo-A-20-dependent inhibition of cell 189 

spreading (Figure 4B, S3B). The same observation was made in mutant pgsD-677 cells 190 

(Figure 4B, S3B). Together, these results suggest that Nogo-A-20 can exert inhibitory 191 

effects via HSPGs in S1PR2-deficient cellular systems.  192 

Nogo-A-20 has been repeatedly shown to activate the RhoA/ROCK pathway and thereby to 193 

inhibit cell spreading and neurite outgrowth (Kempf et al., 2014; Niederost et al., 2002). To 194 

test whether HSPGs can also mediate Nogo-A-20-induced downstream signaling, RhoA 195 

activation was measured in CHO WT and pgsD-677 cells. In CHO WT cells, a ~250% 196 

increase in RhoA activation was observed 20 min after application of Nogo-A-20, whereas 197 

no change was observed in pgsD-677 cells (Figure 4C,D). The inactive Nogo-A fragment 198 

Nogo-A-21 was used as control protein. Further, no change in RhoA activation was 199 

observed in the presence of JTE-013 (Figure S4A) suggesting the presence of an S1PR2-200 

independent, HSPG-dependent Nogo-A-20 signal transduction pathway. 201 

To determine whether Nogo-A-20 inhibition in CHO WT cells could be overcome by 202 

blocking RhoA or the downstream Rho-associated kinase (ROCK), CHO WT cell were 203 

treated with the RhoA inhibitor C3 transferase or with the ROCK inhibitor Y-27632 and 204 

plated onto Nogo-A-20 (Figure 4E,F). In line with the RhoA activation results, blockade of 205 

RhoA or ROCK showed a full rescue of Nogo-A-20 inhibition (Figure 4E,F). 206 
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Finally, in order to determine the effect of simultaneous blockade of HSPGs and S1PR2 in 207 

cells co-expressing HSPGs and S1PR2, 3T3 cells were treated with HepIII and/or JTE-013 208 

and assessed in a cell spreading assay. Strikingly, blockade of HSPGs and S1PR2 showed an 209 

additive effect in reducing Nogo-A-20 induced inhibition of cell spreading (Figure S3C,D). 210 

Hence, in cells co-expressing both receptors, Nogo-A-20 can exert inhibitory effects via 211 

both S1PR2 as well as HSPGs. However, as shown by using S1PR2-deficient cells, HSPGs 212 

are themselves sufficient to mediate Nogo-A-20 inhibition and RhoA activation. 213 

Syndecans mediate Nogo-A-20 inhibition of cell spreading and neurite outgrowth 214 

Membrane-bound cell surface HSPGs consist of two main families: syndecans and glypicans 215 

(Bernfield et al., 1999). As opposed to syndecans, glypicans are attached by a 216 

glycosylphosphatidylinositol anchor to the membrane and do not exert cytoplasmic signaling 217 

roles (Bernfield et al., 1999). The syndecan family consists of four members: syndecan-1 to 218 

syndecan-4 (Sdc1-Sdc4) (Bernfield et al., 1999), of which syndecan-4 is the most highly 219 

expressed in 3T3 cells (Figure 5A). Interestingly, syndecan-4 has been shown to activate 220 

RhoA to promote focal adhesion maturation and stress fibre assembly following engagement 221 

with fibronectin (Brooks 2012, Dovas 2006). 222 

To test the contribution of syndecan-4 to Nogo-A-20-induced inhibition of cell spreading 223 

and RhoA activation, syndecan-4 was knocked down using lentivirus-delivered ctrl and 224 

syndecan-4 shRNA (Figure S5A). Strikingly, knockdown of syndecan-4 fully prevented 225 

Nogo-A-20 inhibition of cell spreading (Figure 5B,C). To test whether Nogo-A-20 226 

activates RhoA via syndecan-4, RhoA activation assays were performed in ctrl vs syndecan-4 227 

shRNA cells. The inactive Nogo-A fragment Nogo-A-21 was used as control protein. No 228 

RhoA activation was observed upon syndecan-4 knockdown (Figure 5G). Together, these 229 

results suggest that Nogo-A-20 inhibits cell spreading by activating RhoA via syndecan-4 in 230 

fibroblasts. 231 
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To investigate whether syndecans are also important in Nogo-A-20-induced inhibition of 232 

neurite outgrowth, we first assessed their expression in DIV4 E19 rat cortical neurons and 233 

found syndecan-3 to be the most highly expressed (Figure 5D). Remarkably, siRNA-mediated 234 

knockdown of syndecan-3 fully prevented outgrowth inhibition on the Nogo-A-20 substrate 235 

(Figure 5E,F; S5B). 236 

Further, to test whether syndecan-3 and syndecan-4 directly interact with Nogo-A-20, 237 

microscale thermophoresis binding experiments were performed using recombinant syndecan-238 

3 and syndecan-4 ectodomains. We found that Nogo-A-20 binds to syndecan-4 and 239 

syndecan-3 in a similar affinity range than to brain-derived HS-GAGs with a Kd of ~522.1 nM 240 

and ~865.7 nM, respectively (Figure 5H). Taken together, these data show that Nogo-A-20 241 

binds to and exerts inhibitory effects via syndecan-3 or -4 in a cell type-specific manner. 242 

Nogo-A-20 promotes neuroblast migration via HSPGs 243 

Nogo-A-20 was shown to promote the tangential migration of neuroblasts from the 244 

subventricular zone (SVZ) to the olfactory bulb along the rostral migratory stream (RMS) 245 

through activation of the Rho/ROCK pathway (Rolando et al., 2012). Yet, no molecular basis 246 

for this observation was found and we sought to determine the physiological relevance of the 247 

Nogo-A-20/HSPG interaction in this process. 248 

To investigate the contribution of HSPGs to SVZ-derived neuroblast migration, postnatal 249 

explants of the SVZ and RMS were used as an ex vivo model (Wichterle et al., 1997) and 250 

treated with HepIII and/or the Nogo-A-20 function-blocking antibody 11c7. In this assay, 251 

neuroblasts move out of the explant core by chain migration (i.e. associated with each other) 252 

as occurs in the RMS in vivo (Wichterle et al., 1997). As previously shown, Nogo-A 253 

neutralization by 11c7 induced a significant reduction of the migration area (Figure 6A,B). 254 

HepIII treatment induced a similar reduction of the migration (Figure 6A,B). To examine 255 

whether HSPGs and Nogo-A-20 operate through the same pathway, we co-administered 256 
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HepIII and 11c7. Co-application of HepIII and 11c7 led to a reduction in migration area 257 

similar to that obtained upon treatment of HepIII or 11c7 alone (Figure 6A,B) suggesting that 258 

Nogo-A-20 operates through HSPGs in this system. 259 

Previous data suggested that Nogo-A sustains neuroblast migration by providing anti-260 

adhesive signals (Rolando et al., 2012). To investigate whether HSPGs participate in Nogo-A-261 

20-mediated repulsive effects, we asked whether HepIII treatment affected neuroblast 262 

adhesion on control vs. Nogo-A-20-coated substrates in the presence or absence of 11c7. 263 

HepIII treatment significantly increased cell adhesion on Nogo-A-20 to a similar extent than 264 

11c7 (Figure 6C). No additive or synergistic effects were observed (Figure 6C), suggesting 265 

that Nogo-A-20 and HSPGs share a common pathway in ex vivo cultures.  266 

Finally, to test the role of the previously identified Nogo-A-20 receptor S1PR2 in neuroblast 267 

migration, explants were treated with the S1PR2 blocker JTE-013 or DMSO (vehicle control). 268 

No significant effect on the migration area was observed using different concentrations of 269 

JTE-013 (Figure 6D,E). Similarly, JTE-013 treatment had no effect on neuroblast adhesion 270 

(Figure 6F). Taken together, these data show that Nogo-A-20 inhibits adhesion and 271 

increases migration by providing anti-adhesive signals through HSPGs but not S1PR2. 272 

  273 



!

!

Discussion 274 

Cell-to-cell signaling by ligand receptor interactions as well as interactions with ECM 275 

constituents play key roles during developmental processes such as neuronal migration and 276 

axon growth. In this study, we identify a novel biochemical interaction between the 277 

membrane protein Nogo-A and HSPGs and demonstrate its functional significance in cell 278 

spreading, neurite outgrowth, adhesion and neuroblast chain migration.  279 

 280 

Cell surface HSPGs are traditionally viewed as co-receptors that promote the binding of a 281 

ligand to its obligate receptor through their large glycosaminoglycan chains (Bernfield et al., 282 

1999; Sarrazin et al., 2011) but do not act as signal-transducing receptors themselves. In the 283 

case of FGF and many other morphogens, HS is essential for the ligand/receptor complex to 284 

form and to alter its activation (Sarrazin et al., 2011). Surprisingly, our data suggest that this 285 

is not the case for Nogo-A-20 and its S1PR2 receptor (Kempf et al., 2014): Nogo-A-20 can 286 

activate RhoA in S1PR-negative CHO cells and inhibits cell spreading in S1PR2
-/-

 MEFs. 287 

Hence, our results strongly suggest that Nogo-A-20 can signal through S1PR-independent 288 

mechanisms. However, when HSPGs and S1PR2 are co-expressed, both pathways can act in 289 

parallel, as shown for fibroblasts, or one pathway can gain control of the signaling output, as 290 

demonstrated for neuroblasts. Collectively, our experiments reveal that more than one 291 

receptor for the active Nogo-A-20 region exists and that Nogo-A-20-induced inhibitory 292 

effects are regulated in a cell type-specific manner. 293 

 294 

Based on our findings showing the involvement of syndecan-3 and syndecan-4, we may 295 

hypothesize that the cytoplasmic tail of syndecans is important for Nogo-A-20-induced 296 

signal transduction upon extracellular binding to the HS chains. A few studies have shown 297 

that transmembrane syndecans can act as signaling receptors through their cytoplasmic 298 
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domains. During cell migration, engagement of syndecan-4 by fibronectin was shown to 299 

result in the activation of protein kinase C  (PKC) upstream of RhoA activation (Bass et 300 

al., 2008; Bass et al., 2007; Brooks et al., 2012; Dovas et al., 2006). Even though it is unclear 301 

how syndecan-4 signals to RhoA via PKC,  PKC was shown to activate RhoA via 302 

phosphorylation of the Rho guanine exchange factor (RhoGEF) p115 in a different system 303 

(Peng et al 2011). It will be interesting to investigate whether Nogo-A-20 operates via 304 

similar mechanisms. In the case of syndecan-3, binding of the heparin-binding growth-305 

associated molecule HB-GAM was shown to result in phosphorylation of the Src kinases c-306 

Src and c-Fyn, and of cortactin, which promotes polymerization and rearrangement of the 307 

actin cytoskeleton resulting in neurite outgrowth (Kinnunen et al., 1998). A similar 308 

mechanism was proposed for glial cell line-derived neurotrophic factor (GDNF) family 309 

ligands and syndecan-3 (Bespalov et al., 2011). However, no link between syndecan-3 and 310 

RhoA activation has been reported so far and future studies shall address this point. 311 

 312 

Syndecan-3 is the major HSPG found in neurons of the developing brain and shows abundant 313 

expression in major axonal tracts and migratory routes, e.g., in the RMS (Hienola et al., 2006; 314 

Nolo et al., 1995; Rauvala et al., 2000). In the adult brain, syndecan-3 is strongly expressed in 315 

the hippocampus, cerebellum and cortex and in several axonal tracts (Hsueh and Sheng, 316 

1999). Our results show that the anti-adhesive effect of Nogo-A-20 is accompanied by an 317 

HS-dependent increase in neuroblast chain migration. Notably, syndecan-3
-/-

 mice phenocopy 318 

the defects in radial and tangential neuronal migration observed in Nogo-A
-/-

 mice (Hienola et 319 

al., 2006; Mathis et al., 2010; Mingorance-Le Meur et al., 2007; Rolando et al., 2012). 320 

Syndecan-3
-/-

 mice also display a synaptic plasticity phenotype similar to that observed in 321 

Nogo-A
-/-

 mice: increased CA1 long-term potentiation (LTP) while baseline transmission and 322 

short-term plasticity are not affected (Kaksonen et al., 2002). Given the recent implication of 323 
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HSPGs in synapse formation and plasticity (Allen et al., 2012; de Wit et al., 2013; Siddiqui et 324 

al., 2013), it will be interesting to determine whether Nogo-A also mediates its effects on 325 

synapse formation and plasticity via HSPGs (Mironova and Giger, 2013). Overall, the 326 

localization of syndecan proteins and their physiological impact in the developing and adult 327 

brain are consistent with a functional interaction between Nogo-A and HSPGs in vivo. 328 

 329 

In conclusion, our study shows that Nogo-A-20 can regulate adhesion, cell spreading, 330 

outgrowth and migration of various cell lines, neurons and neuroblasts via a newly identified 331 

interaction with transmembrane HSPGs. 332 

  333 
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Experimental procedures 334 

Plasmids, recombinant fusion proteins, reagents, antibodies and brain-derived 335 

glycosaminoglycans (GAGs) 336 

A complete description is provided in the Supplemental Experimental Procedures. 337 

Tissue preparation and cell culture 338 

A complete description is provided in the Supplemental Experimental Procedures. 339 

Immunocytochemistry, flow cytometry and RhoA activation assays 340 

Immunocytochemistry, cell surface binding assays, flow cytometry and RhoA 341 

pulldown/ELISA experiments were essentially performed as previously described (Kempf et 342 

al., 2014). A complete description is provided in the Supplemental Experimental Procedures. 343 

In vitro bioassays 344 

3T3 fibroblast spreading assays and neurite outgrowth assays were performed as described 345 

previously (Kempf et al., 2014; Oertle et al., 2003). For HepI and HepIII (Sigma) treatment, 346 

cells were incubated with 2.5-10 U/ml HepI or HepIII 3 h prior plating and during the 347 

spreading assay. For function-blocking experiments, cells were incubated with 1 µM JTE-348 

013, 5 µM Y-27632 or 100 µg/ml C3 30 min prior plating and during the spreading assay. 349 

The corresponding solvents were used as controls. For expression of EXT1 in pgsD-677 cells, 350 

pgsD-677 cells were transfected with Ext1 cDNA using Lipofectamine 2000 (Invitrogen) 351 

according to the manufacturer’s instructions. For siRNA experiments, 3T3 cells or E19 rat 352 

cortical neurons were transfected with ON-TARGETplus SMARTpool siRNAs using 353 

DharmaFECT3 (Dharmacon) according to the manufacturer’s instructions. For shRNA 354 

experiments, stable 3T3 shRNA cell lines were made using lentiviruses carrying Mission 355 

shRNA pLKO lentiviral plasmids (Sigma) containing shRNA against Sdc4 or ctrl shRNA. A 356 

complete description is provided in the Supplemental Experimental Procedures. 357 

ELISA 358 
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The ELISA was performed according to method described in (Purushothaman et al., 2007) 359 

with modifications detailed in Supplemental Experimental Procedures.  360 

Explant assay 361 

P5 explants were prepared from C57/BL6 pups according to (Wichterle et al., 1997) with 362 

modifications detailed in Supplemental Experimental Procedures.  363 

Statistical analysis 364 

Statistical analyses were conducted using the statistical software GraphPad Prism 5 or 6 365 

(GraphPad Software Inc.). *p < 0.05 was considered statistically significant. Calculations 366 

were corrected for multiple comparisons as specified.  367 
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Figure legends 490 

 491 

Figure 1. Cell surface HSPGs mediate Nogo-A-20 inhibition of cell spreading. A. 492 

Representative pictures of 3T3 fibroblasts treated with 2.5 U/ml HepIII, 0.1 mg/ml HS or 493 

vehicle (saline) and plated on control (ctrl) or Nogo-A-20 substrate. Cells were stained with 494 

Phalloidin-Alexa488. B,C. Cell spreading quantification of A. HepIII (B) or HS (C) treatment 495 

partially reversed Nogo-A-20-mediated cell spreading inhibition. D. Representative pictures 496 

of CHO WT, CHO pgsD-677 or CHO pgsD-677 expressing Ext1 cDNA and plated on a 497 

control or Nogo-A-20 substrate. E,F. Cell spreading quantification of D. E. The rounding 498 

response to Nogo-A-20 is highly impaired in CHO pgsD-677 mutants. F. Expression of 499 

EXT1 in CHO pgsD-677 cells fully restored Nogo-A-20 inhibition. G. Flow cytometry 500 

detection of cell surface HSPGs in 3T3 cells (upper panel) or CHO WT and pgsD-677 cells 501 

(lower panel) using the 10E4 antibody. HepIII treatment of 3T3 cells reduces HSPG levels. 502 

EXT1 expression restores HSPG levels in CHO pgsD-677 cells. WT designates CHO cells. 503 

Filled grey curves indicate unstained controls. The fluorescence intensity is displayed on the 504 

X-axis (256 bins) and the normalized number of cells per each bin on the Y-axis. Data shown 505 

are means ± SEM (n = 8-12 coverslips). B,C,E,F: One-way ANOVA with Tuckey’s post hoc 506 

test; (*** p < 0.001). Scale bars: 45 µm. See also Figure S1. 507 

Figure 2. Cell surface HSPGs mediate Nogo-A-20 inhibition of neurite outgrowth. A. 508 

Representative pictures of mouse P7 cerebellar granule neurons (CGNs) treated with 509 

500 mU/ml HepIII or vehicle (saline) and plated on a control (ctrl) or Nogo-A-20 substrate. 510 

Neurons were stained with III-Tubulin. B. Total neurite length per cell quantification of A. 511 

HepIII treatment fully reversed Nogo-A-20-mediated inhibition of neurite outgrowth. C. 512 

Representative pictures of mouse P7 dorsal root ganglia (DRG) neurons treated with 1 U/ml 513 

HepIII or vehicle (saline) and plated on a control or Nogo-A-20 substrate. Neurons were 514 



!

!

stained with III-Tubulin. D. Total neurite length per cell quantification of C. E. 515 

Representative pictures of DIV5 rat E19 cortical neurons treated with 1 U/ml HepIII or 516 

vehicle (saline) at DIV4 and replated on a control (ctrl) or Nogo-A-20 substrate for 24h. 517 

Neurons were stained with Map1b. F. Total neurite length per cell quantification of E. DIV, 518 

days in vitro. Data shown are means ± SEM (n = 3-9 coverslips). B,D,F: One-way ANOVA 519 

with Tuckey’s post hoc test; (* p < 0.05, *** p < 0.001; ns: not significant). Scale bars: 520 

45 µm. 521 

Figure 3. Nogo-A-20 but not Nogo-66 binds Heparin and HS. A-D. Biotinylated heparin, 522 

HS, CS or brain-derived GAGs were coated onto streptavidin-coated wells and analysed for 523 

Nogo-A-20 or Nogo-66 binding by an ELISA-type assay. Average values for the BSA 524 

negative control were subtracted from the respective readings. Nogo-A-20-T7 binding was 525 

detected using an anti-T7 or anti-Nogo-A (11c7) antibody and Nogo-66-Fc binding using an 526 

anti-Fc antibody. A. Binding analysis of Nogo-A-20 and Nogo-66 to Heparin, HS, CS-A, 527 

CS-C or CS-E. B. Binding analysis of Nogo-A-20 and Nogo-66 to brain-derived GAGs 528 

treated with heparinase (CS-GAGs) or chondroitinase ABC (HS-GAGs). Total GAGs refer to 529 

the untreated GAG fraction. C. Saturation curve of Nogo-A-20 to heparin (Kd ~ 234nM) and 530 

brain-derived HS-GAGs (Kd ~ 562nM). Detection was performed using the anti-T7 antibody. 531 

D. Scatchard plot of C. E. Representative images of cell surface binding of Nogo-A-20 to 532 

CHO WT and HSPG-deficient CHO pgsD-677 cells. Cells were incubated with 1 µM HA-533 

tagged Nogo-A-20 for 30 min on ice and stained using the anti-HA antibody. F,G. 534 

Quantification of cell surface binding by assessing the number of bound HA-tagged Nogo-A-535 

20 spots in CHO WT and pgsD-677 cells (F) or in HepIII vs. saline-treated 3T3 cells (G). 536 

Average values for the control were subtracted from the respective measurements. Data 537 

shown are means ± SEM (A-D: n = 3 experiments; F: n = 10 cells; G: n = 30-34 cells). A,B: 538 

One-way ANOVA with Tuckey’s post hoc test; F,G: Mann Whitney test (*** p < 0.001).  539 
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Figure 4. HSPGs mediate Nogo-A-20 signaling independently of S1PR2. A. Cell 540 

spreading quantification of CHO WT and CHO pgsD-677 cells treated with 1 µM JTE-013 or 541 

vehicle (DMSO) and plated on a control (ctrl) or Nogo-A-20 substrate. Representative 542 

pictures are shown in Figure S3A. B. Cell spreading quantification of WT and S1PR2
-/-

 MEFs 543 

treated with 2.5 U/ml HepIII or vehicle (saline) and plated on a control (ctrl) or Nogo-A-20 544 

substrate. Representative pictures are shown in Figure S3B. C. RhoA activation was assessed 545 

in CHO WT and pgsD-677 cells 20 min post-incubation with 1 µM Nogo-A-20 by western 546 

blotting. D. Quantification of RhoA-GTP/Total RhoA levels shown in C. Nogo-A-20 does 547 

not activate RhoA in pgsD-677 cells. E. Representative pictures of CHO WT cells treated 548 

with the RhoA inhibitor C3 transferase (0.1 mg/ml), the ROCK blocker Y-27632 (5 µM) or 549 

vehicle (saline). F. Cell spreading quantification of E. Data shown are means ± SEM (B,F: 550 

n = 6-16 coverslips; D: n = 3 experiments. B,D,F: One-way ANOVA with Tuckey’s post hoc 551 

test (** p < 0.01; *** p < 0.001). Scale bars: 45 µm. See also Figure S3 and S4. 552 

Figure 5. Syndecans mediate Nogo-A-20 of cell spreading and neurite outgrowth. A. 553 

qRT-PCR expression analysis of syndecans (Sdc) in 3T3 cells. mRNA fold changes are 554 

normalized to Sdc1 (100%). B. Representative pictures of 3T3 cells treated with a lentivirus 555 

expressing Sdc4 or ctrl shRNA for 96 h and replated on a ctrl or Nogo-A-20 substrate for 556 

1 h. Cells were stained with Phalloidin-Alexa488. C. Cell spreading quantification of B. D. 557 

qRT-PCR expression analysis of Sdc’s in DIV4 rat E19 cortical neurons. mRNA fold changes 558 

are normalized to Sdc1 (100%). E. Representative pictures of DIV8 rat cortical neurons 559 

treated at DIV4 with ctrl or Sdc3 siRNA for 72 h and replated on a ctrl or Nogo-A-20 560 

substrate for 24 h. Cells were stained with MAP1b. F. Neurite length quantification of E. G.  561 

RhoA activation was assessed in 3T3 cells expressing Sdc4 or ctrl shRNA 20 min post-562 

incubation with 1 µM Nogo-A-20 using a commercially available ELISA kit. Quantification 563 

of RhoA-GTP/Total RhoA levels is shown. H. Microscale binding analysis of Nogo-A-20 to 564 
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recombinant mouse Sdc4 (Kd ~ 522.1nM) or Sdc3 (Kd ~ 865.7nM). Single dots indicate 565 

biological replicates in A and D. Data shown are means ± SEM (A,D: n = 3 experiments; G: 566 

n = 6 experiments; C,F: n = 8-16 coverslips). C,F,G: One-way ANOVA with Tuckey’s post 567 

hoc test (* p < 0.05, *** p < 0.001; ns: not significant). Scale bars: 45 µm. See also Figure S5. 568 

Figure 6. Nogo-A-20 regulates neuroblast adhesion and migration via HSPGs. A. 569 

Representative pictures of neuroblast explants (SVZ+RMS) showing the decrease in 570 

migration area of HepIII (500 mU/ml), 11c7 (1 µg/µl) and HepIII+11c7-treated explants vs. 571 

controls. B. Quantification of the migration area. Controls are set to 100% for each 572 

experiment. C. Adhesion of SVZ-dissociated neuroblasts on a Nogo-A-20 substrate after 573 

treatment with 11c7 and/or HepIII. No synergistic activity is detected by co-treatment of 574 

neuroblasts with 11c7 and HepIII in B and C. D. Representative pictures of neuroblast 575 

explants (SVZ+RMS) treated with different concentrations of JTE-013 or vehicle (DMSO). 576 

E. Quantification of the migration in the presence of JTE-013 vs. DMSO. Controls are set to 577 

100% for each experiment. F. Adhesion of SVZ-dissociated neuroblasts on a Nogo-A-20 578 

substrate after treatment with JTE-013 or DMSO. No significant effect is observed upon 579 

treatment with JTE-013 in E and F. Data shown are means ± SEM (B: n = 4-5 experiments; 580 

C: n = 3 coverslips; E: n = 4-5 experiments, F: n = 5 coverslips). B,C,E,F: One-way ANOVA 581 

with Bonferroni’s post hoc test (* p < 0.05, ** p < 0.01, *** p < 0.001). Scale bars: A: 582 

100 µm. 583 
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Figure S1
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Figure S1. Related to Figure 1. Effect of HepI treatment and pre-incubation of HS and Nogo-A-∆20 on Nogo-A-
∆20-induced inhibition of cell spreading. A. Cell spreading quantification of 3T3 fibroblasts treated with 2.5 U/ml 
HepI, 10 U/ml HepI or vehicle (saline) and plated on control (ctrl) and Nogo-A-∆20 substrates. B. Cell spreading 
quantification of 3T3 fibroblasts plated on a substrate consisting of Nogo-A-∆20 pre-incubated with HS (0.1 
mg/ml). Data shown are means ± SEM (A,B: n = 3-6 coverslips). A,B: One-way ANOVA with Tuckey’s post hoc 
test (* p < 0.05, ** p < 0.01).



Figure S2
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Figure S2. Related to Figure 3. Binding of Nogo-A-∆21 to brain-derived GAGs. A. Biotinylated brain-derived 
GAGs treated with heparinase (CS-GAGs) or chondroitinase ABC (HS-GAGs) or untreated (total GAGs) were 
coated onto streptavidin-coated wells and analysed for Nogo-A-∆21 binding by an ELISA-type assay. Average 
values for the BSA negative control were substracted from the respective readings. Nogo-A-∆21-T7 binding was 
detected using an anti-T7 antibody. Data shown are means ± SEM (A,B: n = 3 experiments). A: One-way ANOVA 
with Tuckey’s post hoc test (ns: not significant).



Figure S3. Related to Figure 4. Effects of S1PR2 blockade/knockout and HepIII treatment. A. Representative 
pictures of WT and S1PR2-/- MEFs treated with 2.5 U/ml HepIII or vehicle (saline) and plated on control (ctrl) 
and Nogo-A-∆20 substrates. B. Representative pictures of CHO WT and CHO pgsD-677 cells treated with 1 µM 
JTE-013 or vehicle (DMSO) and plated on control (ctrl) and Nogo-A-∆20 substrates. Quantification of A and B 
is shown in Figure 4A and 4B. C. Representative pictures of 3T3 cells treated with 2.5 U/ml HepIII or vehicle 
(saline) and plated on a control (ctrl) or Nogo-A-∆20 substrate in the presence of 1 µM JTE-013 or vehicle 
(DMSO). D. Co-treatment with HepIII and JTE-013 led to an additive effect on Nogo-A-∆20 inhibition rescue in 
3T3 cells. Data shown are means ± SEM (B,D: n = 5-9 coverslips). B,D: One-way ANOVA with Tuckey’s post 
hoc test (** p < 0.01; *** p < 0.001; ns: not significant). Scale bars: 45 µm.
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Figure S4. Related to Figure 4. JTE-013 treatment does not affect RhoA activation in S1PR2-negative CHO cells. 
A. RhoA activation was assessed in CHO WT cells 20 min post-incubation with 1 µM Nogo-A-∆20 using an 
ELISA kit. Data shown are means ± SEM (n = 3 experiments). Mann Whitney test (ns: not significant).
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Figure S5
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Figure S5. Related to Figure 5. Knockdown efficiency of syndecan shRNA and siRNA constructs. A. Quantita-
tive RT-PCR analysis of 3T3 cells expressing lentivirally delivered syndecan-4 (Sdc4) shRNA for 96 h. Scrambled 
shRNA (ctrl) was used as control and set to 1. Relative quantification of expression levels: Sdc4 (0.460 ± 0.186). 
B. Quantitative RT-PCR analysis of E19 cortical neurons treated at DIV4 with syndecan-3 (Sdc3) or scrambled 
(ctrl) siRNA for 72 h. Scrambled siRNA was set to 1. Relative quantification of expression levels: Sdc3 (0.673 ± 
0.099). Data shown are means ± SEM (A,B: n = 3-4 experiments).



 

Supplemental Figure Legends 1 

 2 

Figure S1. Related to Figure 1. Effect of HepI treatment and pre-incubation of HS and Nogo-A-20 on 3 

Nogo-A-20-induced inhibition of cell spreading. A. Cell spreading quantification of 3T3 fibroblasts treated 4 

with 2.5 U/ml HepI, 10 U/ml HepI or vehicle (saline) and plated on control (ctrl) and Nogo-A- 20 substrates. B. 5 

Cell spreading quantification of 3T3 fibroblasts plated on a substrate consisting of Nogo-A- 20 pre-incubated 6 

with HS (0.1 mg/ml). Data shown are means ± SEM (A,B: n = 3-6 coverslips). A,B: One-way ANOVA with 7 

Tuckey’s post hoc test (* p < 0.05, ** p < 0.01). 8 

 9 

Figure S2. Related to Figure 3. Binding of Nogo-A-21 to brain-derived GAGs. A. Biotinylated brain-derived 10 

GAGs treated with heparinase (CS-GAGs) or chondroitinase (HS-GAGs) or untreated (total GAGs) were coated 11 

onto streptavidin-coated wells and analysed for Nogo-A-21 binding by an ELISA-type assay. Average values 12 

for the BSA negative control were substracted from the respective readings. Nogo-A-21-T7 binding was detected 13 

using an anti-T7 antibody. Data shown are means ± SEM (A,B: n = 3 experiments). A: One-way ANOVA with 14 

Tuckey’s post hoc test (ns: not significant). 15 

 16 

Figure S3. Related to Figure 4. Effects of S1PR2 blockade/knockout and HepIII treatment. A. 17 

Representative pictures of WT and S1PR2
-/-

 MEFs treated with 2.5 U/ml HepIII or vehicle (saline) and plated on 18 

control (ctrl) and Nogo-A-20 substrates. B. HepIII treatment of S1PR2
-/-

 MEFs led to an additive effect on Nogo-19 

A-20 inhibition rescue as opposed to S1PR2 knockout or HepIII treatment alone. C. Representative pictures of 20 

3T3 cells treated with 2.5 U/ml HepIII or vehicle (saline) and plated on a control (ctrl) or Nogo-A-20 substrate 21 

in the presence of 1 µM JTE-013 or vehicle (DMSO). D. Co-treatment with HepIII and JTE-013 led to an additive 22 

effect on Nogo-A-20 inhibition rescue in 3T3 cells. Data shown are means ± SEM (B,D: n = 5-9 coverslips). 23 

B,D: One-way ANOVA with Tuckey’s post hoc test (** p < 0.01; *** p < 0.001; ns: not significant). Scale bars: 24 

45 µm. 25 

 26 

Figure S4. Related to Figure 4. JTE-013 treatment does not affect RhoA activation in S1PR2-negative CHO 27 

cells. RhoA activation was assessed in CHO WT cells 20 min post-incubation with 1 µM Nogo-A-20 using an 28 

ELISA kit. Data shown are means ± SEM (n = 3 experiments). Mann Whitney test (ns: not significant). 29 

 30 

Figure S5. Related to Figure 5. Knockdown efficiency of syndecan shRNA and siRNA constructs. A. 31 

Quantitative RT-PCR analysis of 3T3 cells expressing lentivirally delivered syndecan-4 (Sdc4) shRNA for 96 h. 32 

Scrambled shRNA (ctrl) was used as control and set to 1. Relative quantification of expression levels: Sdc4 33 

(0.460 ± 0.186). B. Quantitative RT-PCR analysis of E19 cortical neurons treated at DIV4 with syndecan-3 (Sdc3) 34 

or scrambled (ctrl) siRNA for 72 h. Scrambled siRNA was set to 1. Relative quantification of expression levels: 35 

Sdc3 (0.673 ± 0.099). Data shown are means ± SEM (A,B: n = 3-4 experiments). 36 

 37 

  38 



 

Supplemental Experimental Procedures 39 

 40 

Recombinant fusion proteins, reagents and antibodies 41 

Recombinant proteins Nogo-A-Δ20 (rat aa544-725) and Nogo-A-Δ21 (rat aa812-918) were purified as described 42 

previously (Oertle et al., 2003). Briefly, BL21/DE3 E. coli were transformed with the pET28 expression vector 43 

(Novagen) containing His-/T7-tagged Nogo-A-Δ20, His-/T7-tagged Nogo-A-Δ21 or His-/HA-tagged Nogo-A-44 

Δ20 and cultured at 37°C to reach an OD of 0.6 AU. Protein expression was induced by addition of 1 M IPTG for 45 

2 h at 30°C. Fusion proteins were purified using Co
2+

-Talon Metal Affinity Resin (Takara Bio Inc.).  46 

CS variants and HS were purchased from Seikagaku Corp (Japan) where CS-A is isolated from whale cartilage, 47 

CS-C is from shark cartilage, CS-E is from squid cartilage and HS is from bovine kidney. The biotinylated-heparin 48 

isolated from porcine intestine was purchased from Sigma. 49 

The following primary antibodies were used: mouse anti-βIII Tubulin (Promega G712A, clone 5G8; ICC: 1:1000), 50 

4’,6-diamidino-2-phenylindole (DAPI) (Invitrogen D1306; ICC: 1:1000), mouse anti-GAPDH (Abcam, ab8245; 51 

1:20,000), rat anti-HA tag (Roche 11867423001; ICC: 1:200), mouse anti-heparan sulfate (Seikagaku Corp 52 

370255-1, clone F58-10E4; FACS: 1฀µg/10
6
 cells), mouse IgM isotype control (BD Pharmingen 557275, clone 53 

C48-6; FACS: 1฀µg/10
6
 cells), goat anti-mouse IgG, Fc fragment specific (Jackson Immunoresearch 115-005-54 

071; ELISA: 1฀µg/ml), mouse anti-Map-1b (Santa Cruz sc-58784, clone AA6; ICC 1:2000), mouse anti-Nogo-55 

A (11c7, (Oertle et al., 2003), ELISA: 1฀µg/ml), Phalloidin-Alexa488 (Invitrogen A12379; ICC: 1:500), rabbit 56 

anti-RhoA (Cell Signaling 2117; WB: 1:1000), mouse anti-T7 tag (Novagen 69522-3; ELISA: 1฀µg/ml). 57 

The following secondary antibodies were used: goat anti-mouse IgG Alexa488-conjugated (Invitrogen A11029; 58 

ICC: 1:1000), rat anti-mouse IgM FITC-conjugated (BD Pharmingen 553437, clone II/41; FACS: 1:1000), HRP-59 

conjugated goat anti-rabbit IgG (Jackson Immunoresearch). 60 

 61 

Brain derived glycosaminoglycans (GAGs) 62 

Adult Sprague Dawley rats were sacrificed and decapitated. The brains were cut into smaller pieces before de-63 

lipidation with cold acetone. The tissues were then dried and homogenized in cold pronase buffer. The brain was 64 

then treated with pronase overnight and the proteins/peptides were removed by precipitation using trichloroacetic 65 

acid, followed by centrifugation. The residual trichloroacetic acid retained in the supernatant (which contains the 66 

GAGs) is removed with 5 diethyl ether washes. The GAGs were precipitated with sodium acetate and absolute 67 

ethanol overnight at 4°C and recovered after centrifugation. The resulting pellet will be reconstituted in 500 µl of 68 

de-ionized water and stored at -20°C. 69 

 70 

Tissue preparation and cell culture 71 

Total myelin protein extracts were prepared from the spinal cords of adult Wistar rats as described previously 72 

(Oertle et al., 2003). Swiss 3T3 (ATCC) cells and primary mouse embryonic fibroblasts (MEFs) were maintained 73 

in Dulbecco’s modified eagle medium (DMEM) (Sigma, Invitrogen) containing 10% neonatal calf serum 74 

(Invitrogen). CHO K1 WT (ATCC) and CHO pgsD-677 cells (ATCC) were maintained in DMEM containing 75 

10% fetal bovine serum (FBS) (Invitrogen). Primary S1PR2
-/-

 MEFs were described previously (Kempf et al., 76 

2014).฀P5-8 mouse CGNs, P5-8 mouse DRG neurons and E19 rat cortical neurons were prepared as described 77 

previously (Kempf et al., 2014; Oertle et al., 2003). HEK293T (ATCC) cells were maintained in Iscove’s modified 78 

Dulbecco’s medium (IMDM) (Life Technologies) medium supplemented with 4 mM L-Glutamine (Sigma), 1% 79 

Penicillin/Streptomycin (Pen/Strep) (Life Technologies) and 10% FBS. Swiss 3T3 ctrl shRNA and Sdc4 shRNA 80 

cells were selected with 4µg/mL puromycin. All cell lines and primary cells were cultured at 37°C and 5% CO2. 81 

 82 

Immunocytochemistry 83 

Cell lines and primary cells were fixed with 4% paraformaldehyde (PFA) for 15 min, washed and permeabilized 84 

with 0.1% Triton X-100. After blocking with 2% goat serum, cells were first incubated with the primary antibodies 85 

for 30 min at room temperature and detected using corresponding secondary antibodies in 2% goat serum.  86 

For cell surface immunocytochemical detection of Nogo-A-Δ20, cells were first incubated with 1 µM HA-tagged 87 

Nogo-A-Δ20 and subsequently with anti-HA antibodies for 1 h each on ice in serum-free medium containing 88 

0.02% sodium azide (Sigma). Cells were washed, fixed with 1% PFA and stained with secondary antibodies. 89 

Image stacks were acquired using a Leica SP5 confocal microscope equipped with a 63x oil immersion objective 90 

(NA 1.4). Stacks were reconstructed in 3D with Imaris (Bitplane) and the cell surface area was measured for each 91 

cell. Bound Nogo-A-Δ20 puncta were counted using the spot function of Imaris and the total number was 92 

normalized to the cell surface area for each cell. The average ratio obtained with secondary antibody only controls 93 

was baseline-subtracted from each cell.  94 

 95 

Flow cytometry 96 



 

For FACS analysis, non-fixed cells were detached using 0.05% Trypsin/EDTA (Invitrogen), washed 1x in PBS, 97 

washed 2x in Tris-Buffer/1%BSA at 4°C and stained with the indicated primary antibodies followed by 98 

fluorescently-conjugated secondary antibodies for 30 min each in Tris-Buffer/5%BSA on ice. Cells were 99 

immediately analyzed by FACS (BD Canto II). FACS staining was quantitated using the FlowJo (Tree Star Inc) 100 

software. The fluorescence intensity is displayed on the X-axis (divided into 256 bins). The % of Max on the Y-101 

axis stands for the number of cells in each bin on the X-axis (FlowJo uses an arbitrary number of 256 bins) divided 102 

by the number of cells in the bin that contains the largest number of cells.  103 

 104 

RhoA activation assays 105 

3T3 cells were serum-starved overnight and treated for 20 min with 1 µM Nogo-A-Δ20 or Nogo-A-Δ21 control 106 

protein. Pulldown of activated RhoA-GTP was subsequently performed using the RhoA Activation Assay 107 

Biochem Kit according to the manufacturer's instructions (Cytoskeleton, Inc.). Alternatively, RhoA activation 108 

was assessed using the total RhoA ELISA and RhoA G-LISA kit according to the manufacturer's instructions 109 

(Cytoskeleton, Inc.). Levels of activated RhoA were normalized to total RhoA levels for each biological replicate. 110 

 111 

In vitro bioassays 112 

3T3 fibroblast spreading assays and neurite outgrowth assays were performed as described previously (Kempf et 113 

al., 2014; Oertle et al., 2003). Briefly, 4-well plates (Greiner) were coated with 40-100 pmol/cm
2
 (0.4-1 µM) 114 

Nogo-A-Δ20 or Nogo-A-Δ21 (control protein) or 5 µg/cm
2 

myelin at 4°C overnight. In outgrowth experiments, 115 

wells were precoated with 0.3 µg/ml Poly-L-Lysine (PLL; Sigma) for 1 h at 37°C before the addition of the 116 

different substrates. Unbound material was removed by three washes with PBS. Cell lines were detached with 2% 117 

(w/v) EDTA in PBS and plated at 7000 cells per cm
2
 for 1 h at 37°C and 5% CO2, fixed with 4% PFA and stained 118 

with Phalloidin-Alexa488. For HepI and HepIII (Sigma) treatment, cells were incubated with 2.5 U/ml HepIII or 119 

2.5-10 U/ml HepI 3 h prior plating and during the spreading assay. Higher concentrations of HepIII could not be 120 

used under our experimental conditions because of their effects on cell viability. For JTE-013 (Tocris), Y-27632 121 

(Sigma) and cell-permeable C3 transferase (CT04, Cytoskeleton), cells were incubated with 1 µM JTE-013, 5 µM 122 

Y-27632 or 100 µg/ml C3 30 min prior plating and during the spreading assay. The corresponding solvents or 123 

isotype antibodies were used as controls. For expression of EXT1 in pgsD-677 cells, pgsD-677 cells were 124 

transfected with Ext1 cDNA using Lipofectamine 2000 (Invitrogen) 48 h prior replating according to the 125 

manufacturer’s instructions. The percentage of cells that remained round i.e. did not spread was quantified 126 

manually in four randomly chosen areas of the well/coverslip and averaged over those areas (n = 1 coverslip). 127 

Data were normalized to baseline and plotted as mean ± SEM from multiple biological replicates. 128 

CGNs were plated at 7.5x10
4
 cells per cm

2
, DRGs at 7.5x10

3
 cells per cm

2
 and cortical neurons at 5x10

4
 cells per 129 

cm
2
 onto the various substrates. Neurons were cultured for 24-48 h at 37°C and 5% CO2, fixed with 4% PFA and 130 

stained with anti-βIII Tubulin (CGNs and DRGs) or Mab1b (cortical neurons). Treatment of CGNs with 131 

500 mU/ml HepIII and DRGs with 1 U/ml HepIII started 12 h post-plating until fixation. Cortical neurons were 132 

treated at DIV4 with 1 U/ml HepIII for 3 h and replated for 24 h in the presence of HepIII. The corresponding 133 

solvents were used as control. Neurons were imaged with an Axioskop 2 microscope (Zeiss) equipped with a 134 

Plan-NEOFLUAR 10X/NA 0.3 objective in a semi-automated way. Mean total neurite length per cell was 135 

quantified using the MetaMorph software (Molecular Devices) in four randomly chosen areas of the 136 

well/coverslip and averaged over those areas (n = 1 coverslip). Data were normalized to baseline and plotted as 137 

mean ± SEM from multiple biological replicates. 138 

 139 

siRNA/shRNA 140 

E19 rat cortical neurons were plated at 0.6x10
6
 cells in 6-well plates coated with 0.3 µg PLL and transfected at 141 

DIV4 with 50 nM siRNA using DharmaFECT 3 (Dharmacon) according to the manufacturer’s instructions. Three 142 

days post-transfection, neurons were detached with 0.25% Trypsin and replated on a Nogo-A-20 or control 143 

substrate for 24 h as described above. Swiss 3T3 cells were plated at 2.9x10
4
 in 24-well plates and transfected 144 

with 50 nM siRNA using DharmaFECT 3 (Dharmacon) according to the manufacturer’s instructions. 3 days post-145 

transfection, cells were replated on a Nogo-A-20 or control substrate for 1 h. Following siRNAs were used: rat 146 

Syndecan-3 ON-TARGETplus SMARTpool Sdc3 siRNA (L-098896-02-0005), mouse Glypican-1 ON-147 

TARGETplus SMARTpool Gpc1 siRNA (L-049268-01-0005), mouse Glypican-4 ON-TARGETplus 148 

SMARTpool Gpc4 siRNA (L-045841-01-0005), mouse Glypican-6 ON-TARGETplus SMARTpool Gpc6 siRNA 149 

(L-049420-01-0005) and ON-TARGETplus siRNA non-targeting pool (D-001810-10-0005) (Thermo Scientific, 150 

Dharmacon). Quantification of the respective mRNA knockdown was performed by qRT-PCR.  151 

 152 

The following Mission shRNA (Sigma) pLKO lentiviral plasmids containing shRNA against mouse Syndecan-4 153 

and non-target shRNA were used for the generation of Swiss 3T3 ctrl and Sdc4 shRNA stable cell lines: 154 

TRCN0000331554 and SHC202 (TRC2 vector). Lentiviral plasmids were transfected into HEK293T cells using 155 

PEI (polyethyleimine) 25 kDa (Polysciences Inc.). Lentiviruses were concentrated from filtered culture media 156 



 

(0.45 µm) by ultracentrifugation at 25000 rpm for 2 h. Quantification of the respective mRNA knockdown was 157 

performed by qRT-PCR.  158 

 159 

Quantitative real-time PCR (qRT-PCR) 160 

Total RNA was isolated with the RNeasy Micro kit (Qiagen) and reverse-transcribed using TayMan Reverse 161 

Transcription Reagents (Applied Biosystems). cDNA was amplified using the Light Cycler 480 thermocycler 162 

(Roche) with the polymerase ready mix (SYBR Green I Master, Roche). Relative quantification was performed 163 

using the comparative CT method. cDNA levels were normalized to the reference genes Gapdh and Rpl19 (mouse) 164 

or Gapdh and eF1a1 (rat). Each reaction was done in triplicate. Melting curve analysis of PCR products followed 165 

by gel electrophoresis was performed to verify amplicons. Following primers were used: 166 

 167 

mouse Gapdh_FWD: 5’- CAGCAATGCATCCTGCACC -3’, 168 

mouse Gapdh_REV: 5’- TGGACTGTGGTCATGAGCCC -3’; 169 

mouse Rpl19_FWD: 5’- TGAGTATGCTCAGGCTACAG -3’, 170 

mouse Rpl19_REV: 5’- GAATGGACAGTCACAGGCTT -3’; 171 

mouse Sdc4_FWD: 5’- TTCTGGAGATCTGGATGACAC -3’, 172 

mouse Sdc4_REV: 5’- CACCAAGGGCTCAATCAC -3’; 173 

mouse Gpc1_FWD: 5’- ACTCCATGGTGCTCATCACTGAC -3’, 174 

mouse Gpc1_REV: 5’- TTCCACAGGCCTGGATGACCTTAG -3’; 175 

mouse Gpc4_FWD: 5’- ACCGACTGGTTACTGATGTCAAGG -3’, 176 

mouse Gpc4_REV: 5’- TTGCAAACGGTGCTTGGGAGAG -3’; 177 

mouse Gpc6_FWD: 5’- : GTCAGCAAAGGTCTTTCAGG -3’, 178 

mouse Gpc6_REV: 5’- GGTCTTTCCTCAGGGTTGTAG -3’; 179 

rat Gapdh_FWD: 5’- CTCTCTGCTCCTCCCTGTTC -3’, 180 

rat Gapdh_REV: 5’- GCCAAATCCGTTCACACC -3’; 181 

rat eF1฀1_FWD: 5’- GCCACCATACAGTCAGAAGAG -3’, 182 

rat eF1฀1_REV: 5’- GAACCACGGCATATTAGCAC -3’. 183 

rat Sdc3_FWD: 5’- TCCACGACAATGCCATCGACTC -3’, 184 

rat Sdc3_REV: 5’- ACCTACGATCACAGCTACGAGCAC -3’; 185 

 186 

ELISA 187 

The ELISA was modified according to method described in (Purushothaman et al., 2007). Biotinylated GAGs 188 

(0.5 µg per well) were immobilized onto a streptavidin-coated 384-well-plate (Pierce/Thermo scientific, IL, 189 

USA). Biotinylation of GAGs was performed by EDC and biotin-LC-hydrazide conjugation (Pierce/Thermo 190 

Scientific). After biotinylated GAGs were immobilized on the plates, the plates were blocked in 1% BSA and 191 

subjected to the binding of recombinant Nogo-66-Fc or Nogo-A-20. The bound Nogo variants were then 192 

recognized by the anti-T7, anti-Fc or 11C7 antibodies. The bound antibodies were detected using anti-mouse-193 

alkaline phosphatase conjugated antibodies followed by a direct measurement of absorbance at 405 nm using p-194 

nitrophenylphosphate (Sigma Aldrich). BSA only controls (no recombinant proteins) measurements were used as 195 

baseline in every experiment and subtracted from the other readings. For quantification, the mean ± SEM of 196 

absorbance measurements was determined from three experiments. 197 

 198 

Explant assay 199 

P5 explants were prepared from C57/BL6 pups according to (Wichterle et al., 1997). Tissues from the SVZ and 200 

RMS were embedded in 75% Matrigel growth factor reduced (BD Biosciences) and maintained for 1 day in 201 

Neurobasal medium (Invitrogen) supplemented with B27 (1x; Miltenyi), Pen/Strep (20 U/ml; Sigma), and 0.5 mM 202 

glutamine (Invitrogen). Antibodies and compounds were mixed with Matrigel: 11C7 (Oertle et al., 2003), 1 µg/µl; 203 

mouse anti-human IgG, 1 µg/µl (Jackson ImmunoResearch); HepIII, 500 mU/ml (Sigma); JTE-013, 250nM, 204 

500nM or 2µM (Tocris). Only vital explants with cells moving out of the tissue core in chains were analyzed. 205 

Explants were fixed in 4% PFA for 40, 1 µg/µl min and stained using 4’,6-diamidino-2-phenylindole (DAPI; 206 

Fluka) to visualize cell nuclei or labeled for฀III Tubulin or Doublecortin (Rolando et al., 2012) to mark 207 

neuroblasts. 208 

For adhesion experiments, adult SVZs were dissociated and SVZ-cells were either plated on poly-D-lysine (PDL) 209 

only or Nogo-A–Δ20-coated coverslips (12,000 cells/cm
2
 in DMEM/F-12 supplemented with B27) (Rolando et 210 

al., 2012). Briefly, glass coverslips (1cm
2
) were first coated with PDL (5 µg/ml) and then with Nogo-A–Δ20 211 

(100 pmol/cm
2
). Cells were pre-incubated with HepIII and/or 11c7 or with JTE-013 for 30 min and subsequently 212 

plated for 1 h. Cells were fixed, stained with DAPI and for III Tubulin and scored. The average number of 213 

adhered cells was determined by counting in five randomly chosen fields of view of the coverslips. 214 

215 
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