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Abstract:

Social learning can be fundamental to cohesive group living, and schooling
fishes have proven ideal test subjects for recent work in this field. For
many species, both demographic factors, and inter- (and intra-)
generational information exchange are considered vital ingredients in how
movement decisions are reached. Yet key information is often missing on
the spatial outcomes of such decisions, and questions concerning how
migratory traditions are influenced by collective memory, density-
dependent and density-independent processes remain open. To explore
these issues, we focused on Atlantic herring (Clupea harengus), a long-
lived, dense-schooling species of high commercial importance, noted for its
unpredictable shifts in winter distribution, and developed a series of
Bayesian space-time occurrence models to investigate wintering dynamics
over 23 years, using point-referenced fishery and survey records from
Icelandic waters. We included covariates reflecting local-scale
environmental factors, temporally-lagged prey biomass and recent fishing
activity, and through an index capturing distributional persistence over
time, derived two proxies for spatial memory of past wintering sites. The
previous winter’s occurrence pattern was a strong predictor of the present
pattern, its influence increasing with adult population size. Although the
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mechanistic underpinnings of this result remain uncertain, we suggest that
a ‘wisdom of the crowd’ dynamic may be at play, by which navigational
accuracy towards traditional wintering sites improves in larger and/or
denser, better synchronized schools. Wintering herring also preferred
warmer, fresher, moderately stratified waters of lower velocity, close to
hotspots of summer zooplankton biomass, our results indicative of
heightened environmental sensitivity in younger cohorts. Incorporating
spatiotemporal correlation structure and time-varying regression
coefficients improved model performance, and validation tests on
independent observations one-year ahead illustrate the potential of uniting
demographic information and non-stationary models to quantify both the
strength of collective memory in animal groups and its relevance for the
spatial management of populations.
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Abstract

Social learning can be fundamental to cohesive group living, and schooling fishes
have proven ideal test subjects for recent work in this field. For many species, both
demographic factors, and inter- (and intra-) generational information exchange are considered
vital ingredients in how movement decisions are reached. Yet key information is often
missing on the spatial outcomes of such decisions, and questions concerning how migratory
traditions are influenced by collective memory, density-dependent and density-independent
processes remain open. To explore these issues, we focused on Atlantic herring (Clupea
harengus), a long-lived, dense-schooling species of high commercial importance, noted for
its unpredictable shifts in winter distribution, and developed a series of Bayesian space-time
occurrence models to investigate wintering dynamics over 23 years, using point-referenced
fishery and survey records from Icelandic waters. We included covariates reflecting local-
scale environmental factors, temporally-lagged prey biomass and recent fishing activity, and
through an index capturing distributional persistence over time, derived two proxies for
spatial memory of past wintering sites. The previous winter’s occurrence pattern was a strong
predictor of the present pattern, its influence increasing with adult population size. Although
the mechanistic underpinnings of this result remain uncertain, we suggest that a ‘wisdom of
the crowd’ dynamic may be at play, by which navigational accuracy towards traditional
wintering sites improves in larger and/or denser, better synchronized schools. Wintering
herring also preferred warmer, fresher, moderately stratified waters of lower velocity, close to
hotspots of summer zooplankton biomass, our results indicative of heightened environmental
sensitivity in younger cohorts. Incorporating spatiotemporal correlation structure and time-
varying regression coefficients improved model performance, and validation tests on

independent observations one-year ahead illustrate the potential of uniting demographic
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information and non-stationary models to quantify both the strength of collective memory in

animal groups and its relevance for the spatial management of populations.

Key words: collective behaviour, environmental effects, fishery management, INLA,

schooling fishes, spatial memory, temperature, traditions

Introduction

Although notions of the ‘animal mind’ remain equivocal (Dawkins 2001) there is now
widespread acceptance that sociality, learning and memory can play important roles in
determining migration patterns and space use in group-living animals (Kao et al. 2014,
Merkle et al. 2014). In animal groups, decisions about when to migrate, where to feed, or
how best to escape from predators are often made collectively, as a result of some consensus
being reached among individuals’ preferences (Conradt and Roper 2005). Such preferences
are thought to arise through relatively simple interactions among close neighbours, with
individuals trading-off aspects of their own experience and behavioural state with those of
others (Berdahl et al. 2013).

Fishes have proved useful models on which to explore these ideas (Brown 2015 and
references therein), and much empirical and theoretical research effort has been devoted to
understanding the seemingly complex individual behaviours required to maintain school
cohesion and coordinate large-scale migration (Parrish et al. 2002, Berdahl et al. 2016).
Within fish schools, neighbouring individuals are usually not closely related, and hence self-
interest may shape the nature of group-level movement decisions in which the majority
opinion is often adopted (Couzin et al. 2011). In now rather famous experiments on groups of
three-spined sticklebacks (Gasterosteus aculeatus), Ward et al. (2008) and Sumpter et al.

(2008) showed that collective movement decisions can follow non-linear quorum rules, in
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which the probability of an individual fish choosing a certain route increases abruptly beyond
a threshold number of neighbours that have recently chosen that same route. Through
simulations, and in later experimental work (Ward et al. 2011), these authors also
demonstrated that quorum responses increase decision accuracy, and that larger fish shoals, in
general, make better, faster decisions; sensu ‘the wisdom of crowds’ (Surowiecki 2004).
These patterns appear to emerge across a wide range of taxa and ecological functions
(Sumpter and Pratt 2009, but see Kao and Couzin 2014), and for fish, can manifest in
improved navigation and capacity to sense dynamic environmental gradients, among other
benefits (Berdahl et al. 2013, 2016).

Quorum responses may also be initiated, and consensus achieved, through leadership
by a minority of more ‘experienced’ individuals, or those with strongly held preferences
(Reebs 2000, Huse et al. 2002). Often, only a knowledgeable few are needed to produce
highly accurate movement decisions (Reebs 2000); however, a complete absence of such
leaders may result in poor navigational accuracy or lack of directionality (Helfman and
Schultz 1984). These observations, in conjunction with growing recognition of the cognitive
abilities of group-living fishes (Hotta et al. 2015), give credence to theories purporting the
existence of spatial learning and tradition formation in some species (see Brown 2015 for a
review), in which information on previously-used migration routes is thought to be passed
down from older, experienced fish to younger, naive ones, communicated within cohorts and
remembered (Corten 1993). Further support for such ideas derives from evidence for time-
place learning in fishes (e.g. Brannds 2014), and experimental demonstrations of highly
accurate short- and long-term memory (Brown 2001, Hotta et al. 2015).

These phenomena may be particularly relevant for long-lived, schooling species like
Atlantic herring (Clupea harengus, hereafter ‘herring’) (Wynne-Edwards 1962). Herring are

widely distributed across the North Atlantic Ocean and support several important commercial
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fisheries. The species is characterized by complex population dynamics (Iles and Sinclair
1982, Huse 2016) perhaps best described by a metapopulation model (McQuinn 1997), with
individuals within local populations forming densely-packed, mixed-age schools for much of
the year and undertaking large-scale migrations between spawning, feeding and
overwintering areas for which strong fidelity is exhibited in most, but not all years (Fernd et
al. 1998, Langard et al. 2014). Several hypotheses have been advanced to explain this
fluctuating ‘conservatism’ in migratory strategies (Jakobsson 1969, Corten 2002), with a
particular focus in recent times on the striking shifts in winter distribution observed
occasionally (Oskarsson et al. 2009, Huse et al. 2010). Current thinking favours aspects of
McQuinn’s ‘adopted migrant hypothesis’ (McQuinn 1997) akin to Petitgas et al.’s
‘entrainment hypothesis’ (Petitgas et al. 2006). When tuned to wintering herring, these
hypotheses contend that naive, first-time winterers (i.e. age 3) learn about traditional
wintering areas by schooling with older, experienced winterers (i.e. age 4 and older, hereafter
age 4+), typically returning to these same areas subsequently (Hoglund 1955). However,
when the learning process is disrupted during a stock collapse, when age classes are
segregated, or when strong recruitment leads to numerical domination by naive fish, dramatic
shifts in winter distribution may occur, suggesting a break in tradition when teachers are few
(Corten 1999, 2002, Huse et al. 2002, 2010). Understanding why and when distribution shifts
might occur is clearly interesting for ecologists, fishers and fisheries managers alike.
However, spatially-resolved information on the outcomes of such shifts (i.e. resultant spatial
distribution patterns) is currently lacking — a situation that hinders development of spatial
management strategies that maximize economic and conservation benefits. Specifically, two
longstanding questions remain: 1) can we predict where herring decide to spend the winter,

and 2) does tradition and/or spatial memory drive these decisions, or are other factors at play?
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We attempt to answer these questions here. First, we derive a spatial similarity index
(SSI) to quantify the persistence or transience in spatial distribution between one year ¢, and
the previous year -1, and demonstrate its utility in describing the recent wintering patterns of
Icelandic summer spawning (ISS) herring. In our example, the SSI operates at the scale of the
entire wintering population, and we consider it a proxy for the level of geographic attachment
to, or spatial memory for, areas occupied previously. Next, using the variables created
through the SSI (and others), we develop a series of space-time regression models for
wintering ISS herring spanning a 23-year time series of fishery and acoustic survey data. We
are particularly interested in the role of spatial memory in shaping distribution patterns, and
present a Bayesian mixed-modelling framework based on stochastic partial differential
equations (SPDE) (Lindgren et al. 2011) to disentangle its influence from factors representing
the dynamic and static environment, prey availability during the pre-wintering feeding
period, the magnitude of recent fishing effort and density-dependence.

Our specific hypotheses are as follows. 1) We predict that spatial memory for
previous wintering areas would be a key driver of occurrence patterns in the present winter,
and that its relative influence across the time series may have a demographic basis. That is,
spatial memory would be strongest in years where more experienced individuals are present
in the wintering population, or when overall adult population size is large. 2) As our study
region is near a range edge for herring, we also expect that environmental gradients (e.g.
temperature, salinity) would be influential. 3) Moreover, when population size is small, or
naive fish outnumber experienced adults, we hypothesize that environmental and/or other
density-independent processes (e.g. prey availability, fishing pressure) may become
unmasked, contributing more to shaping occurrence patterns. In addressing these hypotheses,

we explore evidence for temporal non-stationarity in model parameters, and test if these
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dynamics can be harnessed to accurately predict winter occurrence patterns, both within the

time series, and to held-out observations one-year ahead.

Material and methods
Fishery and acoustic survey data

We use two point-referenced datasets comprising 7'= 23 years of fishery and acoustic
survey records for our analysis. Logbook data from the autumn/winter purse seine fishery for
ISS herring were collated over the period 1991 1992 to 2013 _2014. The fishery is highly
selective for adult herring (i.e. age 3+), with effort centred on the wintering grounds between
October and January each year. We refer to this period as a fishing ‘year’. At the outset of
each fishing year, extensive searches for wintering schools are made by the fishing fleet of ~
15 vessels, covering the full (known) distribution of the stock (see Supplementary material
Appendix 1 for a discussion of sampling coverage). Our logbook dataset provides
information on each fishing event, defined here as an individual purse seine net shot,
including the date, location, and biomass of herring captured ¢ (tonnes) per shot. Due to the
dependence of ¢ on factors such as fisher behaviour and vessel capabilities (Thorlindsson
1988), we simplified the biomass information to occurrence/non-occurrence records, and
retained only confirmed occurrences (i.e. where ¢ > 0 tonnes). Although several instances of
zero catch were observed, we excluded these records as ¢ = 0 is often a function of gear
failure, and not the absence of herring per-se (authors’ personal observation).

We augmented the logbook data with fishery-independent acoustic survey records
from annual cruises conducted by the Marine Research Institute (MRI), Reykjavik, between
1991 1992 and 2013 2014. Surveys were targeted towards wintering herring and ran
between October and January each year, spanning the full wintering phase and matching the

timing of fishing activities. Survey tracks were not consistent across years; however, spatial
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coverage was typically broad (see Supplementary material Appendix 1 for details). Herring
biomass estimates s (tonnes), as calculated from echosounder backscatter strength
measurements, were aggregated at 2 km resolution, forming a single survey event, referenced
by date and location.

Data on age-class structure per fishing/survey event were unavailable. Hence, our
models focused on the entire adult component of the stock (i.e. age 3+) which form mixed-
age schools on the wintering grounds. This also meant that we could not determine which age
classes contributed to s, estimates of which were likely influenced by a substantial, and
unknown proportion of juveniles (i.e. age 0 to 2) in some regions. For this reason, we
extracted only zero biomass records from the survey data (i.e. s = 0) and consider these true
absences. Detection for both fishery and survey datasets is essentially perfect,
notwithstanding potential recording errors (see Supplementary material Appendix 1). Our
dataset, comprising n = 48,724 occurrence/absence records, is visualized in Fig. 1. Wintering
patterns showed marked stability spatially across several consecutive years throughout the
23-year time series, interspersed by occasional, dramatic distributional shifts (Fig. 1a—c).
Occurrence records were characterized by strong spatial structuring within years (explored

through correlograms), and dense clustering east, west and south of Iceland (Fig. 1d).

Capturing shifting distributions: a spatial similarity index (SSI)

To more formally quantify the spatial and temporal patterns of wintering we
constructed the SSI, a metric that unlike those designed for standardized survey data (see
Woillez et al. 2007) is most useful when fishing/survey locations are inconsistent in space
and time, and/or when abundance data are not available (or uncertain), as was the case here.
Calculation is based around two georeferenced variables that map 1) the area of occurrence,

denoted distrib,, and 2) the density of occurrences, denoted counts,, in a given year ¢, with
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comparisons made with maps of these variables generated for the previous year (i.e. distrib,.i,
counts,.;). We refer readers to Fig. 2a—e and Supplementary material Appendix 2.1, 2.2 for

calculation details, and Appendix 2.3 for R code).

Modelling winter occurrence patterns
Covariates for estimation and prediction

We took a hypothesis-driven approach to the inclusion of covariates that capture the
strength of spatial memory for previous wintering areas (i.e. spatially-explicit representations
of the SSI), features of the dynamic and static environment, the magnitude of recent fishing
activity and prey availability during the previous summer (see Table 1 for details, and
Supplementary material Appendix 3 for derivation). Covariates were either constructed,
computed from the CODE ocean model (Logemann et al. 2013) or extracted from other

databases (GEBCO, <www.gebco.net>) at varying spatial and temporal scales (Table 1).

Given the importance of scale in drawing conclusions about ecological systems (Levin 1992),
we balanced ecological knowledge with model resolution in an attempt to select scales for
each covariate that best match the processes acting on individual herring schools at the time
of capture or survey (Mackinson et al. 1999, see also Table 1 and Supplementary material
Appendix 3). Rasters of each covariate were created at the desired scales (see Supplementary
material Appendix 3, Fig. A1-AS5 for examples), and data for each occurrence or absence
record extracted for use in model fitting. To facilitate interpretation of regression coefficients,
all continuous inputs were centred and scaled to have mean = 0, sd = 0.5 prior to analysis,
with binary inputs centred to have mean = 0 (Gelman 2008). To avoid issues related to
collinearity (Dormann et al. 2013), we visualized covariate associations through scatterplots
and calculated pairwise correlation coefticients (Pearson’s r). If || > 0.7, we prioritized

ecological reasoning in deciding which covariate to retain. Only bottom_depth and

Page 10 of 113
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dist_to_shore were highly collinear (» = -0.78). As bathymetric features may act directly to
structure herring school distribution (Maravelias et al. 2000a), we chose to remove
dist_to_shore from all further analyses. Prior to model fitting, all covariates were screened
graphically for potentially influential values, and data tabulated to test for any separation
issues (Zorn 2005). The distributions of fish magnitude and counts,; were characterized by
many zeros and some high values. Each of these values was checked and found to be
measured accurately, and as no clear outliers were detected, all records were retained for

modelling.

Model specification

As residual correlation patterns were of direct interest, we considered models that
incorporate these patterns explicitly. Let ¢, ;, be the total catch (tonnes), and s, ;, the estimated
biomass (tonnes) of an individual fishing/survey event respectively, e, at location i, in year ¢.
We define a new variable, y,;, representing observed herring occurrence for each event,

location and year (Eq. 1).

_ (1, ifc,;;>0 tonnes {
Yeit = {0, if 5,,,=0 M

As detection probability equals one, y, ;; also represents the true occurrence state for
each observation. Our interest was in estimating the probability of herring occurrence i, for
event e, at location 7, in year ¢, so we treated each event as an independent trial and modelled

Wi, With a binomial generalized linear mixed model (GLMM) and logit link (Eq. 2, 3).

Ve,ir ~ Bernoulli(y,,; ;) fore=1,..,n5i=1,..,n5t=2,...,T 2)
logit(y.;;) = o + spatial memory + dynamic environment + static environment

10
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+ predators + prey + fiyyear; + @i, (3)
spatial memory = Sdistrib; ., + Scounts;
dynamic environment = 3SST,;, + £4SSS.;,+ SsPEA, ;;+ fechange,;, + frcurrent vel,;,
static environment = fgbottom_depth; + foslope;
predators = fofish_magnitude, ;,

prey = £11CF_Aug;,

Eq. 3 represents the full stationary model, where all regression coefficients are static in space
and time, a is the intercept and the f’s quantify the linear effects of covariates reflecting
spatial memory, the dynamic and static environment, predators and prey on iy (see Table 1).
For models with no spatiotemporal random field (i.e. ‘no-space’ and ‘time-indep’ forms of
w;,; — see Spatiotemporal random effects for details) we included a fixed factor for year. This
categorical term captures the overall temporal pattern, common to all locations, and allows
for year-to-year fluctuation in occurrence probabilities without assuming a predictable trend
among time points.

To explore potential non-linearity in covariate effects, we fitted models that 1) assume
linear trends for all covariates, 2) include quadratic terms for all environmental covariates,
and 3) treat each environmental covariate as a smooth term, represented by a penalized
regression spline with two knots (Crainiceanu et al. 2005, see Supplementary material
Appendix 4 for R code). These specifications form a gradient of increasing flexibility in
occurrence-covariate relationships, whilst maintaining ecologically realistic functional forms.
To control against overfitting, yet maximize biological inference on our hypotheses, we offset
this flexibility by specifying additive terms only, and not considering first- or higher-order

interactions in our models.

11
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Spatiotemporal random effects

In Eq. 3, @;, is the spatiotemporal random effect, which accounts for residual spatial
(and temporal) patterns not explained by the covariates. This term is spatially explicit and
estimated for each location i. Three forms of @;, were tested: 1) where @;, = 0 (i.e. the ‘no-
space’ case); 2) where w;, is a temporally independent realization of the spatial field for each
year (i.e. the ‘time-indep’ case); and 3) where @, follows a 1** order autoregressive (arl)

process allowing correlation between years (i.e. the ‘time-corr’ case) (Eq. 4),
@ = aw -1+ &y it “ N@©,%) forz=2,...,T 4)

where the a coefficient denotes the temporal dependence in @;,, with |a| < 1. When a =0, &;,
is the sole representation of the spatial field for year ¢ (i.e. the ‘time-indep’ case — see Ono et
al. (2016) for a similar approach). If a # 0, the spatiotemporal field in # depends on the
intensity and pattern of the field in #-1 (i.e. the ‘time-corr’ case — see Ward et al. (2015) for an
example). In this latter instance, the realization of the spatial process for t = 1, @ 1, is derived
from the stationary distribution N(0, £/(1-a%)) (see Cameletti et al. 2013 for details).

In both time_indep and time_corr cases, &;, is a zero mean Gaussian random field

assumed to be independent in time and defined by a Matérn covariance function (Eq. 5).

0, ift#¢
Cov [é,.,,,éig,,] - {2 ifr=1 %)

[A)

where i # i" and,

12
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&

=W(xlli—z"ll)”Kv(zcllz'—z"ll) (6)

zi,i’

This is a representation of a Gaussian Markov random field (GMRF). In Eq. 6, 2., ;- is
the covariance between locations i and i". I' is the gamma function and v is a smoothing
parameter equal to a — d/2, where a governs the smoothness of the random field, and d is the

number of dimensions in the model. We set a =2 and d =2, hence v = 1. x is a scaling

. . . 8 .. . :
parameter associated with the practical range p = %, which represents the distance at which

spatial correlation reduces to ~ 0.13, and K, is the modified Bessel function of the second

order. With these parameter values set, the marginal variance of the GMRF, ¢ is given by:-

where 7 in Eq. 7 is the local variance parameter.

General approach

First, we considered a suite of stationary models that assume that the response of the
herring population to each covariate is static across the time series (see Eq. 3). We began with
full models including all covariates, specified as linear, quadratic or spline terms, a fixed year
effect and all forms of the spatiotemporal random component @;, (i.e. models s1-s15, Table
2). This approach allowed us to evaluate different random-effect structures, whilst gaining an
initial picture of the nature and magnitude of covariate effects (Zuur et al. 2009). After
accounting for the overall spatial and temporal trends, the distrib,.; covariate was found to be
strongly influential, exhibiting positive associations with y in all cases (see Fig. 3,

Supplementary material Appendix 7, Table Al). As abrupt shifts in herring winter
13
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distribution occurred periodically, interrupting phases of spatial continuity (Fig. 1, 2), we
considered that the relative importance of distrib,.; may also vary in time and be a key
indicator of the degree of temporal correlation in winter occurrence patterns. We explored
this possibility by fitting a series of partly non-stationary models (i.e. models part nsl—
part_ns9, Table 2), allowing regression coefficients for distrib, ; to be represented by a time-
ordered vector with elements that vary by year according to 1** order random walk (rw1)
dynamics. The rw1 models were defined by a Gaussian distribution N(0, precR), where prec
is the precision parameter assigned a Gamma(1, 5e-05) prior, and R is a fixed structure
matrix (see Supplementary material Appendix 5 for details on alternative model and prior
specifications considered). Finally, we fitted a series of fully non-stationary models in which
coefficients for all fixed effects could vary annually with the same rw1 specification (i.e.
models full nsl—full ns9, Table 2). These non-stationary models enabled us to explore
associations between covariate influence and changes in population demographics in the ISS
herring stock over time, whilst naturally handling temporal dependence among adjacent years

(see Supplementary material Appendix 4 for R code).

Model fitting details

Models were fitted in R-INLA (Rue et al. 2009) using the SPDE approach (Lindgren
et al. 2011). We grouped models by stationarity level for ease of explanation, and summarize
key details in Table 2 and Supplementary material Appendix 7, Table A2. Prior to fitting, we
created a triangulated mesh upon which to build the GMRFs, covering a spatial domain that
encompassed all of our observations (see Krainski et al. 2016 for details, and Supplementary
material Appendix 4 for R code). We initially used a Gaussian approximation strategy to
enable fast model comparison. We then refitted all models using simplified Laplace

approximation — providing a compromise between correcting the Gaussian approximation for

14
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errors in location and/or skewness (Rue et al. 2009) whilst retaining good computational
properties. Vague normal priors were assigned to all fixed effects N(0, 1000), and the
intercept N(0, o). To assess sensitivity to prior choice, we refitted all stationary ‘no-space’
models using weakly informative Cauchy priors with mean = 0 and scale = 2.5 for the fixed
effects, and 10 for the intercept using the ‘bayesglm’ function in the ‘arm’ package in R
(Gelman et al. 2008). Both prior specifications produced stable, highly congruent posterior
estimates, so we proceeded using normal priors only. Priors for the SPDE model hyper-
parameters (a, , 7), the latter two defining p and o2, are provided in Supplementary material

Appendix 5.

Assessing fit and predictive performance

We calculated the deviance information criterion (DIC) (Spiegelhalter et al. 2002) and
a series of metrics based on the conditional predictive ordinate (CPO) (Pettit 1990) to check
model fit and assess predictive performance. For each model, we used the CPO,;, given by
(Ve idlV-(ein), Which represents the cross-validated (cv) ‘leave-one-out’ predictive density at
observation y,;, with the y,;,th observation removed, to derive the mean logarithmic (log)
score (Gneiting and Rafferty 2007), a measure of predictive quality, and the cv Brier score
(i.e. mean prediction error), a measure of model goodness-of-fit reflecting both
discriminatory ability and calibration that evaluates the degree of correspondence between
fitted probabilities and observed binary outcomes (Schmid and Griffith 2005, Roos and Held
2011). Lower values on both scores reflect a better model, with Brier scores interpreted in
relation to reference values that are a function of sampling prevalence (see Held et al. 2012
for an example). As an additional calibration check for out-of-sample predictions, we
examined histograms of probability integral transform (PIT) values for departures from

uniformity (Dawid 1984, Gneiting et al. 2007, Held et al. 2010). Despite its known
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deficiencies (Lobo et al. 2008), given perfect detection in our data, the similarity in both
geographic and environmental space in model fitting and prediction domains, and the explicit
consideration of spatiotemporal error structure in our modelling approach, we also calculated

the AUC for each model.

Covariate importance and model selection

After comparing full models using the aforementioned criteria and determining an
optimal structure for w;,, we used the best-performing full stationary model (including the
fixed year effect and @;,) to estimate covariate importance and find an appropriate fixed-
effect structure. We first examined parameter estimates and 95% credible intervals (Cls) for
each covariate. Next, we dropped one covariate at a time from the full model (i.e. single-term
deletion) and compared the DIC, mean log score and Brier score of the reduced models with
the full model, and a baseline model comprising only an intercept, year, and the optimal

structure for w;, (see Illian et al. 2013 for a similar approach).

Correlation among covariates and demographic parameters

To examine associations between covariate importance and population demographics,
we calculated Pearson’s r coefficients between time series of posterior means for the linear
term for influential covariates (i.e. those with 95% Cls not overlapping 0 in at least one year)
in the best non-stationary models, and nine demographic parameters for the ISS stock derived
from annual stock assessments coordinated by The International Council for the Exploration
of the Sea (ICES). Calculations were made on the first 18, 19, 20, 21, and 22 years of data.
Demographic parameters considered include three ratios of the numbers (millions) of naive,
first-time winterers to older, experienced individuals (i.e. age3:age4to7, age3:age8to13,

age3:age4+), spawning stock biomass (SSB — *000 tonnes), spawning stock numbers (SSN —
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millions), numbers (millions) of young experienced individuals (n age4to7), old experienced
individuals (n age8to13), and all experienced individuals (n age4+), and mean age (years) of

the spawning stock (mean age).

Spatial prediction and validation

An area of interest for spatial prediction was defined within the extent of the fishery
and survey data, covering the entire distributional range of ISS herring. The area, spanning
62.475 to 67.975°N and 9.008 to 28.008°W, was divided into 0.1° longitude x 0.05° latitude
(~5 x 5 km) grid cells, matching the resolution of several covariates used in model building
and providing a scale useful for fishery management (see Supplementary material Appendix
3, 6). Our interest was in predicting herring occurrence probability on an annual time-step.
Hence, maps were created for each covariate based on mean grid cell values calculated across
each year. The range of covariate values in the prediction space was monitored, and closely
matched the values used for model fitting (Table 1).

The different classes of models we built have different utility regarding prediction.
The stationary models are very general, making them well suited for predictions to randomly
selected data within the time series or for long-term forecasts. By contrast, the fully non-
stationary models, with their annually-varying coefficients, are less flexible, but useful in
mapping occurrence probabilities for specific years within the time series. The task of short-
term forecasting (e.g. to #+1) befits the partly non-stationary models, which occupy a middle
ground in terms of generality. For these reasons, we used the best performing fully non-
stationary model to generate annual prediction maps within the time series. Predictions were
made for the last 22 years (i.e. 1992 93 to 2013 14), but we present results for four years
(i.e. 1994 95,2001 02,2007 08,2013 14) representative of the different wintering phases.

Implementation is straightforward in R-INLA (see Supplementary material Appendix 4 for R
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code). For predictions to #+1 we used the best partly non-stationary specification. We ran
validation tests on held-out observations by building models for the first 18, 19, 20 and 21
years of data, and testing how well the predicted probabilities of occurrence match the
observations in the 19™, 20™, 21%, and 22™ years, respectively. For this, we needed to
estimate the distrib,.; regression coefficient for #+1. We reasoned that if strong correlations
exist between the distrib, | regression coefficients and one or more demographic parameters,
and we can estimate these demographic parameter(s) for #+1, then prediction of the distrib,
regression coefficient in #+1 may be possible. We summarize the main findings in the Results
section, but provide full annotated R code (see Supplementary material Appendix 4) and
explanatory notes in Appendix 6. All analyses were run in R version 3.2.2 (R Development
Core Team), and datasets and code are available from the Dryad Digital Repository

<http://datadryad.org/>.

Results
Spatial similarity across years

The SSI accurately reproduced the temporal dynamics of wintering patterns across
our time series. The spatial persistence of the distribution during the ‘East’ phase (Fig. 1a)
was reflected in relatively high SSI values, with the northward shift witnessed between
1994 95 and 1997 98 forcing a gradual reduction in the index (Fig. 2). SSI values were
lower over the following decade. This is a result of a patchier distribution during these years
(Fig. 1b), although year-to-year consistency was sometimes observed (e.g. between 2001 02
and 2002_03). From 2007 _08 until 2012 13, the majority of the adult population wintered
inshore, in fjords on Iceland’s west coast (Fig. 1¢). Strong fidelity to these fjords was

observed during this period, resulting in high SSI values. The SSI dropped in 2013 14, as
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younger cohorts established a new wintering area off the southeast coast (Oskarsson and

Reynisson 2014).

Model performance

Our models generally fitted the data well and showed low mean prediction error, with
cross-validated Brier scores falling below the prevalence-based reference value of 0.138 for
all models incorporating spatiotemporal random structure (Table 2). Discriminatory ability
was high, with AUC values > 0.9 in all cases, and Gaussian and simplified Laplace
approximation strategies were in full agreement regarding the best-performing models (Table
2, Supplementary material Appendix 7, Table A2). The inclusion of spatial and temporal
structure was beneficial, and results from the stationary models suggest that independent
realizations of the spatial random field (i.e. time-indep ;) and a fixed year effect (i.e. year,)
more appropriately describe the data than a smooth year-to-year transition in either of these
processes (i.e. time-corr @;,) (Table 2). Allowing fixed effect parameters to vary in time
through the non-stationary models improved goodness-of-fit and predictive capacity over the
Stationary cases, and there was stronger support for models allowing some non-linearity in
occurrence-covariate relationships (i.e. quadratic terms for environmental covariates) (Table

2).

Covariate importance and model selection

The addition of covariates improved model performance. Although posterior 95% Cls
overlapped 0 in some cases (Supplementary material Appendix 7, Table A1), backwards
selection on the best stationary model (s9) indicated that most covariates added some

information and none detrimentally affected predictive capacity (Supplementary material
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Appendix 7, Table A3). Hence, all covariates were retained, and full models used for further

inference.

Nature of occurrence-covariate relationships

Positive associations were found between distrib,; and y in all models - this pattern
persisting when spatially and temporally structured terms were included (Fig. 3,
Supplementary material Appendix 7, Table A1). This result supports the existence of a strong
connection with previously-used wintering sites in most years. The best partly non-stationary
model (part_ns5) outperformed s9 (Table 2), suggesting that the predictive ability of the
distrib, | covariate may vary in time. Posterior mean estimates for distrib,; in the part_ns5
model were always positive however, and 95% Cls never overlapped 0 (Fig. 3f). This model
also assumes that the response of the wintering population to all other covariates is static in
time. We visualized the nature of these associations by plotting the marginal effect for
covariates with posterior 95% ClIs that did not overlap 0 (Fig. 3a—e, see Supplementary
material Appendix 7, Fig. A7 for plots of all other covariates).

Several local-scale environmental variables were found to be important. Occurrence
probability increased in warmer, fresher and moderately stratified waters (Fig. 3a—), in lower
velocity zones (Fig. 3d), and in areas near high zooplankton (i.e. adult C. finmarchicus)
biomass in the August preceding wintering (Fig. 3¢). Notably, dependence on the density of
occurrence records from the previous year, as captured by counts, ;, was low. Similarly, the
vertical temperature gradient, bathymetric features, and the magnitude of recent fishing
activity all had little impact (Fig. A7, see Supplementary material Appendix 7, Table A1).

These patterns were further investigated in the full ns5 model — the best model
overall — in which all fixed effects could vary by year. Again, distrib,; was influential,;

however, the increased number of random effects in the full ns5 model acted to dampen its
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effect (Fig. 3g—i). The importance of SST, SSS and PEA shifted in time, with these
covariates’ influence increasing during the early to mid-2000s when the wintering population
was patchily distributed around Iceland (Fig. 1, 3h). Estimates for fish magnitude were
generally small, with large variance (Fig. 31). Covariates describing bathymetric features
showed no strong trends over time, and CF_Aug exhibited a small positive association with y

in some years (Fig. 31).

Correlations among covariates and demographic parameters

The importance of the distrib,; covariate was found to increase most strongly with
adult population size (SSN) in both the part ns5 and full ns5 models, with positive
associations also observed with n age4to7, n age 4+ and SSB (Table 3). Focussing on the
full ns5 model, a stronger positive effect of SST was detected when the ratio of naive : older,
experienced individuals (age3:age8to13) increased (Table 3). The posterior mean estimates
for SSS decreased as SSN and SSB increased, and coefficients for PEA were negatively

associated with n age8tol13. All other correlations were non-significant.

Spatial prediction within the time series

Spatial predictions of occurrence probabilities derived from the full ns5 model
showed high concordance with the observations (Fig. 4). The model accurately predicted the
occurrence patterns in years when the wintering population was confined to small regions of
the prediction space (e.g. 2007 _08), when it was spread out (e.g. 1994 95), when it was
patchily distributed (e.g. 2001 _02), and during distributional shifts (e.g. 2007 _08, 2013 _14)
(Fig. 4a). For the four representative years considered here, model predictions were well
calibrated, with small mean squared differences between predicted probabilities and actual

observations (Brier score: 1994 95 =0.162, 2001 02 =0.132,2007 08 =10.152,2013 14 =
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0.168, all below reference values), and showed near-perfect discrimination between observed
occurrences and absences (AUC: 1994 95 =0.998, 2001 02 =0.994, 2007 08 =0.999,
2013 14=0.999).

Data were scarce in some years (e.g. 1994 95, 2013 14), with large areas of the
prediction space containing few observations. The SPDE approach handles this by evaluating
the continuous spatial or spatiotemporal random effects as discretely indexed GMRFs,
allowing predictions to be made to unsampled locations whilst robustly estimating the
uncertainty of these predictions. The sd of i was highest in areas where occurrence and
absence records were close in geographic space (Fig. 4b), likely due to difficulties in
resolving such a steep gradient of probabilities over such short spatial scales. Variance was
low and uniform in unsampled regions.

Inclusion of spatiotemporal random effects (w) improved model fit and predictive
performance (Table 2), indicating that the covariate components were not overfitted, but also
that factors important in shaping y have been missed, and/or were occurring at scales that our
models could not resolve. The patterns in w (Fig. 4c) reveal the presence of spatial
dependence at relatively large scales (i.e. 100’s of km), confirmed by the posterior estimates
for the practical range p (Table 3), and likely reflect rapid changes in school shape, size and
structure that our models did not capture (Pitcher et al. 1996, Nottestad and Axelson 1999,
Makris et al. 2009). The trends observed in the random field sd’s are a function of data

coverage, with uncertainty increasing with distance from the observations (Fig. 4d).

Predicting occurrence patterns in t+1
We found strong positive correlations between time series of SSN and posterior mean
estimates of the distrib,; covariate in the partly non-stationary models (i.e. part_ns5

specification) fitted to the first 18, 19, 20 and 21 years of data (Pearson’s » mean = 0.623, sd
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=0.127) (Fig. 5). Given this degree of correlation, we then were able to predict the posterior
mean estimate for distrib,; in #+1 from the estimate of SSN in #+1 (obtained from MRI
surveys — Oskarsson and Reynisson 2014). This allowed us to validate our models on
withheld observations one-year ahead, and assess prediction accuracy for the last four years
of the time series (see Supplementary material Appendix 6 for details). Predictive
performance was high in three out of the four years (19" year: Brier score = 0.142, AUC =
0.961; 20" year: Brier score = 0.137, AUC = 0.976; 21 year: Brier score = 0.128, AUC =
0.976), but dropped sharply in the last year (22™ year: Brier score = 0.194, AUC = 0.588)
concurrent with a reduction in correlation strength between time series of SSN and distrib,

coefficients (Fig. 5).

Discussion

Our study on ISS herring heeds recent calls for a greater focus on the role of
collective learning in shaping animal distributions (Keith and Bull 2017), whilst
demonstrating that social cues may not necessarily act alone. Consistent with our
expectations, we found that the distrib,.; covariate, describing the previous winter’s
occurrence pattern, imparted strong influence on the present pattern, the magnitude of its
effect increasing with adult population size. Moreover, we showed that local-scale
environmental and temporally-lagged prey-related factors were sometimes important; our
results suggesting a heightened sensitivity of younger age classes to some environmental
effects (e.g. SST). Importantly, the accuracy of our predictions to #+1 highlights the potential
of combining demographic time series with non-stationary models in exploring evidence for
collective memory in fishes and other group-living animals, and in guiding spatial

management decisions.
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The multiple drivers of spatial distribution

A variety of intrinsic and extrinsic controls, often working synergistically, are known
to structure marine fish distributions (Planque et al. 2011). For example, the use of visual
stimuli to locate landmarks is well documented (Silveira et al. 2015), whilst geomagnetic and
olfactory cues provide important compasses for migrating salmon (Putman et al. 2013).
Furthermore, environmental gradients, predators, competitors and prey, population
demographics and spatial memory can all be influential (Perry et al. 2005, Rindorf and Lewy
2006, Loots et al. 2010). Many of these factors appear relevant to herring, and work spanning
many decades has demonstrated the importance of bottom-up (e.g. climate, local-scale
environment, zooplankton biomass), top-down (e.g. predation) and demographic processes in
structuring the species’ population dynamics (e.g. Lindegren et al. 2011, see Huse 2016 for a
review). Despite these efforts, the question of what governs where herring spend the winter, a
non-feeding period during which schools are heavily targeted by commercial fisheries, has
remained largely unresolved. We think that this may be a consequence of three factors. 1)
High environmental flexibility in wintering populations (see Fig. 3a—d, Supplementary
material Appendix 7, Fig. A6) — a trait potentially explaining the marked geographic
plasticity in wintering locations observed previously (Oskarsson et al. 2009, Huse et al.
2010). 2) The lack of proximate feeding and spawning cues, or competitive forces acting
during the winter months — making underlying mechanisms difficult to pinpoint, and 3)
mismatches between the true scale of processes acting on wintering populations and the
scales captured by previous studies.

In designing our study, we felt that progress could be made by viewing the realized
winter distribution as the result of two behavioural states: (state 1) migrating to, and
colonizing wintering areas; and (state 2) living within these areas following colonization; and

that herring may be tuned to different stimuli in each. In state 1, decisions must be made on
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the directionality of migration. Such decisions are thought to have a demographic origin; the
probability of following previously-used routes increasing with the proportion of experienced
individuals present in the stock, and contingent upon information-sharing opportunities
among cohorts during some period preceding wintering. These ideas, supported now by both
theory and empirical work (McQuinn 1997, Corten 2002, Huse et al. 2010) have advanced
our capacity for predicting when populations are likely to follow suit, returning to traditional

grounds, or break tradition and disperse to new areas.

Capturing spatial memory

Through construction of the SSI and in our models, we extend these ideas in a
spatially-explicit manner by linking observations from the previous year’s distribution to the
present year’s, and considering demographic parameters as potential mechanisms influencing
spatial persistence from year-to-year. In effect, our approach simultaneously tests for
geographic attachment to certain wintering areas (sensu Loots et al. 2010) — a well-known
herring trait (Hoglund 1955), while inclusion of the demographic components allows for an
exploration, albeit correlative, of evidence for spatial memory and/or tradition-formation in
the species. The strong effect of distrib,.; on y in both the stationary (Supplementary material
Appendix 7, Table A1) and non-stationary models (Fig. 3f—), combined with the correlation
observed between time series of the distrib,.; coefficients and SSN (Table 3) suggests that
although the proportion of naive : experienced individuals appears fundamental to how
decisions on directionality of winter migration are reached (state 1 — Huse et al. (2010)),
population size may determine if these decisions are honoured. The mechanisms
underpinning these observations remain unclear, but may relate to some form of wisdom
through numbers (Surowiecki 2004), or the ‘many wrongs principle’ (Simons 2004) by which

navigational accuracy increases in larger and/or denser schools through pooling many
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individual directional estimates. Makris et al. (2009) found direct evidence for this in herring.
These authors demonstrated that a threshold density of individuals (i.e. 0.2 fish m™) promoted
extremely rapid school-formation and growth at dusk, initiated by joining of small leading
groups, and resulting in coordinated spawning migrations towards Georges Bank in the Gulf
of Maine. If such processes also operate during the winter migration period, our results
suggest that recolonizing previously-used wintering areas is sometimes deemed a good
decision by the majority, or at least by some threshold number of influential leaders, and that

adherence to these decisions may be stronger when the population is large.

Influence of prey resources and summer feeding distribution

Whilst important, the distrib,.; covariate did not explain all the variation in our
observations. We had also speculated that where herring feed during summer might influence
winter migration trajectories (Ferno et al. 1998), and used August biomass estimates for the
zooplankter C. finmarchicus to test this hypothesis. Wintering areas were often
geographically quite close to summer prey patches (Table 3, Fig. 3e) — a situation that could
advantage herring approaching wintering grounds, as energy conserved through minimizing
dispersal away from profitable feeding areas would be highly valued during the subsequent
non-feeding period. Georeferenced data on the summer feeding distribution in addition to
empirical measures of C. finmarchicus biomass would permit a deeper examination of this
idea; first, by providing a validation (in Icelandic waters) of the C finmarchicus IBM used to
derive our biomass layers (Hjello et al. 2012); and second, by allowing the degree of herring-
zooplankton prey overlap to be estimated. Such information would provide useful insights
into the importance of pre-wintering actions in general, and where they occur, on subsequent

wintering behaviour. We argue that this may be especially relevant to the summer feeding
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period when several age classes mix (Libungan et al. 2015), offering a perfect arena for

decision-making on the nature of the upcoming winter migration.

Wintering and density-dependence

Following settlement in wintering areas (i.e. state 2), herring hardly feed (Slotte
1999), and minimizing metabolic costs is likely prioritized. The absence of competition for
food at this time removes a key mechanism thought to promote positive relationships
between population abundance and occupied area, now demonstrated for several fish species
(e.g. Fisher and Frank 2004) and predicted under most models of marine fish spatial
dynamics (e.g. the ‘basin model’ — MacCall (1990)) through ‘ideal free distribution’ theory
(Fretwell and Lucas 1969). Such positive associations are commonly taken as evidence for
density-dependent habitat selection (DDHS), although they may also arise via density-
independent means (Shepherd and Litvak 2004).

We found no support for any abundance-area association in our data (see
Supplementary material Appendix 8, Fig. AS8), and no evidence for an effect of counts,;, a
conservative surrogate for local herring density in #-1, on the occurrence pattern in ¢ (Table 3,
Fig. 3g, Supplementary material Appendix 7, Fig. A7a). In light of these results, we propose
that DDHS is probably not a strong guiding force driving large-scale wintering patterns.
Indeed, as the dense schooling behaviour typical of this phase may impart some fitness
benefits in terms of predator evasion (Nettestad and Axelsen 1999), the lack of an
abundance-area association, as we found here, might reflect a distribution that is near ideal
and free. This idea requires further testing, as density-dependent mechanisms are known to
influence feeding and spawning migrations in the species (see Ciannelli et al. 2013), and to
structure schooling dynamics at micro- (i.e. cm to m) and meso-scales (i.e. 10’s of m to 10’s

of km) (Pitcher et al. 1996, Mackinson et al. 1999).
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Environmental effects

Given the nature of our dataset (i.e. 48,724 observations over 23 winters), we suggest
that our models provide a broad, yet robust picture of environmental preferences of wintering
ISS herring over the time period considered. We found that several local-scale dynamic
variables influenced estimates of  (Fig. 3, Supplementary material Appendix 7, Tale A1).
Whilst we cannot pinpoint the mechanistic basis of these relationships, we contend that this
environmental sensitivity can be framed as a balance between maximizing individual fitness
and fidelity to traditional wintering sites. Temperature (i.e. SST), the most influential
environmental factor in our models, is a pervasive force shaping marine fish distributions
(Perry et al. 2005), and although adult herring can tolerate a wide array of temperatures
(Nottestad et al. 2007), studies at the range margins suggest that physiological barriers may
exist (e.g. <~ 2°C) which are rarely crossed (Jakobsson 1969, Misund et al. 1997). We
observed this here. Wintering ISS herring were never encountered in SST < 1.5°C, and were
rarely captured north of 67°N, a region under the influence of cold East Icelandic Current
water (Logemann et al. 2013) (Fig. 1, 3a, Supplementary material Appendix 7, Fig. A6a).
This is indicative of a lower bound of thermal tolerance below which individual fitness may
be compromised. If this is the case, then persistence of SST’s far colder than 1.5°C off much
of Iceland’s north coast during winter, in conjunction with winter SST’s in the study region
approaching 10°C (see Supplementary material Appendix 3, Fig. A2), may neatly explain the
monotonic positive trend detected between SST and y (Fig. 3a). Even though residence in
warmer waters likely involves higher energetic demands, given the species’ flexibility in
temperature preferences within the ~ 4 to 9°C range as seen here (Fig. 3a, Supplementary

material Appendix 7, Fig. A6a), and its capacity to tolerate far higher temperatures elsewhere
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(Maravelias and Reid 1997) we suggest that our upper temperature bound would not be
physiologically constraining.

These findings, in conjunction with pronounced drops in both median SSS and PEA
values observed in wintering areas in the latter part of the time series (Supplementary
material Appendix 7, Fig. A6b, c), add weight to Huse et al.’s suggestion that winter habitat
selection in herring may not be precisely optimized (Huse et al. 2010). However, the
consistency in SSS and PEA values seen across several consecutive years; the uniformly low
current velocity characteristic of all wintering areas (Supplementary material Appendix 7,
Fig. A6d) and the significant relationships detected between  and SST, SSS, PEA and
current_vel (Fig. 3) indicate a degree of environmental control in wintering site selection, at

least in some years (see Supplementary material Appendix 7 for a further discussion).

Temporal non-stationarity

One of the most interesting results of this study came through considering that the
response of herring populations to intrinsic and extrinsic factors may alter through time. We
found evidence for temporal non-stationarity in some cases (i.e. distrib,.;, SST, SSS, PEA)
(Fig. 3h); in addition to the distrib,.; — SSN relationship, we showed that the relative influence
of SST increased with the proportion of first-time winterers compared with older, age 8 to 13
individuals in the population (Table 3). This may reflect a heightened sensitivity of younger
cohorts to environmental forcing, in combination with an increased tendency to follow
traditions as fish get older, as suggested by Corten (2002) (explanation I). At the population
level, such a scenario would manifest in environmental factors, such as temperature,
becoming unmasked as strong drivers of wintering area selection when there are fewer older

fish to provide guidance.
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If we make the assumption that the population truly responds differently to some
environmental variables in different years, then our results could also stem from flexibility in
population-wide environmental preferences during winter, as suggested by Oskarsson et al.
(2009) and Huse et al. (2010) (explanation 2), or from age- or size-related variation in habitat
preferences (e.g. Bailey et al. 1998, Bartolino et al. 2011) that would act to shape the
population’s collective reaction dependent on age-class structure (see results for SSS and
PEA — Table 3) (explanation 3).

A fourth alternative involves the presence of interactions between density-dependent
and environmental factors (explanation 4) (see Ciannelli et al. 2012 for an example). No clear
density-dependent environmental responses were observed in our study, a finding in
agreement with Maravelias et al. (2000a, b), who reported marked stability in relationships
between occurrence, abundance and ambient environmental conditions across a four-year
period of population decline in North Sea herring. Our inference is limited to fishery records,
but the addition of spatially-consistent survey information would allow a more rigorous
exploration of how biomass and environmental factors might interact to influence range size
during wintering. Finally, the trends we observed may in part reflect the nature of our
datasets (explanation 5). Fishing and survey coverage varied across years; a function of fisher
behaviour, catch efficiency, funding and/or time availability and possibly other unknown,
annually-varying factors our models did not capture directly (see Supplementary material
Appendix 1). The year, term in the stationary models accounts for year-to-year variation in
the outcome of such processes, yet with regard to the non-stationary models, tests including
or omitting this term, or a temporal component in w;,, left parameter estimates essentially
unchanged, suggesting that the time-varying patterns we see are not strongly dependent on

data availability in a given year, and likely have some other basis.
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This list of explanations is not exhaustive; all are plausible, and not necessarily
mutually exclusive. However, we propose explanation I and/or 3 as most likely on empirical
and theoretical grounds (Corten 1993, 2002). Opportunities for fine-tuning the dynamics of
connections through time based on ecological or physiological knowledge are emerging
through continued advancements in process-based models (see Teal et al. in press), and
ongoing work on penalized complexity (PC) priors (Simpson et al. 2015). By combining such
approaches, and using outputs from models like those presented here to guide
parameterization, we see great potential for identifying the mechanistic fundaments of non-

stationarity in ecological time series like ours (see also Supplementary material Appendix 9).

Fishing and predation

The direct impact of fishing on commercially harvested species, including herring,
can be immense (Jackson et al. 2001, Dickey-Collas et al. 2010). It is increasingly
recognized, however, that intense exploitation can reduce resilience to environmental change,
and that fishing and climate can interact to influence long-term distribution patterns
(Engelhard et al. 2011) and spatial structure (Ciannelli et al. 2013). In our models, we
attempted to capture the impact of recent purse-seine fishing activity whilst considering local-
scale environmental variables as additive factors only. This decision reflects an attempt to
balance model complexity with meaningful ecological inference (Merow et al. 2014), and
although this reduced our power to detect fishing-environment interactions directly, our
expectation that increased fish_magnitude would act to reduce i at nearby locations in the
following week was not met (Supplementary material Appendix 7, Fig. A7e, Table A1). This
was surprising, given the known disruptive effects of fishing and vessel activity on the
behaviour of pelagic species like herring (Vabg et al. 2002). As herring schools can show

incredibly fast predator-evasion responses (Pitcher et al. 1996), we proffer that the weekly
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window we chose for fish magnitude was too long, and the 5 x 5 km grid cell dimensions too
large to capture the complexity in fleet dynamics (Branch et al. 2006), or the patchiness and
speed of fishing-herring interactions and their cumulative effects over time. Investigating the
scale-dependence of harvesting impacts, induced both by fishers and other predators (Simila
1997, Overholtz and Link 2007, Samarra and Foote 2015, Supplementary material Appendix
10) might provide insight into the trade-offs herring and other fishes face in adhering to

migratory traditions, whilst avoiding predation in a previously risky arena.

Spatial prediction: implications for fishery management and fisheries

Our space-time models generated predictions that closely matched the observed
occurrence patterns of wintering ISS herring. Whilst noting the limitations inherent in fishery
and non-standardized survey datasets (Supplementary material Appendix 1, 9), by
incorporating time-varying effects, and simultaneously considering spatially- and temporally-
structured processes in our analysis, we were able to robustly estimate y and its uncertainty
across our spatial domain, both within the time series (see Fig. 4) and to held-out
observations one-year ahead (Supplementary material Appendix 6, 9).

The capacity to predict distribution patterns in #+1 has important implications for the
spatial management of herring stocks throughout the North Atlantic, and for other species
exhibiting some homing tendency, for which our models could be easily adapted. In our
example, predictive accuracy depended upon the strength of association between SSN and
posterior mean estimates for distrib,.;, estimated by the part ns5 model (Table 3,
Supplementary material Appendix 6). In three out of four years tested, correlation was strong,
models were well calibrated and AUC values exceeded 0.95. Accuracy for the final year —

2013 14, fell dramatically however, due most likely to two unusual mass-mortality events in
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a small fjord on Iceland’s west coast that forced the 2012 13 stock assessment estimate of
SSN down, despite marked overlap in the area fished in 2011 12 and 2012 13 (Fig. 2, 5).
Although preliminary in nature, these results do highlight the potential of temporally
non-stationary models in predicting states at one time point based on states at nearby time
points. With rapid improvements in uncertainty estimation in stock assessment models for
data-poor fish stocks (e.g. Kokkalis et al. 2017) coupled with the abundance of information-
rich, point-referenced fishery datasets available, the time is ripe for further investigation into
the demographic influences on migratory behaviour in other less-studied, commercially-
important species. We believe the modelling framework outlined here is a solid starting point

for such work.

Conclusions

Despite growing recognition of social learning as a key element in shaping collective
movement behaviour, the evolutionary consequences of, and the mechanisms giving rise to,
this phenomenon remain unclear for many taxa. Using wintering ISS herring for illustration,
we searched for pattern in these behaviours by building space-time models for multi-year,
point-referenced fishery and survey datasets and linking model output with time series of
demographic parameters. Though we cannot pry too deeply into the ‘fish mind’, at least at
present, our findings lend correlative support to the existence of collective memory in this
long-lived, schooling species (Ferno et al 1998, Corten 2002), and suggest that wintering site
selection may be tuned to population size and age-class structure, in concert with local-scale
environmental factors and temporally-lagged prey distribution. The accuracy of our model
predictions implies that considering such processes explicitly in spatiotemporal models could
benefit spatial management strategies for fishes and other group-living animals that display a

degree of conservatism in migratory behaviour.
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Table 1. Covariates considered in space-time regression models for wintering ISS herring (see Supplementary material Appendix 3 for details on
their calculation, hypotheses behind their selection, the spatial and temporal scales considered, and examples of raster layers for each covariate
used for spatial predictions). F and P represent the range of values used in model fitting and spatial prediction respectively. Scales for estimation
vary by covariate; however spatial predictions are made to a common 0.1° longitude x 0.05° latitude (i.e. ~5 x 5 km) grid at an annual time-step.
1, | denote hypothesized directions of the occurrence-covariate relationships, and |1 indicates that the direction of the occurrence-covariate
relationship is uncertain. References relate either to the data source, the expected relationship with y, or papers contributing to the selection of

this covariate for modelling (see Supplementary material Appendix 3 for the full reference list).
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Covariate Abbreviation Description Units & Range Spatial scales Temporal scales Expected relationship Source References
derivation (min, max) for fitting for fitting with y

Spatial memory
Occurrence in distrib, Using the distrib, layers created for the spatial 1 = occurrence in F(©,1) 0.1° longitude x Annual 1, with stronger 1 Fishery logbooks Jakobsson 1969, Corten 1993, 2000, 2002,
previous year similarity index (SSI), we selected the layer same cell in #-1 P, 1) 0.05° latitude influence in years McQuinn 1997, Ferné et al. 1998, Huse et al.

for #-1 to capture the occurrence pattern one- (i.e. ~5 x 5 km) ‘when more 2002,2010
year earlier. 0 = absence in ‘experienced’
same cell in -1 individuals are
present and/or stock
size is large.
Density of counts,_; Similar to distrib,.;, we used the counts, layers % (see Eq. Al in F (0,43.67) 0.1° % 0.05° Annual As above As above As above
occurrences in (created during SSI derivation) and selected for derivation) P (0,45.19)
previous year the layer for #-1 to capture the density of
occurrences one-year earlier.

Dynamic environment Logemann et al. 2013 (for all dynamic variables)
Sea surface SST Temperature at 1.25 m depth. °C F (-1.76, 9.68) 1x1 Day of record, 1, but influence of CODE Blaxter 1985, Maravelias 1997, Misund et al.
temperature P (-1.36,9.38) 4x4 mean of 7 days SST and all other 1997, 1998, Maravelias et al. 2000a, Toresen and

8 x 8 km previous covariates may Gstvedt 2000, Corten 2001, Nottestad et al. 2007,
change with stock Bartolino et al. 2014
demographics.
Sea surface salinity SSS Salinity at 1.25 m depth. practical salinity F (31.51,35.38) 1x1 Day of record, CODE Blaxter 1985, Maravelias and Reid 1995, 1997,
unit (psu) P (33.00,35.24) 4x4 mean of 7d Lindegren et al. 2011
8 x 8 km previous
Potential energy PEA Energy needed to instantaneously kgm's? F (0, 55.19) 1x1 Day of record, " CODE Simpson 1981, Huse and Korneliussen 2000,
anomaly homogenize the water column with a given P (0, 54.99) 4x4 mean of 7d Maravelias and Reid 1997, Maravelias et al.
density stratification. Calculated here as a 1 _ 4 8 x 8 km previous 2000b, Planque et al. 2006, de Boer et al. 2008,
function of temperature and salinity. [TIJ‘” (@-p)ez dz Burchard and Hofmeister 2008, Huret et al. 2013
Difference between change SST - temperature at 1.25 m above the sea °C F (-8.16, 5.05) 1x1 Day of record, 1 CODE Maravelias and Reid 1997, Maravelias et al.
SST and bottom floor. P (-4.77,4.16) 4 x4 mean of 7 d 2000b
temperature 8 x 8 km previous
Current velocity current_vel Mean of the absolute values of the U and V ms’ F (0, 0.64) 1x1 Day of record, | CODE Corten and van de Kamp 1992, Corten 1999a,b
flow vectors at 1.25 m depth. P (3.25¢-04,2.20) 4 x4 mean of 7d
8 x 8 km previous
Static environment
Water depth bottom_depth Depth of the water column. m F (2290, -11) 30 arcsec - " GEBCO Maravelias et al. 2000a, Nottestad et al. 2007,
P (-2560, 0) <www.gebco.net> echosounder data (this study)
Bottom slope slope Slope of the sea floor. ° F (0,25.37) 30 arcsec - 1 GEBCO Maravelias et al. 2000a, echosounder data (this
P (1.44¢-02,0.12) study)
Distance to shore dist_to_shore Distance from each occurrence/absence km F (0.01,334.31) Exact - " Fishery logbooks, R package ‘geo’, MRI, Reykjavik, Iceland
record to the nearest landmass. P (0,344.71) ‘geo’ R package <https://r-forge.r-project.org/R/?group_id=945>

Predators
Fishing magnitude fish_magnitude Product of no. of successful fishing events tonnes F (0, 6.15¢05) 0.1° x 0.05° Weekly | Fishery logbooks Olsen 1971, Vabe et al. 2002, Ona et al. 2007,

and total landings in tonnes in the week P (0, 7.06e06) Doksaeter et al. 2009, Lindegren et al. 2011
preceding each occurrence/absence record.

Prey
Zooplankton biomass CF_Aug Biomass estimates for adult Calanus pg Cm? F (0, 1.32e07) 20 % 20 km Annual, but 1 Hjollo et al. 2012. Bainbridge and Forsyth 1972, Holst et al. 1997,

finmarchicus (i.e. C4, C5, C6 stages)
averaged for the August preceding wintering
each year.

P (0, 9.62¢06)

simulation covers
1995-2007 only

IBM for C.

finmarchicus

Maravelias and Reid 1997, Corten 19995,
Maravelias et al. 20005, Gislason and Astthorsson
2002, Prokopchuk and Sentyabov 2006, Nettestad
et al. 2007, Hjollo et al. 2012, Utne et al. 2012
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Table 2. Structure and performance of candidate space-time occurrence models for wintering
Atlantic herring. Each model contains all covariates (full), and results are shown for fitting
using simplified Laplace approximation (see Supplementary material Appendix 7, Table A2
for results based on a Gaussian approximation strategy). s1-s15, stationary models; part nsl-
part ns9, partly non-stationary models; full nsl-full ns9, fully non-stationary models.
Covariate form refers to models that include linear terms only (linear), and quadratic terms
(quadratic) or penalized regression spline terms for environmental covariates (spline).
Space/time structure describes the form of the spatiotemporal random effect @, and if a
fixed factor for year (year,) was included; no-space/no-time, no spatially or temporally
structured effects; time indep, independent realization of the spatial random field at each ¢

time corr, temporal correlation (arl) is considered in the realization of the spatial random

field at each ¢. The best-performing model within each stationarity class is shown in bold.

Model Covariate Structure DIC mean log  Brier score  AUC
form score

Stationary

sl linear full (no-space/no-time) 49104.2 0.504 0.157 0.934
s2 linear full + year, 48353.6 0.496 0.154 0.974
s3 linear full + time_indep w;, 41872.1 0.429 0.123 0.993
s4 linear full + year; + time_indep @;, 41811.9 0.429 0.122 0.993
s5 linear full + time_corr @;; 41877.0 0.429 0.123 0.992
$6 quadratic  full (no-space/no-time) 48917.2 0.502 0.156 0.943
s7 quadratic  full + year, 48059.1 0.493 0.152 0.981
s8 quadratic  full + time_indep w;, 41732.1 0.428 0.122 0.994
s9 quadratic  full + year, + time_indep @, 41629.0 0.427 0.122 0.995
s10 quadratic  full + time corr @;, 41733.0 0.428 0.122 0.993
sl spline full (no-space/no-time) 492322 0.505 0.158 0.917
s12 spline full + year, 48365.1 0.496 0.154 0.973
s13 spline full + time_indep w;, 41907.0 0.430 0.123 0.993
sl4 spline full + year,; + time_indep @;, 41833.3 0.429 0.123 0.993
sl5 spline full + time_corr @;; 41908.3 0.430 0.123 0.992
Partly non-stationary

part_nsl linear full (no-space/no-time) 489532 0.502 0.157 0.952
part_ns2 linear full + time_indep w;, 41733.4 0.428 0.122 0.993
part_ns3 linear full + time_corr w;, 41742.0 0.428 0.122 0.992
part_ns4 quadratic  full (no-space/no-time) 48725.5 0.500 0.155 0.960
part_ns5 quadratic  full + time_indep a;, 41621.5 0.427 0.122 0.994
part_ns6 quadratic  full + time_corr @;, 41625.5 0.427 0.122 0.994
part_ns7 spline full (no-space/no-time) 49080.7  0.504 0.157 0.943
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part ns8
part_ns9
Fully non-stationary
full nsl
full_ns2
full ns3
full ns4
full_ns5
full_ns6
full_ns7
full ns8
full ns9

spline
spline

linear
linear
linear
quadratic
quadratic
quadratic
spline
spline
spline

Ecography

full + time_indep w;,
full + time_corr w;,

full (no-space/no-time)
full + time_indep w;,
full + time_corr w;,
full (no-space/no-time)
full + time_indep a;,
full + time_corr w;,
full (no-space/no-time)
full + time_indep w;,
full + time_corr w;,

41780.0
41785.5

47330.3
41334.7
41342.3
46756.0
41047.1
41055.3
46972.0
41219.1
41226.4

0.428
0.428

0.486
0.424
0.424
0.480
0.421
0.421
0.482
0.422
0.423

0.122
0.122

0.148
0.120
0.120
0.146
0.119
0.119
0.147
0.119
0.119

0.993
0.992

0.989
0.996
0.995
0.995
0.997
0.997
0.993
0.996
0.996

Page 48 of 113

47



Page 49 of 113

Ecography

Table 3. Mean (1 sd) Pearson’s r coefficients calculated between time series of demographic
parameters (Demo.) for the ISS herring stock and posterior mean estimates for influential
covariates (Cov.) in the best non-stationary models. Mean and sd were calculated from
correlations made for five time series incorporating the first 18, 19, 20, 21 and 22 years of
data. Demographic parameters are age3:agedto7, age3:age8tol3, age3:aged+, three ratios of
numbers of naive, first-time winterers to young experienced, old experienced, and all
experienced individuals respectively; SSB, spawning stock biomass; SSN, spawning stock
numbers; n age4to7, number of young experienced individuals; n age8tol3, number of old
experienced individuals; n age4+, number of all experienced individuals; mean age, average

age of the spawning stock.

Demo. age3: age3: age3: SSB SSN n n n mean
Cov. age4to7 age8tol3 aged+ age4to7 age8tol3 aged+ age

Partly non-stationary model (part_ns5)

distrib,., 0.101 0418  0.178 0471 0575 0520  0.044 0479 -0.328
(0.047)  (0.128) (0.066) (0.061) (0.125) (0.107)  (0.021) (0.089) (0.126)

Fully non-stationary model (full_ns5)

distrib,.; 0120 0106 0.113 0455 0480 0372 0320 0446 -0.040
(0.036)  (0.107) (0.040) (0.055) (0.125) (0.129)  (0.047) (0.104) (0.118)
SST 0113 0481 0213 0404 0415 0404  -0220 0324 -0.354
(0.014)  (0.020) (0.016) (0.006) (0.014) (0.011)  (0.022) (0.008) (0.026)
SSS 0.118  -0375 -0.187 -0454 -0.501 -0435  0.028 -0.405 0257
(0.007)  (0.008) (0.007) (0.003) (0.007) (0.005)  (0.015) (0.005) (0.016)
PEA 0.008  0.156 0030 -038 -0362 -0265  -0481 -0362 -0.164

(0.030)  (0.049) (0.024) (0.027) (0.071) (0.076)  (0.023) (0.060) (0.062)
current vel  -0.134  -0.009 -0.104 0.056 0.101  0.154  -0.011 0.124 -0.131
(0.019)  (0.034) (0.026) (0.004) (0.017) (0.012)  (0.021) (0.010) (0.032)
CF Aug 0256  -0444 -0324 -0317 -0405 -0294 0088 -0256  0.385
(0.007)  (0.027) (0.010) (0.002) (0.017) (0.016)  (0.013) (0.010) (0.029)
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Figure legends

Figure 1. Winter distribution of ISS herring during the period 1991 92 to 2013 _14. Panels
(a—c) illustrate the spatial shifts in landings by the autumn/winter purse seine fishery through
time. We identified three major wintering phases over the 23 years of our time series, and
aggregated the landings data within each phase: (a) ‘East’ - 1991 92 to 1997 98; (b)
‘Eastwest’ - 1998 99 to 2006 07; and (c) ‘West’ —2007 08 to 2013 14 (see Oskarsson et al.
2009). Note the differences in color bar scales. (d) Twenty-three years of fishery occurrence

and survey absence records. Grey lines denote 200 m and 500 m isobaths.

Figure 2. Calculation of the spatial similarity index (SSI). We defined an area of interest
inclusive of all occurrence records in our dataset, divided this into 0.1° longitude % 0.05°
latitude grid cells, and, for each yeart=1, 2, ..., T, coded each cell as 1 if herring were
captured within it during year ¢, or 0 if they were not. This resulted in a distrib, layer for each
year. For each t=2, 3, ..., T, we then calculated the percentage of cells occupied in both #-1
and ¢, out of the number of cells occupied in #-1 or ¢ (a—c). Next, we weighted this value by
the change (km) in the center of gravity (ACOGQG) of the stock between #-1 and ¢. Using the
counts, layers that were constructed based on Eq. Al (see Supplementary material Appendix
2 for details), we then calculated Pearson’s » between counts,.; and counts;and added this
value (d, e). Data are presented for 1994 95 (#-1) and 1995 96 (), with the SSI value for

1995 96 circled.

Figure 3. (a—e) Marginal effect plots for influential covariates in the part ns5 model (see
Table 1 for covariate codes), and (f) time series of posterior mean estimates (red line) and
95% credible intervals (CIs) (red-shaded region) for the distrib,; covariate. In (a—¢), black

lines are median estimates of 1000 draws from the posterior distribution for a sequence of
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100 values across the full range of each covariate, and grey-shaded regions are 95% Cls. Tick
marks denote the percentile distribution of raw data for each covariate for occurrence records
(top of plots) and absence records (bottom of plots). Plots (a—c) represent quadratic effects,
and (d, e) the linear effect of the covariate. (g—h) Time series of posterior mean estimates for
the linear term (circles) and 95% ClIs (vertical lines) for all covariates from the full ns5
model. Symbols are offset slightly, and results for the distrib,; covariate plotted as a red line

(posterior mean) and red-shaded region (95% Cls) in panel (g).

Figure 4. Spatial predictions of occurrence probability for four representative winters of the
time series as derived from the full ns5 model. For each year, (a) is the mean occurrence
probability () and (b) the sd of y (expressed as log-odds) for each grid cell. (¢) is the mean
intensity of the temporally-independent realization of the spatial random field (), and (d) is
the sd of @. Observed occurrences (black circles) and absences (grey crosses) for each year

are overlaid in (a).

Figure 5. Time series of posterior mean estimates for distrib,.; derived from partly non-
stationary models (i.e. part_ns5 specification) fitted to the first 18, 19, 20 and 21 years of
data (solid lines), and estimates of adult population size for the ISS herring stock, represented
by spawning stock numbers (SSN — in millions) (dashed line). Pearson’s  values reflect the
degree of correlation between each model time series and SSN in the years included in that

model (see Supplementary material Appendix 6 for further details).
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Figure 1
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Figure 5
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Appendix 1: Detection and sampling coverage

Detection

Detection probability for our datasets is essentially = 1, notwithstanding potential recording
errors. Occurrence records were included only if ¢ > 0 tonnes, and the acoustic output enables
accurate identification of herring schools based on area backscatter strength (Jakobsson et al.
1993, Gudmundsdottir et al. 2007), making false absences highly unlikely. The
spatiotemporal distribution of fishing effort in the Icelandic winter purse seine herring fishery
is not random however, and has varied markedly over the time series considered here (ICES
2015). Early in the season, fishing locations are often selected based upon knowledge of
previous overwintering areas. As the season progresses, information on recent landings,
reports from other fishing vessels and input from the MRI acoustic surveys (which typically
coincide with the beginning of the fishing season), drive fishing behaviour. Similarly, the
location of the acoustic survey tracks is not consistent among years (Gudmundsdéttir et al.
2007, ICES 2015), with the level of survey effort reflecting funding, time availability,
weather conditions as well as information exchange between MRI and active fishing vessels
(Oskarsson and Palsson 2015). This situation likely resulted in some level of sampling bias,
although given the searching capacity of the purse seine fleet (GuOmundsdottir and
Sigurdsson 2004, Oskarsson et al. 2009), and the wide spatial coverage of the acoustic
surveys, we consider this bias to be minimal (see below). Additionally, such bias is generally
of lower concern for binomial occurrence models with near perfect detection, as it only acts
to reduce precision of the estimation in less-sampled regions, rather than biasing the

estimation process itself (Phillips et al. 2009, Guillera-Arroita et al. 2015).
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Sampling coverage

It could be argued that the fishery and survey data used here may be biased and may not
reflect the true extent of the herring distribution in a given season. We contend that such bias
would be minimal for three reasons. First, the fishing fleet for Icelandic herring, which
currently consists of 15 large vessels, conducts extensive searches for wintering herring
schools each season, covering a substantial portion of the stock’s distributional range which
is fully captured within the Icelandic exclusive economic zone (EEZ) (Oskarsson et al. 2009,
author’s personal observation). Second, the annual acoustic surveys, although varying in
sampling intensity each year, have covered a large region of the Icelandic EEZ in all years
from the mid-1990s onwards. Thirdly, the close working relationship between MRI and the
fishing companies results in constant information exchange regarding the distribution of the
herring schools during the autumn/winter fishing period. Hence, we contend that although the
full extent of the realized distribution may not be captured by the fishery and survey data, it
does reflect the major trends in overwintering distribution over the 1991_92 to 2013_14
period. Furthermore, given the near perfect detection in our dataset, there is no need to make
assumptions about capturing the full realized niche during the overwintering period. Rather,

we use the data we have to build the models.
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Appendix 2: Details and R code for constructing the distrib; and counts; variables and

calculating the spatial similarity index (SSI)

Appendix 2.1: Construction of distrib; and counts, layers

To construct the distrib; layers, we defined an area of interest that encompassed all records in
our dataset, then divided this region into 0.1° longitude x 0.05° latitude (i.e. ~ 5 x 5 km) grid
cells. Next, for each of the 23 years r =1, 2, ..., T, we summed the number of occurrence
records in each cell &, denoted r«:. If ri.r > O, then distribx: was coded as 1, otherwise 0. We
used these results to produce annual gridded maps of occurrence (distrib;) across our study

region (Fig. 2a—c).

Using the same spatial grid, we then computed the counts, variable which reflects the number
of occurrence records (i.e. successful fishing events) in each cell in each year, whilst also
accounting for potential joining/splitting interactions among herring schools occupying
nearby cells (Mackinson et al. 1999, Ngttestad and Axelsen 1999). For each grid cell k, in
year f, countsi, is the sum of rx, and the mean number of occurrence records in all 1% order
neighbouring cells nk:j (j =1, 2, ..., 8), excluding the central cell (Eq. A1) (see Appendix 2.3
for R code). To allow for comparisons among years, we converted countsk, to a percentage of
the total number of occurrences recorded across the whole study region in each year, denoted

OCCt.

100 PRI

countsk: = —<th + M) (A1)
occ, \ " 8

Like distrib;, we created annual gridded maps of counts; for each year of the time series (Fig.

2d,e). The counts; variable can be considered a proxy for herring abundance that is less prone

5
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to error than using landings data directly, as catch rates by vessels using purse seine gears are
inherently variable (Hilborn and Ledbetter 1985, Ruttan and Tyedmers 2007, Vizquez-Rowe

and Tyedmers 2013).

Appendix 2.2: Calculation of the SSI

Foryeart=2, 3, ..., T, we sum the grid cell values from the gridded occurrence map from
the previous year (distrib.1) and those from the current year (distrib;). Where grid cell counts
= 2, this cell has been occupied in year 7-1 and year r. We then divide this number by the total
number of occupied cells in #-1 or 7, and convert to a percentage. This last step captures the
degree of expansion and contraction in the area occupied from year to year. Next, we
calculate the distance change (km) in the centre of gravity (ACOG) of the stock between 7-1
and . The COG for fishing year ¢ can be defined as the mean location of the population for
that year (Wolliez et al. 2007), and was estimated here by weighting each fishing location by
the catch recorded from that location in that year, giving all fishing evenets equal weight (see

Eq. A2). For each year ¢,

M xic;
COG =2 e (A2)
i=1Ci

where M is the total number of catch locations, xi is the geographic position (i.e., longitude

and latitude) of location i and c;is the catch (tonnes) at location i.

Dividing by ACOG down weights the SSI when the distributional centroid has changed
dramatically between one year and the next. This calculation generates an ‘SSI overlap’

value (see R code in Appendix 2.3). Next, we calculate Pearson’s r between the counts,1 and
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counts; layers across all grid cells. This captures the change in density of occurrence records
from year to year, and generates the ‘SSI pearson’ value. Finally, we sum the ‘SSI overlap’
and ‘SSI pearson’ value to create an ‘SSI estimate’ for each year (see R code in Appendix

2.3).

Why use 1" order neighbours?

The decision to use only 1% order neighbouring cells in the calculation for counts;, rather than
an autoregressive model, can justified for two reasons. First, this way we have direct control
over the distance considered, which can then be tuned to relevant ecological processes. The
maximum distance from the outer edge of one of our grid cells to the outer edge of a
neighbouring cell is ~ 10 km — a distance representative of the scale at which school joining
and splitting behaviour often operates (Mackinson et al. 1999). Second, allowing more
flexibility in the numbers of neighbouring cells included in the calculations makes more
assumptions outside the spatial range of the occurrence records. In effect, our approach can
be viewed as quite conservative, as it only estimates values one-cell removed from where the
data actually are. We stress however, that the distance considered in the calculation of counts;
can be easily adjusted if there are reasons to believe that ecological processes are acting at

finer or coarser scales.

Excluding catch biomass in the calculation of countst

Catch biomass (c) for each fishing event can vary based on vessel-, skipper-, gear- and
weather-related factors in addition to the actual amount of herring present at a particular
location (Branch et al. 2006, Vazquez-Rowe and Tyedmers 2013). Given that we did not
explicitly measure the first four of these sources of variability in this study, in addition to the

inherent difficulties in accurately capturing these effects in any case (see Squires and Kirkley
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1999), we chose to take a conservative approach in computing counts; — i.e. based on the
number of occurrences per grid cell, per year. We also gave equal weight to occurrence
records with 0 < ¢ < 1 tonne and all ¢ > 1 tonne, as differences in ¢ may arise through
interactions among the aforementioned factors that are unrelated to the point abundance of
herring per-se. Through this approach we hoped to minimize bias associated with these

unquantified sources of variability.

Appendix 2.3: The folder ‘Macdonald et al._R code and data.zip’ (deposited in the Dryad
Digital Repository <http://datadryad.org/>) contains R code and data for constructing the
counts variable and for calculating the spatial similarity index (SSI) using the Icelandic

summer spawning herring dataset for illustration.

Folder name: ‘Macdonald et al._R code and data.zip’
Relevant files: i) ‘Create counts(t) rasters.R’ (R code)
i1) ‘Spatial similarity index calculation.R’ (R code)

ii1) ‘SSI_calc_stats.csv’ (.csv data file)
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Appendix 3. Additional information on covariates for the space-time models

Spatial memory

Our aim was to capture the main features represented in the SSI (Fig. 2, Appendix 2) in
covariates that could be used for input into spatially-explicit models to predict seasonally-
varying occurrence patterns. We employed the distrib; and counts; variables described in the
Methods under 'Capturing shifting distributions. a spatial similarity index' for this purpose (see
also Appendix 2 for calculation details). By using the layers created for the previous year (i.e.
t-1), we defined two covariates that represent the occurrence pattern (i.e. distrib-1) and density
of occurrence records (i.e. counts:1) one-year earlier (see Fig. Al for examples of rasters for
2001 _02). These two covariates are able to test the following two hypotheses. 1) Does the
occurrence of herring at a particular location in year ¢-1 (represented by the distrib.1 covariate)
influence the probability of occurrence in year ¢? 2) Does the relative density of occurrences at
a particular location in year ¢-1 (represented by the counts.1 covariate) influence the probability
of occurrence in ¢? That is, are herring here in ¢ because they were here in numbers in -1 —

akin, to a density-dependent effect with one-year lag?

10



Page 67 of 113 Ecography

distriby. countse. (%)

Fig. Al. Rasters of spatial memory covariates for 2001 2002. In
distrib,.;, orange cells indicate those occupied the previous year (i.e. 2000 2001). See
Table 1 in main text for units and derivation for these covariates.

Dynamic environmental variables

As temperature, salinity and flow velocity can impact strongly on herring distribution during
several phases of the species’ life history (Sinclair and Iles 1985, Maravelias et al. 2000a,b

and references therein, Toresen and @stvedt 2000, Lindegren et al. 2011, Bartolino et al.

2014), information on sea surface temperature — SST (°C), sea surface salinity — SSS (psu), and
the east-west (U-component) and north-south (V-component) flow vectors (m s™') were
extracted from the CODE model (Logemann et al. 2013) at three spatial scales (i.e. 1 x 1 km,

4 x 4 km and 8 x 8 km buffer distances around each fishing/survey record) and two temporal
scales (i.e. day of record, mean of the preceding 7 days) (Fig. A2). From these data, three new
variables were created (at the same scales) to capture mixing processes through the water
column that may influence the behaviour of wintering herring: the potential energy anomaly

— PEA (kg m™' s%) a proxy for stratification, and defined as the energy required to vertically mix
the water column so that the density is uniform from surface to bottom (Planque et al. 2006,
Huret et al. 2013), the temperature gradient between surface and bottom waters — change (°C),
and the mean absolute values of the U and V flow vectors in surface waters — current_vel

(m s (Fig. A2). The highest resolution data obtainable from the CODE (i.e. 1 x 1 km grid, day
of record) most closely matched both the area sampled by, and the timing of each fishing or

survey record, providing the most realistic representation possible of the ambient environment
11
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experienced by the school at that time and place. In light of this, in conjunction with the high
collinearity found among the spatial and temporal scales considered for each covariate

(Pearson's » > 0.8 in all cases), we decided to extract data at 1 x 1 km on the day of the record.

SST (°C) SSS (psu)

— 35.0
''''' ~ 34.5
— 34.0

— 33.5

— 33.0

Fig. A2. Rasters of dynamic environmental covariates for 2001 2002. See Table I in
main text for derivation. For model fitting, these covariates were extracted from the
CODE ocean model (Logemann et al. 2013) at 1 x 1 km resolution on the
day of each catch or survey record (see text above). However, rasters presented here
are at 0.1° longitude x 0.05° latitude resolution and represent mean grid cell values across
the 2001 2002 season. This is the common scale used for spatial prediction for all covariates
(see Spatial prediction in the Material and methods for further details).
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The CODE model assimilates observational data from CTD (conductivity, temperature,

depth) profiles and river discharge data from 46 Icelandic watersheds into its simulation, and

excellent concordance was found between modelled and observed temperature, salinity and

flow fields across our study region (see Table 1 in Logemann et al. 2013).

Static environmental variables

As both previous work and visual examination of our dataset suggest that herring may

favour specific bottom topography during pre-spawning (Maravelias et al. 2000b) and

wintering phases (MRI, unpublished data), we extracted information on depth -

bottom_depth (m) and slope - slope (degrees) of the sea-floor from the GEBCO website.

These data were available at 30 arcsecond resolution around each fishing/survey record. As

wintering ISS herring have been often been found close to the coast over the past three

decades (Oskarsson et al. 2009), we calculated distance to shore - dist_to_shore (km) from

each record using the 'gDistance' function in the 'rgeos' package in R (Fig.A3).

bottom_depth (m)

— —-500

— —1000

— —-1500

— —2000

— -2500

Fig. A3. Rasters of  static
environmental covariates. See
Table 1 for derivation. Rasters
are presented at 0.1° longitude X

0.05° latitiude resolution.
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Zooplankton biomass in August

Although herring hardly feed during the winter (Slotte 1999), adult stages of the zooplankter
Calanus finmarchicus are a major prey item for herring in the North Atlantic during summer
(Holst et al. 1997, Dalpadado et al. 2000, Gislason and Astthorsson 2002, Prokopchuk and
Sentyabov 2006). Hence, we suggest that regions of high summer C. finmarchicus biomass is
likely be a feeding hotspot for pre-wintering ISS. Further, we propose that selection of
wintering areas may be geographically close to where these hotspots are located. To test
this, we extracted georeferenced mean August biomass estimates for adult C. finmarchicus
(i.e. C4, C5, C6 stages), integrated in the upper 400 m of the water column at 20 x 20 km
horizontal resolution, from the output of a C. finmarchicus IBM — CF_Aug (ug C m?)
(Hjollo et al. 2012) (Fig. A4). We used this dataset as a proxy for late summer ISS feeding
distribution, in lieu of spatially-referenced fishing or survey data that were not available

for that time of year during the time series. Temporal coverage of Hjollo et al.’s simulation
spanned 1995 to 2007, and missing values for other years in our dataset were imputed using
predictive mean matching in an approximate Bayesian framework in the ‘mi’ package in R

(see below for further details).

CF_Aug (Mg C m™)

- 1e+07

— 8e+06

- 6e+06

- 4e+06

— 2e+06

— 0e+00

Fig. A4. Raster of mean C. finmarchicus biomass for August 2001. See Table 1 for
derivation. Layers were available at 20 x 20 km resolution, and we used this
resolution for data extraction and model fitting. Prediction was made to the
0.1° longitude x 0.05° latitude grid presented here, with data resampled using a bilinear
interpolation.
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Imputation of CF_Aug using the 'mi' package

The 'mi' R package uses a chained equation approach to multiple imputation for datasets with
missing values (Su et al. 2011). In our case, we had missing values only for CF_Aug in the
years 1992-1994 and 2008-2013. The 'mi' function approximates a Bayesian approach and
draws imputed values from the conditional distribution for CF_Aug given the observed values
of the other covariates. With Student-z priors (mean = 0, df = 1, scale = 2.5) placed on the
regression coefficients, we ran four independent chains initialized with different starting
values and assessed convergence after 30 (the default), 50 and 80 iterations via R statistics.
We found acceptable convergence after 80 iterations (CF_Aug: mean = 1.01, sd = 1.02) and
diagnostic plots (produced by the 'plot' function in 'mi') revealed good congruence between
observed and imputed data. Our procedure generated four multiply imputed datasets (one per
chain), and we took the mean imputed values for each across these datasets as our new values

for CF_Aug.

Fishing magnitude

Given the known disruptive effects of fishing and vessel activity on the behaviour of pelagic
schooling species like herring (e.g. Olsen 1971, Fréon et al. 1992, Vabg et al. 2002, Ona et

al. 2007, Lindegren et al. 2011) we aggregated data on numbers of successful fishing events
(succy) and total landings in tonnes (c) in each 0.1° longitude x 0.05° latitude grid cell &

for each week of winter. We then constructed a measure of local fishing magnitude —
fish_magnitude (tonnes) = succy * ¢y, for each grid cell in each week, month and

year across the time series (Fig. AS). Finally, for each fishing/survey event, we calculated a
fish magnitude value in the week prior to that particular observation. Our hypothesis was that
a high fishing magnitude would disperse the herring schools in that area, making the

probability of capture at that location in the following week less likely.
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fish_magnitude (tonnes)

— 3500
— 3000
— 2500
— 2000
— 1500
— 1000
— 500

64°N o

Fig. AS. Raster of mean fishing magnitude for 2001 2002. See Table 1 in main text
for derivation. Model fitting was conducted using data extracted at a weekly resolution,
but grid cell values (0.1° 1 ongitude x 0.05° latitude resolution) were summed
across the entire year for spatial predictions.
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Appendix 4: R code and data for SPDE models

The folder ‘Macdonald et al._R code and data.zip’ (deposited in the Dryad Digital Repository
<http://datadryad.org/>), contains R code and data to run all models described in the paper.
Due to confidentially issues, the ‘herring_data.csv’ dataset is a modified version of that used
in the paper, so results of the analyses will differ. However, to encourage further exploration
of our specific results, we include the ‘quadres2_sLap.Rdata’, a list containing model output

that allows readers to reproduce the figures and tables presented in the manuscript.

Key components of the R code include:-

(1) Preparing the data for modelling, allowing for different degrees of linearity and non-
stationarity in the covariates and different specifications of the spatiotemporal random
effects.

(2) Creating a triangulated mesh upon which the GMRFs can be calculated.

(3) Fitting the models, assessing model fit and predictive performance.

(4) Extracting results from the posterior distribution and plotting summaries.

(5) Making spatial predictions to an area of interest within the time series.

(6) Assessing predictive performance to seasons outside the time series.

Folder name: ‘Macdonald et al._R code and data.zip’

Relevant files: 1) ‘Herring models_23yrs.R’ (R code and functions for SPDE models)
i1) ‘mesh creation.R’ (R code for different mesh resolutions)
iii) ‘herring_data.csv’ (.csv file containing point-referenced

occurrence/absence records and covariates)
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1v) ‘bisland.csv’ (coordinates of Icelandic coast)

v) ‘Adult-recruit ratios_SSB_numbers.csv’ (time series of
demographic parameters for Icelandic summer spawning herring)
vi) ‘space_grid.csv’ (coordinates for spatial prediction grid)

vii) ‘quadres2_sLap.Rdata’ (a four-element list containing model

output for plotting Figs. 3-5, A7, reproducing Tables 2, 3, A1-A3, and

summarizing key results). This list is accessed directly through the
‘Herring models_23yrs.R’ R script.
viii) ‘Final prediction rasters’ (folder containing covariate layers for

making spatial predictions for a subset of seasons)
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Appendix 5: Prior specification for the space-time models

We assigned vague Gaussian priors for all fixed effects N(O, 1000) and the intercept N(0, )
in the stationary and partly non-stationary models. Although information on the influence of
some environmental variables on herring occurrence is available from previous work that
could be used to inform prior specification, this information relates to other herring stocks at
other times of year. These stocks are exposed to markedly different oceanographic conditions
compared with those experienced by the ISS herring during the autumn and winter months.
To this end, we chose to assign vague normal priors to all of our fixed effects, but tested the
sensitivity of our results to prior choice by refitting the stationary ‘no space’ models using
Cauchy priors with mean 0 and scale = 2.5 for fixed effect covariates and scale = 10 for the

intercept in the ‘arm’ R package (Gelman et al. 2008).

For the non-stationary models, the rw1 models specified for the time-varying coefficients
were defined by a Gaussian distribution N(0, precR), where prec is the precision parameter
assigned a Gamma(1, 5e-05) prior, and R is a fixed structure matrix reflecting the model’s
neighbourhood structure. We also tried various arl models for these time-varying terms,
using a range of ‘Penalized Complexity’ priors that control the degree of correlation among
seasons (see Simpson et al. 2015 for further details). We found that the rw1 models gave
essentially the same results, yet with vast computational benefits, so we used these
throughout. The SPDE model is defined by hyperparameters log(7) and log(x), (related to the
spatial range p, and marginal variance ¢2) which were given normal independent priors N(O,
1), and the coefficient ‘a’ that controls the degree of correlation in the spatial field between

seasons, to which we assigned N(0, 0.15).
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Appendix 6: Spatial prediction

Scaling covariates to match prediction grain size

Where the spatial resolution of covariates used in model fitting was smaller (i.e. all dynamic
environmental covariates at ~1 x 1 km), we aggregated the smaller cells to match the 0.1°
longitude x 0.05° resolution of the prediction grid, and used the mean value of the aggregated
cells. In the case of the C. finmarchicus biomass layers (CF_Aug) (extracted at 20 x 20 km
resolution for model fitting), we used bilinear interpolation with the ‘resample’ function in
the ‘raster’ package in R to create layers with the same extent and resolution as the prediction
grid. For the fishing magnitude variable (fish_magnitude), we summed the grid cell values
for each week in each fishing year (i.e. October to January inclusive), resulting in one layer

reflecting total fishing magnitude for each of year.

Prediction to t+1 (see Appendix 4 for R code for running all analyses)

We used the best partly non-stationary model (i.e. part_ns5) specification to fit models to the
first 18, 19, 20 and 21 years of data. We wanted to see how well we could predict the
observed occurrences and absences in the 19th, 20th, 21st and 22nd years respectively. For
this, we need to be able to estimate the distribr1 regression coefficient for ++1. We tested if
we could do this by examining relationships between the time series of distrib:-1in the fitted
models and nine demographic parameters for the ISS herring stock (see Step 2 below). If a
strong correlation existed with one or several demographic factors, we then fitted a GLM to
predict the distrib:-1 coefficient from the demographic factor. Assuming that we have data for
(or can estimate) the demographic parameter in #+1, we can then feed this value into the
GLM and estimate the distrib.1 coefficient in #+1. The steps we used are summarised as

follows.
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Step 1: Use the more general partly non-stationary model. In this model, all covariates are
kept stationary in time, except for spatial memory covariate (i.e. distribs1) which is allowed to
vary by year according to rwl dynamics. Note that the distrib1 covariate represents the

spatial occurrence pattern in the previous year, 7-1.

Step 2: Examine correlations between the 22-year time series of distrib.1 coefficients from
the above model and time series of the nine demographic parameters for the ISS herring stock
described in main text under ‘Correlation among covariates and demographic parameters’.

They are as follows:-

1) Number of age3:aged+

i1) Number of age3:agedto?

i) Number of age3:age8to13

1v) Spawning stock biomass (SSB)

V) Spawning stock numbers (SSN)

vi) Number of experienced individuals (n age4+)

vii))  Number of young experienced individuals (n age4to7)
viii))  Number of old experienced individuals (n age8to13)

1X) Mean age of the spawning stock (mean age).

Step 3: If a strong correlation with one or more of these parameters is found, run a GLM to

model distribr1 as a function of the demographic parameter.

27



Ecography Page 84 of 113

This analysis revealed a strong positive correlation between SSN on the regression
coefficients for distrib-1 across the time series. We then fitted a linear model and found a
significant effect of SSN on the distrib.1 regression coefficients. This means that we may be

able to predict the distrib.1 coefficient in #+1, given SSN in #+1 is known or can be estimated.

Step 4: Subset full dataset to get first 18, 19, 20 and 21 years of observations and prepare data

for model fitting.

Step 5: Fit models to the first 18, 19, 20 and 21 years of the dataset. These models use the
same formulation as the best partly non-stationary model with linear and quadratic terms for
environmental covariates, a rw1 model for distrib.1 and independent realizations of the

spatiotemporal random field (w) each year.

Step 6: For each of the four models in turn, extract the coefficients for the distrib:.1 time

series.

Step 7: Correlate this time series with the equivalent time series of SSN.

Step 8: If strong correlation with SSN 1s found, fit a GLM to model the distrib:1 coefficients

as function of SSN.

Step 9: Get (or predict) an estimate of SSN for +1 (i.e. from stock assessment in year ¢). In

our case, we already have the SSN estimates for the 19", 20, 21 and 22™ years.

Step 10: Feed this value into the GLM to predict the distrib-1 coefficient in 7+1.
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Step 11: Calculate a new multiplier for the distrib.1 covariate for the year we want to

predict to. For example, for predicting 2010_11, we divide the predicted coefficient from Step
10 by the estimated coefficient from the fitted 18-year model. This value is the new
coefficient we use multiply the distrib.-1 covariate values for 2010_11 by in the 'effects' list of

the prediction stack.

Step 12: Validate these models on held-out observations in #+1, and assess predictive
capacity for the next year (i.e. t+1). Do this by creating a validation stack with covariates
referenced for #+1 and refitting the 18, 19, 20 and 21 year models with response = NA, using
the spatiotemporal random effect estimated for year 7. Examine model calibration and

predicted outcomes versus observations (using cross-validated mean Brier scores and AUC).

Step 13: Finally, make spatial predictions across the entire domain for the four 741 prediction

years (i.e. 2010_2011, 2011_2012, 2012_2013, 2013_2014).
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Appendix 7: Additional details on wintering area characteristics, modelling output,
occurrence-environment relationships in wintering ISS herring and environmental

sensitivity in other herring stocks

Environmental characteristics of wintering areas

By charting the hydrographic variability in wintering areas across seasons, we gain some
insight into the level of environmental plasticity exhibited by wintering ISS herring. Sea
surface temperatures (i.e. SST) in the wintering areas differed somewhat among seasons;
however, most estimates were in the range of ~ 4 to 9°C, and rarely below 3°C (Fig. A6a). In
19 out of the 22 seasons, median SST’s were higher in wintering areas than in areas where
herring were absent. Marked among-year consistency was observed in both sea surface
salinity (i.e. SSS) and the degree of stratification (i.e. PEA) during the early to middle part of
the time series, yet conditions inshore, inside the fjords occupied during the ‘West” phase
were substantially more mixed and less saline (Fig. A6b, c¢). Wintering areas were also
typified by relatively small vertical temperature gradients (Fig. A6d), low and uniform
current velocities (Fig. A6e), depths ranging from ~500 m off the east coast up to ~ 20 m

inshore on the west coast (Fig. A6f), and low bathymetric relief across all seasons (Fig. A6g).
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Fig. A6. Seasonal variation in environmental characteristics of wintering areas
occupied by ISS herring between 1991 1992 and 2013 2014. Boxplots show the annual
distributions of environmental data associated with each occurrence record (grey boxes)
and absence record (white boxes) in our dataset. Data for all dynamic variables (i.e., A—
E) were extracted on the day of capture at 1 x 1 km resolution around each catch
location from the CODE ocean model (Logemann et al. 2013). Data for both static
variables (i.e., F,G) were extracted at 30 arcsec resolution around each catch location
from the GEBCO database (www.gebco.net). The median (thick horizontal line), and lower
(Q1) and upper (Q3) quartiles (box limits) are shown for each year. Upper whiskers represent
the smaller of the maximum value for each variable and Q3 + 1.5 X interquartile range, and
lower whiskers are the larger of the minimum value and Q1 — 1.5 X interquartile range.
Circles are data points outside these ranges. Note that no absence data was available for
2009 2010.
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Fig. A7. Marginal effect plots for non-significant covariates in the best partly
non-stationary model (part ns5): (a) density of occurrence records in #-1 (countss1), (b)
vertical temperature gradient (change), (c) bottom depth, (d) bottom slope and (e) fishing
intensity in the previous week (see Table 1 for detailed descriptions and derivation).
Black lines represent the median estimate of 1000 draws from the posterior distribution for a
sequence of 100 values across the full range of each covariate, and grey-shaded regions
are 95% CIs. Tick marks denote the percentile distribution of raw data for each covariate
for occurrence records (top of plots) and absence records (bottom of plots). Plots (a and
e) represent the linear effect, and (b, c and d) the quadratic effect of the covariate.
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Table Al. Posterior mean estimates and 95% credible intervals for fixed effects, the spatial
range (p) and marginal variance (¢2) for the best-performing stationary, partly non-stationary
and fully non-stationary models. Estimates for random effect covariates with time-varying
coefficients in the non-stationary models are presented graphically in Fig. 3. All models were
fitted using simplified Laplace approximation.

Parameter Stationary model Partly non-stationary model  Fully non-stationary model
(39) (part_ns5) (full_ns5)
mean Q25% Qo7.5% mean Q25% Qo7.5% mean Q25% Qo7.5%
o -0.140  -0.206 -0.075 -0.183 -0.204 -0.161 -0.137 -0.170 -0.104
distrib, 0.487 0.440 0.534
counts, | 0.004 -0.021 0.029 -0.010 -0.041 0.020
SST 0.247 0.205 0.290 0.170 0.132 0.209
SST? 0.146 0.100 0.192 0.090 0.046 0.134
SSS -0.168  -0.224 -0.113 -0.109 -0.162 -0.056
SSS? -0.051 -0.070 -0.032 -0.037 -0.056 -0.018
PEA 0.116 0.087 0.145 0.127 0.098 0.156
PEA? 0.083 0.052 0.113 0.076 0.046 0.107
change -0.001 -0.026 0.024 -0.005 -0.029 0.020
change? -0.005 -0.014 0.004 -0.005 -0.014 0.003
current_vel -0.052  -0.078 -0.026 -0.039 -0.065 -0.014
current_vel? 0.017 -0.007 0.041 0.014 -0.010 0.038
bottom_depth 0.010 -0.044 0.063 -0.003 -0.055 0.049
bottom_depth? 0.009 -0.027 0.044 0.000 -0.035 0.034
slope -0.009  -0.039 0.020 -0.011 -0.041 0.018
slope? 0.000 -0.007 0.006 0.000 -0.006 0.007
fish_magnitude  -0.003  -0.023 0.018 -0.003 -0.024 0.019
CF_Aug 0.022 -0.004 0.048 0.036 0.012 0.060
yearogzo4 -0.147 -0.272 -0.021
ye€arog49s -0.201 -0.329 -0.074
yearosos -0.034  -0.164 0.095
yearogo7 0.061 -0.075 0.197
Yyearog79g -0.137 -0.294 0.020
yearogog -0.055 -0.191 0.081
Yyearoqooo -0.022 -0.102 0.057
yearooo1 -0.038 -0.124 0.048
yearoio2 -0.068 -0.157 0.020
yearoos -0.105 -0.186 -0.023
yearozo4 -0.016  -0.092 0.060
yearo4os -0.051 -0.139 0.035
yearosos -0.060  -0.148 0.029
yearoso7 -0.050 -0.138 0.037
yearo7os -0.093  -0.202 0.016
yearogoo -0.077  -0.149 -0.004
yeéaropoio -0.106 -0.427 0.214
yearioni -0.009  -0.105 0.087
yeariii2 -0.093 -0.184 -0.003
yeariais -0.248  -0.333 -0.162
yearisi4 0.003 -0.185 0.189
p 9.945 8.190 11.768 10.395 8.547 12.314 11.247 9.212 13.364
o2 0.107 0.081 0.135 0.109 0.081 0.137 0.086 0.063 0.110
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Table A2. Structure and performance of candidate space-time occurrence models for
wintering Atlantic herring. Each model contains all covariates (full), and results are shown
for fitting using Gaussian approximation (see Table 2 in main text for results based on a
simplified Laplace approximation strategy). sl-s15, stationary models; part_nsl-part_ns9,
partly non-stationary models; full_ns1-full_ns9, fully non-stationary models. Covariate form
refers to models that include linear terms only (linear), and quadratic terms (quadratic) or
penalized regression spline terms for environmental covariates (spline). Structure details the
form of the spatiotemporal random effect wis, and if a fixed factor for year (year,) was
included; no-space/no-time, no spatially or temporally structured effects; time_indep,
independent realization of the spatial random field at each #; time_corr, temporal
correlation (arl) is considered in the realization of the spatial random field at each ¢. The
best-performing model within each stationarity class is shown in bold.
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Model Covariate Structure DIC mean log  Brier score AUC
form score
Stationary
sl linear full (no-space/no-time) 49104.4  0.504 0.157 0.934
s2 linear full + year, 48354.0  0.496 0.154 0.974
s3 linear full + time_indep w;, 41877.0 0429 0.123 0.993
s4 linear full + year, + time_indep w;, 41816.8 0.429 0.123 0.993
s5 linear full + time_corr w;, 41881.7 0.429 0.123 0.992
s6 quadratic  full (no-space/no-time) 489174  0.502 0.156 0.943
s7 quadratic  full + year, 48060.0  0.493 0.152 0.981
s8 quadratic  full + time_indep @, 41737.1  0.428 0.122 0.994
s9 quadratic full + year; + time_indep @i  41634.0  0.427 0.122 0.995
s10 quadratic  full + time_corr @, 41738.2  0.428 0.122 0.994
sl1 spline full (no-space/no-time) 492324  0.505 0.158 0.917
s12 spline full + year, 48366.0  0.496 0.154 0.973
s13 spline full + time_indep w;, 41912.0 0.430 0.123 0.993
sl4 spline full + year, + time_indep w;, 41838.2  0.429 0.123 0.993
s15 spline full + time_corr w;, 41913.5 0.430 0.123 0.992
Partly non-stationary
part_ns1 linear full (no-space/no-time) 48953.5 0.502 0.157 0.952
part_ns2 linear full + time_indep w;, 41738.2  0.428 0.122 0.993
part_ns3 linear full + time_corr w;, 41746.6  0.428 0.122 0.992
part_ns4 quadratic  full (no-space/no-time) 48726.0 0.500 0.155 0.960
part_ns5 quadratic  full + time_indep @i 41626.5 0.427 0.122 0.994
part_ns6 quadratic ~ full + time_corr w;, 41630.6  0.427 0.122 0.994
part_ns7 spline full (no-space/no-time) 49081.0 0.504 0.157 0.943
part_ns8 spline full + time_indep w;, 417849  0.428 0.122 0.993
part_ns9 spline full + time_corr w;, 41790.5  0.429 0.122 0.992
Fully non-stationary
full_ns1 linear full (no-space/no-time) 47333.0 0.486 0.148 0.989
full_ns2 linear full + time_indep i, 41342.6  0.424 0.120 0.996
full_ns3 linear full + time_corr @;, 41351.8 0.424 0.120 0.995
full_ns4 quadratic  full (no-space/no-time) 46760.2  0.480 0.146 0.995
full_ns5 quadratic full + time_indep @ 41057.3 0.421 0.119 0.997
full_ns6 quadratic  full + time_corr @;; 41065.8 0.421 0.119 0.997
full_ns7 spline full (no-space/no-time) 46975.4 0.482 0.147 0.993
full_ns8 spline full + time_indep w;, 41228.6  0.423 0.119 0.996
full_ns9 spline full + time_corr w;, 41236.4  0.423 0.120 0.996
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Table A3. Results for single-term deletions from the best stationary model (s9). Note that for
environmental covariates, this equates to deletion of both linear and quadratic terms.

Model Covariate Structure DIC mean log  mean Brier
form score score
s9 quadratic ~ full + year; + time-indep w;; 41629.0 0.427 0.122
Deletions from s9
- distriby.; — 42168.6 0.432 0.124
- counts,.; 41629.0  0.427 0.122
- SST 41858.6 0.429 0.123
- SSS 41680.3 0.427 0.122
- PEA 41725.6 0.428 0.122
- change — As above 41631.0 0427 0.122
- current_vel 41653.8 0.427 0.122
- bottom_depth 41629.0  0.427 0.122
- slope 41630.0 0427 0.122
- fish_magnitude 416304  0.427 0.122
- CF_Aug — 41637.9 0.427 0.122
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Further details on modelled occurrence-environment relationships

Whilst extreme low temperature conditions can impact directly on physiology (see main text
for details), and logic dictates that preferences for lower velocity zones may promote energy
savings and compensate somewhat for any metabolic costs incurred through residing in
warmer waters (see Liao et al. 2003), the search for causality in the relationships we observed
between y, SSS and PEA (see Fig. 3b, c) is more challenging. Given herring’s euryhaline
nature, and ability to inhabit brackish and fresh waters down to 1 psu in the Baltic Sea
(Teacher et al. 2013, Miethe et al. 2014), it is clear that the lowest salinities encountered in
Icelandic surface waters (i.e. ~ 31.5 psu) would not impose high physiological demands.
Likewise, the highest SSS in the region throughout the study period approached 35.4 psu — a
value close to surface measurements made in Ofotfjorden, Norway, during the late 1980s and
early 1990s when it harbored the majority of the wintering NSS stock (Dommasnes et al.
1994). As these bounding values are well within the known tolerance range of the species,
and that the vertical salinity gradient in the upper water column (between 1 and 100 m) across
our dataset never exceeded 2 psu, we argue that wintering ISS herring undertaking diurnal
vertical migrations would not have been exposed to strong physiological forcing by salinity,
and that any effects we see are likely indirect. With regard to our results for PEA, although it
could be argued that selection of less stratified, shallower, fresher waters, as seen during the
recent years of our time series (Fig. A6¢) could provide energetic benefits to vertically
migrating herring (Huse and Ona 1996), we see no direct fitness advantage to wintering fish

of inhabiting more stratified waters.

In the absence of any clear mechanistic basis for these findings, we propose two alternatives.
First, active avoidance of cold water masses could indirectly influence the population’s

response to salinity and stratification. The warmer waters encountered at the time and
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location of the bulk of successful fishing events were also often characterized by higher PEA
values (particularly during the ‘East’ and ‘Eastwest’ phases), weaker currents and lower SSS
(particularly close to the coast during the inshore ‘West’ phase) compared with conditions
associated with survey-derived absence records (Fig. A6). Such hydrographic conditions are
common in coastal Icelandic waters (Appendix 3, Fig. A2, authors’ unpublished data), and
other regions at certain times of year (e.g. North Sea: Maravelias and Reid (1995); Bay of
Biscay: Planque et al. (2006), Huret et al. (2013); Lindaspollene, Norway: Langard et al.
(2014)), and residence in them during winter would shape the response to each of these
covariates in the way we observe (see Fig. 3)!. Second, preference for moderately-stratified
zones, particularly during the early and middle years of the time series (Fig. A6¢) could also
reflect adaptations for predator-avoidance. During this period, the locations of our occurrence
records were typically quite distant from major fronts off the northwest and north coast (i.e.
boundaries between strong vertical temperature gradients — see ‘change’ plot in Appendix 3,
Fig. A2, and Pélsson and Thorsteinsson (2003)) or strongly-mixed zones offshore (i.e. those
associated with lower PEA values) often rich in herring predators like adult cod (Palsson and
Thorsteinsson 2003, Palsson and Bjornsson 2011). Our results may reflect high predator
densities in these years, with occupation of more stratified areas affording some release from
predation pressure. Although we included recent fishing activity in our analysis as a potential
top-down control, spatially-resolved data on the distribution of other non-human predators in

the study region during winter are needed to allow a more explicit examination of predator

! We note that our PEA estimates may underestimate the true degree of stratification in very
shallow zones (i.e. < 15 m deep), due to limits on the minimum vertical bin-depth of the
CODE model (= 2.5 m). However, given that only 68 (0.1%) of our records were located in
such shallow waters — in all cases near shore in fjords, and that these locations are generally
influenced strongly by river run-off and tidal processes which enforce water-column mixing,
we contend that slight inaccuracies in our estimates would have negligible effects on model
estimation and prediction.
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effects and their environmental interactions on herring spatial distribution patterns (see the

‘Fishing and predation’ in the main text for a further discussion).

Issues of scale

That environmental factors contributed to the wintering patterns we observed (at least in
some years) contrasts with recent work on wintering ISS herring (Oskarsson et al. 2009) and
NSS herring (Huse et al. 2010). Both studies found no clear evidence for environmental
signals as determinants of wintering dynamics. Huse et al. (2010) showed that the six
different wintering locations used by the NSS stock over the past 50+ years, were
characterized by vastly different environmental conditions. In Iceland, Oskarsson et al.
(2009) found no support for a temperature effect on the ISS wintering patterns of the late
1970s up until the mid-2000s, but suggested that temperature may still play a role at finer
scales. We agree with this, and posit that the inability to detect a signal in these studies may
have arisen from a mismatch between the scale of the temperature data used (i.e. single CTD
stations measured annually), and the scale of the process giving rise to the occurrence of
herring in that area. In developing our study, we acknowledged the variable spatial and
temporal scales at which stimuli may act (Levin 1992, Witman et al. 2015); shoaling species’
responses to them emerging as a result of exposure to, and/or retention of specific cues
experienced during early age (e.g. olfactory imprinting), the social transmission of long-
standing traditions among generations (e.g. Ferno et al. 2011), or the spontaneous spread of
information among individuals, that can manifest in rapid expansion in school size (Makris et
al. 2009), and elicit fast, school-wide responses to environmental gradients, prey resources or
predation threats (Doksater et al. 2009, Makris et al. 2009). We deemed it crucial to capture
this variability in our models. Therefore, we extracted environmental data from the CODE

model (Logemann et al. 2013) at several grain sizes and temporal windows (Table 1,
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Appendix 3), and, through prioritizing ecological reasoning in the trade-off between data
quality and availability, selected scales for the other variables (Table 1, Appendix 3). Our
goal here was to match as closely as possible the scale of processes acting on herring schools
in both the pre-wintering period and during residence in the wintering areas (i.e. behavioral
states 1 and 2), given the scale of the fishery purse-seine shots that comprise our occurrence
data. Although the scales of our covariates likely miss several processes relevant to wintering
herring, particularly the complexities of intra-school shoaling dynamics and diurnal vertical
migration (Mackinson et al. 1999), the potential impact of larger-scale, non-spatial climatic
indices (e.g. North Atlantic Oscillation (NAO) winter index, Atlantic Multidecadal
Oscillation (AMO) — see Engelhard et al. 2011) and possibly, interactions between past
environmental conditions and spatial persistence in distribution (see Corten 2002, Rindorf
and Lewy 2006), we feel that the spatial and temporal resolution we chose provided a
plausible linkage between processes and observations. With continuing improvements in the
quality of measured and modelled data available for marine systems and the species within
them, opportunities are emerging to incorporate more mechanistic information into spatial
models (e.g. Teal et al. in press). Such process-based approaches allow the ‘best’ scale to
emerge naturally from the physiological process of interest, and by their general nature,
rooted in data or theory on metabolic rates, hold great promise for predicting species’
distributions when observational data are limited. We anticipate rapid progress in this field in

the coming years (see also Appendix 9 ‘Notes on the modelling approach’).

Environmental sensitivity in herring
Sensitivity to environmental forcing has also been seen in other herring stocks during winter
(e.g. Corten 1999a), and at different times of the year. For example, in a series of papers

focused on North Sea herring, Maravelias and colleagues demonstrated strong effects of
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temperature gradients, salinity, stratification, zooplankton biomass and bottom topography in
shaping pre-spawning summer distribution (e.g. Maravelias and Haralabous 1995, Maravelias
and Reid 1997, Maravelias et al. 2000a, b). The direction and magnitude of these effects
differed substantially from our study, a finding that was anticipated given that the ISS stock is
located near the northerly range-edge for the species, and is therefore exposed to vastly
different environmental conditions to those typically encountered in the North Sea.
Moreover, these North Sea papers and similar studies in Nordic seas (e.g. Misund et al. 1998,
Jakobsson and @stvedt 1999, Kvamme et al. 2003, Ngttestad et al. 2007, Broms et al. 2012)
have often focused on distribution patterns during spring and summer, periods of high
feeding activity in which adult herring can be tightly linked to prey resources either directly
(e.g. Holst et al. 1997, Maravelias and Reid 1997, Olsen et al. 2007) or indirectly through
hydrographic proxies. Some examples of the latter include the northwards displacement of
the feeding distribution of North Sea herring in the 1980s, posited as a response to
intensification of the shelf edge current leading to increased productivity off the Norwegian
coast, concurrent with elevated water temperatures causing a range contraction of C.
finmarchicus to northern waters (Corten and Van de Kamp 1992, Corten 2001). And, the
reappearance of the Aberdeen Bank spawning population in 1983, suggested as a corollary of
increased Atlantic inflow into the North Sea that caused a redistribution of key planktonic
prey and their predators (e.g. pre-spawning herring) southwards (Corten 1999b). It has also
been suggested that the quality of future spawning habitat (e.g. water depth, seabed roughness
— Maravelias et al. (2000b), Langérd et al. (2014a)), and distance to spawning grounds (Jech
and Stroman 2012) can affect pre-spawning distribution to some extent. These examples
illustrate how environmental and biotic factors can interact in complex ways to shape herring
feeding and pre-spawning distributions, yet such processes are largely irrelevant during

residence on wintering grounds (i.e. during behavioral state 2 — see main text for definition).
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Appendix 8: Exploring the relationship between adult population size and occupied

area.

Although the spatial inconsistency of our fishery and survey dataset limits precise
quantification of expansion or contraction in Icelandic summer spawning (ISS) herring
winter distribution over time, we can consider our occurrence records, and their gridded
representations in the spatial similarity index (SSI), as a minimum, yet fairly accurate
estimate of the realized winter distribution, reflecting the major spatial trends over the
1991 92 to 2013 14 period (Gudmundsdottir and Sigurdsson 2004, Oskarsson et al. 2009,
and see Appendix 1 for further details). Hence, by summing the number of occupied grid
cells within each year =1, 2, ..., T, and plotting these values against fishery-independent
estimates of adult population size, represented by spawning stock numbers (SSN), we
were able to examine the association between abundance and occupied area for wintering

ISS herring. We found no evidence of a positive relationship for our data (Fig. A8).
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Fig. A8. Plot of adult population size in the ISS herring stock, represented by estimated spawning
stock numbers (SSN), against the number of occupied 0.1 longitude % 0.05 latitude grid cells
during winter (i.e. October to January) for the 23 years from 1991 92 to 2013 14. Data for
the latter are drawn from the distrib, layers used in the creation of the spatial similarity index
(SSI), and are considered as a minimal estimate of occupied area for each year. Estimates for SSN
are derived from annual stock assessments for ISS herring conducted by the MRI, Iceland.
No evidence of an abundance-occupied area relationship was found for overwintering ISS
herring. The black line is the fitted curve from the non-significant linear regression of SSN
against the number of occupied cells (R?> = 0.001, p = 0.885).
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Appendix 9: Notes on the modelling approach

The mixed effects models we fit in this paper fall broadly within the class of ‘empirical’
statistical models as defined by Levins (1966). These types of models are in essence
correlative, although they may have mechanistic underpinnings related to the fundaments of
Grinnellian and Eltonian niches (Hutchinson 1957, Soberén 2007, Beale et al. 2014). In lieu
of the oft-lacking, detailed physiological knowledge needed for parameterization of an
exciting new family of process-based models (e.g. Freitas et al. 2010, Jgrgensen et al. 2012,
Teal et al. 2012, see Peck et al. in press for a review), correlative models, which tend to
compromise generality for realism and precision (Levins 1966, Dickey-Collas et al. 2014),
remain widely used in ecology to explore the nature of relationships between species’
distributions and biotic and abiotic factors, to build hypotheses and to guide management

decisions (Guisan and Thuiller 2005, Elith and Leathwick 2009, Robinson et al. 2011).

Increasing recognition of the role of demographic structure, dispersal and density-dependence
in shaping fish distribution patterns has motivated recent attempts to incorporate these
processes explicitly (Cheung et al. 2009, Loots et al. 2010, Planque et al. 2011, Ciannelli et
al. 2012). Moreover, regression models including time-lagged covariates, which provide
insights into how the past may impact the present (e.g. Rindorf and Lewy 2006), and those in
which covariate coefficients can vary in space and/or time, have proved valuable in
understanding the interplay between density-dependent and density-independent controls on
observed distributions (Bartolino et al. 2011, Ciannelli et al. 2012). Whilst still not allowing
causation to be inferred directly, this class of models implicitly integrate mechanistic
processes in their formulation, and hence occupy a space between environmental envelope

and process-based models (Beale and Lennon 2012, Peck et al. in press).

47



Ecography Page 104 of 113

We built our models in line with these ideas. By linking measures of distribution history,
output from a spatially-explicit, individual-based model of zooplankton biomass, fine scale
environmental fields and estimates of local fishing intensity, we fitted stationary and time-
varying coefficient GLMMs for ISS herring occurrence across a 23-year time series.
Correlations between the relative influence of these factors across years and time series of
demographic parameters were then examined post-hoc, providing a basis for model validation
to held-out observations one-year ahead. Our models were fitted in a Bayesian framework in
R-INLA, using the SPDE approach to capture spatial and temporal dependence in the data
(Rue et al. 2009, Lindgren et al. 2011). The merits of the Bayesian approach for this type of
hierarchical model are many (Gelfand et al. 2006, Gelman and Hill 2007, Royle et al. 2007).
Without reviewing these exhaustively here (see Elderd and Miller 2016 for a comprehensive
appraisal), we highlight the inherent way in which random effects are handled as parameters
of interest, resulting in fully specified probability distributions from which information on the
intensity and uncertainty of the effects can be drawn; the option to incorporate prior
knowledge based on empirical data or theory; and the ability to robustly quantify and
propagate uncertainty through all modelling stages. Model fitting using INLA 1is
computationally efficient, and provides accurate approximations of the posterior marginal
distributions of model parameters that show high concordance with Markov chain Monte
Carlo (MCMC) simulations (Rue and Martino 2007, Rue et al. 2009, Held et al. 2010). Since
Lindgren and colleagues proved that a continuously indexed Gaussian field described by a
Matérn covariance function can be represented as a discretely indexed GMRF (Rue and Held
2005, Lindgren et al. 2011), rapid development of the SPDE approach within R-INLA has
facilitated fitting of an expanding suite of hierarchical spatial and spatiotemporal models to

spatial point patterns (Krainski et al. 2016). This approach has recently proven useful in
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analyses of georeferenced fisheries datasets, which are often data-rich and where inference at
the scale of point locations, rather than grids, is required (e.g. Cosandey-Godin et al. 2015,

Ward et al. 2015, Ono et al. 2016).

One of the well-noted criticisms of correlative species distribution models (Elith and
Leathwick (2009) for a review of different methods) has been their inability to adequately
account for residual autocorrelation in space and/or time. This situation that can violate
independence assumptions in regression models, leading to inference errors and/or
misrepresentation of covariate importance (Legendre 1993, Dormann 2007, Beale et al.
2010). The SPDE approach considers these correlation structures directly, and allows great
flexibility in their specification (e.g. Cosandey-Godin et al. 2015). In our space-time models
for example, we specified temporally-independent (time-indep), or temporally-evolving
(time-corr) annual realizations of spatially-structured error terms. As wintering herring
displayed varying persistence in their spatial distribution from year to year (Fig. 2), our aim
was to gain insight into if, and how wi1 might influence wi:. Although model performance
did not alter greatly (Table 2), the time-indep structure was preferred for all models. This is
most likely due to inclusion of time-lagged covariates (i.e. distribs-1, counts:1), the former of
which was highly significant in all cases, and captured well the occurrence pattern of the

previous year.

We specified covariates as additive effects only in these models, but did allow for varying
degrees of non-linearity and temporal non-stationarity in occurrence-covariate relationships.
Whilst acknowledging that important interactions among predictors (e.g. environment and
fishing intensity — Planque et al. (2010)) may have been overlooked, our decision reflects an

attempt to balance model complexity with meaningful ecological inference (Merow et al.
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2014). Hence, we placed priority on deriving biologically-realistic functional forms that
could also vary in time. We found that including quadratic terms for the environmental
covariates improved model fit compared with linear specifications alone, or where covariates
were represented by penalized regression splines (Table 2), although most relationships
approached linearity (Fig. 3). As the wintering stock was often clustered tightly in space, we
also did not consider models with spatially-varying coefficients (e.g. Bacheler et al. 2009,
Bartolino et al. 2011, Ciannelli et al. 2012). At the spatial scales of our observations, we
assumed that any effect of a particular covariate would be imparted roughly equally across
the space encompassing all herring schools encountered. This assumption is unlikely to hold
if the occupied range expands, for example, during the spring feeding period, or if various
ontogenetic stages, inhabiting geographically or environmentally disparate areas, are included
in the models (see Bartolino et al. 2011 for an example). In these cases, inclusion of spatially

non-stationary terms would likely provide important new insights.

A key limitation of our analysis relates to the lack of age-disaggregated or spatially-
standardized catch or survey data available during our temporal window. Because of this, we
were forced to consider demographic factors in a non-spatial, correlative context (i.e.,
estimates across the entire stock for each year), and were unable to incorporate the singular or
interactive effects of density-dependence and age-structure directly within the model
formulation. Although our results suggest that density-dependence is unlikely to play a major
role in governing winter occurrence in herring (see Appendix 8, Fig. A8), and that population
size may influence spatial persistence in wintering area use, georeferenced data on age-
structure of each fishing event or survey record would have allowed direct tests of hypotheses
around age-related differences in environmental preference, susceptibility to fishing pressure

and the tendency to follow traditions and return to previously-used wintering sites. This type
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of data is available for many other herring stocks, and ongoing work is focused on exploring

these ideas.

Our models were specific to wintering ISS herring, limiting their generality. However, the
approach used, and the covariates created, are easily adaptable to other herring stocks and
species for which questions on the drivers and scales of conservatism or homing remain open.
Bolstered by the strong congruence between modelled and observed temperature, salinity and
flow fields in Icelandic waters (Logemann et al. 2013), the 23-year dataset we analyzed
represents a substantial compilation of georeferenced records on the environmental
conditions experienced by wintering ISS herring. The model outputs therefore provide a basis
for identifying physiological thresholds that can be used to develop more informative priors
and guide variable selection in future regression models (Simpson et al. 2015, Authier et al.
2017), or to aid parameterization of mechanistic models (Teal et al. in press). We agree with
Rochette et al. (2013) who advocate a hierarchical Bayesian framework as an appealing
platform upon which to meld different types of data and models together, making it possible
to assimilate the processes acting on different life-history phases within the one ‘full life
cycle’ model. Such a model in under development for NSS herring in the Norwegian and
Barents Seas (Utne and Huse 2012, Huse 2016) and we see potential for the types of models

developed here to contribute to it.
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Appendix 10: Fish and mammal predation on herring

Humans are but one of herring’s many predators. Across their distributional range, herring
aggregations are targeted by demersal and pelagic fishes, in addition to several species of
seals, whales and seabirds (Read and Brownstein 2003, Pitcher et al. 1996, Simili et al. 1996,
Ngttestad and Axelsen 1999, Overholtz and Link 2007, Guse et al. 2009, Vikingsson et al.
2014). Herring have developed complex behavioral strategies to combat this; classic
examples including diurnal vertical migration (Dommasnes et al. 1994) and extended
residence in deep waters, that whilst potentially energetically expensive (Huse and Ona 1996)
are suggested as an adaptive response to visual predators like Atlantic cod (Gadus morhua)
(Langard et al. 2014), surface-feeding fin whales (Balaenoptera physalus) (Ngttestad et al.
2002) and killer whales (Orcinus orca) (Simild 1997). In-situ observations of killer whale-
herring interactions on wintering grounds in Norway have shed further light on the diversity
of predator-evasion responses employed by herring schools (Ngttestad 1998, Ngttestad and
Axelsen 1999), and the cooperative tactics used by killer whales to overcome such responses

(Simild 1997, Domenici et al. 2000).

In Icelandic waters, killer whales specialize on wintering ISS herring, and large numbers of
these whales are often present on the wintering grounds between December and March
(Samarra and Foote 2015). The ability of killer whales to influence herring schooling
behaviour is very real (Ngttestad and Axelsen 1999). However, as herring are typically
established on wintering grounds by early October (pre-dating killer whale arrival — Samarra
and Foote 2015), and wintering areas are not vacated once colonized (ICES 2014, authors’
personal observation), we propose that any displacement by killer whale foraging would

occur mainly at localized scales. For these reasons, and due to data scarcity, we did not
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include killer whale occurrence or density in our analysis. We stress however, that
information on arrival times may help expose the evolutionary and contemporary risks
herring face in following traditions and returning to the same, predator-rich, wintering

grounds.
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