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System identification of gene regulatory networks for perturbation

mitigation via feedback control

Mathias Foo, Jongrae Kim and Declan G. Bates

Abstract— In Synthetic Biology, the idea of using feedback
control for the mitigation of perturbations to gene regulatory
networks due to disease and environmental disturbances is
gaining popularity. To facilitate the design of such synthetic
control circuits, a suitable model that captures the relevant
dynamics of the gene regulatory network is essential. Tradi-
tionally, Michaelis-Menten models with Hill-type nonlinearities
have often been used to model gene regulatory networks. Here,
we show that such models are not suitable for the purposes
of controller design, and propose an alternative formalism.
Using tools from system identification, we show how to build
so-called S-System models that capture the key dynamics of
the gene regulatory network and are suitable for controller
design. Using the identified S-System model, we design a genetic
feedback controller for an example gene regulatory network
with the objective of rejecting an external perturbation. Using
a sine sweeping method, we show how the S-System model can
be approximated by a second order linear transfer function
and, based on this transfer function, we design our controller.
Simulation results using the full nonlinear S-System model of
the network show that the designed controller is able to mitigate
the effect of external perturbations. Our findings highlight the
usefulness of the S-System modelling formalism for the design
of synthetic control circuits for gene regulatory networks.

I. INTRODUCTION

In any complex networks such as the traffic systems,

power grids, irrigation networks, etc, the presence of external

disturbances can have adverse effects on the overall system.

These unwarranted effects include gridlock in the movement

of transportation, major power outages in residential and

industrial areas and poor water supply to farming areas. In

view of this, network control particularly in the presence of

disturbances has been subjected to intensive studies, resulting

in the development of many useful tools for the control of

complex networks.

Due to advances in this area, synthetic biologists have

recently began to investigate the application of the afore-

mentioned tools to the control of biological networks and

systems. Some notable examples can be found in [1], [2], [3],

[4], [5], where strategies based on feedback control theory

have been used to analyse the controllability, observability

and stability of biological networks such that appropriate sets

of control design rules can be developed.

In this paper, we focus our attention on the modelling

and control design of gene regulatory networks. The abil-

ity to ‘control’ the dynamics of gene regulatory networks,
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especially in the presence of disturbance, has many useful

applications in the field of synthetic biology, where synthetic

circuits can be developed to implement the proposed con-

trollers and hence curb the effect of external disturbances due

to disease or environmental changes. Here, we use system

identification techniques to build models of gene regulatory

networks that are suitable for control system design. From

the identified models, we design a feedback controller that

can be implemented genetically in order to reject external

disturbances that enter the network.

This paper is organised as follows. In Section II, we

present the example gene regulatory network that is used

to build our model for control design. In Section III, we

evaluate different types of models used to describe gene

regulatory networks from the perspective of control system

design, and we propose a system identification approach for

model building. The control design procedure is described

and closed-loop simulation results are provided in Section

IV. Conclusions are given in Section V.

II. DREAM GENE REGULATORY NETWORK

The DREAM in silico gene regulatory network challenge

is established to serve as a benchmark to assess different

proposed approaches to infer gene regulatory networks from

given experimental data [6], [7], [8]. Often in the DREAM

challenge, the time-series data for each gene (or node) in the

network are provided and the aim is for the participants to

deduce the underlying network to attain insights such as the

interconnecting edges, the direction of the information flow,

etc. The provided gene regulatory networks are typically

subsets of actual transcriptional networks in model organisms

such as E. coli and S. cerevisiae, and hence, they are

representative of real biological systems.

In this paper, we choose the DREAM3 Size 10 data set

(hereafter we use the term DREAM3 to denote this network),

which consists of mRNA temporal data on a network com-

posed of 10 interconnecting genes that is a subset of a S.

cerevisiae gene regulatory network. As the dataset does not

include separate protein data, in the following, we make the

following two assumptions: (i) the temporal evolution of the

protein is similar to the mRNA and (ii) the protein is linearly

translated from mRNA. Following these two assumptions, we

can lump the protein dynamics into the transcription rate of

the mRNA at steady state, and this results in a complete

network that can be described solely using mRNA levels. In

this DREAM3 data set, information regarding the direction

of the interconnectivity between each genes is provided and

the depiction of these interactions is shown in Fig. 1(A).
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Fig. 1: (A) DREAM3 gene regulatory network. Purple circles represent genes and red rectangles represent external inputs.

The direction of regulation is indicated by the triangle arrow. (B) Using system identification, the types of regulation in

the network are identified. Arrow head indicates activation and Bar head indicates inhibition. (C) Proposed control design

configuration for disturbance rejection.

III. MODEL DESCRIPTION

A. On the Michaelis-Menten and Hill-type nonlinearity

model structure

Model structures employing Michaelis-Menten and Hill-

type nonlinearities are commonly used to describe the dy-

namics of gene regulatory networks. If the regulation type

and the cooperative binding are known, the modeller can

either specify

Fa = k0Nh
P/(KM +Nh

P) (1)

for an activation type of regulation or

Fi = k0/(KM +Nh
P) (2)

for an inhibition type of regulation. In both Eqns. (1) and (2),

NP is the transcription factor, k0 and KM are associated with

the Michaelis-Menten constants and h is the Hill coefficient.

In the context of network inference, this type of model

structure can be used only if the type of regulation (activatory

or inhibitory) between each gene in the network is known.

In the event that the type of regulation is unknown, then

this model structure is not suitable as the structure of an

activation or an inhibition type of regulation is different and

arbitrarily assigning them in the model building stage could

thus lead to poor model accuracy. An additional problem in

the context of synthetic biology is that models of this type

are not suitable for subsequent use in the design of synthetic

controllers. To illustrate this, let us consider Eqn. (1) and

assume that our control action (i.e. output of the controller)

is given by NP. If NP ≫ KM , then Fa ≈ k0(N
h
P/Nh

P) = k0,

resulting in a saturated control action, which is undesirable

from control design perspective. In view of these two limi-

tations, an alternative model structure is thus required. The

alternate model structure needs to have a general structure

that can accommodate either type of regulation and be useful

for controller design.

B. S-System models for gene regulatory networks

Here, we choose the so-called S-System modeling formal-

ism as an alternative approach to describe the dynamics of

gene regulatory networks. The S-System modeling frame-

work was originally developed from the field of biochemical

system theory (see e.g. [9], [10]), and has been used to

describe the dynamics of gene regulation (see e.g. [11], [12]),

where it has been shown to be as accurate as Michaelis-

Menten with Hill-type nonlinearity models (see [13]). The

S-System model has the following form:

dNi

dt
= ai

M1

∏
j=1

N
pi, j

j +bi

M2

∏
j=1

N
qi, j

j + ciU (3)

where i denotes the number of biochemical component, a >
0, b < 0 and c ∈ (−∞,+∞) are constants, N represents the

biochemical component, M1 and M2 are the total number

of biochemical components involved in the interaction and

U is the external input. The power exponent terms, p and

q are associated with the production and degradation terms

respectively. For simplicity, we assume q = 1 throughout this

paper. Additionally, a positive value of p represents activation

while a negative value of p represents inhibition.

Note that the S-System model has a general structure that

can accommodate either an activation or inhibition type of

regulation via the sign of p. Thus, no prior knowledge of the

type of regulation is required in the model building exercise.

Moreover, the S-System model can be used for the purposes

of controller design as it does not suffer from the issues

affecting the controller action described in Section III-A.

Remarks: In a metabolic pathway, M1 and M2 are required

due to the different number of components interacting with

the respective production and degradation components. For

gene transcription, since only mRNA itself is degrading,

M2 = 1 and setting q = 1 is also consistent with the standard

linear degradation model.



C. System identification of an S-System model

Fig. 1(A) shows the interconnection between the genes

in the DREAM3 gene regulatory network. The DREAM3

network provides no information regarding the type of reg-

ulation between the interconnecting genes, and therefore we

will use system identification techniques (see e.g. [14]) to

infer the type of regulation within the network.

System identification techniques have been used to build

models of gene regulatory networks in several previous

studies, including [15], [16], [17], where linear black box

network models were considered and the directions and the

types of regulation were identified based on available data on

gene expression profiles. In this paper, we consider a grey

box S-System model, given that we have prior knowledge

about the network interconnections, and focus our attention

on the identification of the type of regulation between the

interconnecting genes. As per standard system identification

procedures, we use one data set for model estimation and

another data set for validation.

Thus, the S-System model for the DREAM3 gene regula-

tory network following Fig. 1(A) is given by

dN1

dt
= a1N

p1,2

2 N
p1,4

4 N
p1,5

5 +b1N1,
dN2

dt
= b2N2 + c2U1

dN3

dt
= a3N

p3,1

1 N
p3,5

5 +b3N3,
dN4

dt
= a4N

p4,9

9 +b4N4

dN5

dt
= a5N

p5,7

7 +b5N5,
dN6

dt
= a6N

p6,4

4 +b6N6

dN7

dt
= a7N

p7,8

8 +b7N7,
dN8

dt
= b8N8 + c8U2

dN9

dt
= b9N9 + c9U3 +d9,

dN10

dt
= a10N

p10,7

7 +b10N10

(4)

Note that for dN9/dt, as mRNA levels are physical

quantity, a constant value denoted by d9 is added to the

model to ensure that the overall mRNA level stays positive

since U3 is negatively correlated with N9 and b9 is negative

due to the degradation term. Note that the inclusion of d9

does not change the structure of S-System model as the

equivalent model structure can be obtained by setting di = ai

and pi, j = 0.

Let θ = {ai,bi,ci,d1, pi, j} with i and j represent the

appropriate indices in Eqn. (4), the values of θ can be

estimated using the prediction error method with a quadratic

criterion, i.e.

θ̂ = argmin
θ

1

L

10

∑
i=1

L

∑
t=1

[Ni(t)− N̂i(t,θ)]
2 (5)

where L = 20 is the length of the data, N̂ denotes the

simulated data from the S-System model while N denotes

the real data and Eqn. (5) is solved using MATLAB function

fminsearch, which uses the Nelder-Mead simplex algorithm.

Table I tabulates the estimated model parameters of the S-

System model and Fig. 2 shows the comparison between the

S-System model and the real data on the validation data set.

TABLE I: Esimated parameters for the S-System model.

Gene Values

N1 a1 = 0.2757, p1,2 = 0.3502, p1,4 = 0.0559,
p1,5 = -0.2789, b1 = -0.4023

N2 b2 = -0.1875, c2 = 0.0946

N3 a3 = 0.1478, p3,1 = -0.0021, p3,5 = 0.1393,
b3 = -0.1481

N4 a4 = 0.0023, p4,9 = -5.1622, b4 = -0.3555

N5 a5 = 0.1199, p5,7 = 0.0760, b5 = -0.2057

N6 a6 = 0.2567, p6,4 = -0.0120, b6 = -0.3035

N7 a7 = 0.0607, p7,8 = 0.1104, b7 = -0.1237

N8 b8 = -0.0298, c8 = 0.0108

N9 b9 = -0.1793, c9 = -0.0268, d9 = 0.1733

N10 a10 = 0.0139, p10,7 = -1.5609, b10 = -0.0480
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Fig. 2: Comparison between S-System model and DREAM3

data on the validation data set.

From the estimated parameters shown in Table I, we are

able to determine the type of regulation in the network, where

a positive value of the power term denotes activation while

a negative value of the power term denotes inhibition. Reas-

suringly, all the known degradation terms were identified to

have negative values, in accordance with biological reality.

The comparison between the S-System model and the

real data on the validation data set shows good agreement,

suggesting a good level of accuracy of the model. To quantify

this, we calculate the Mean Square Error (MSE) for each

gene between the S-System model and the real data. The

MSE is computed using,

MSE =
1

L

L

∑
t=1

[Ni(t)− N̂i(t,θ)]
2 (6)

where i = 1,2, . . . ,10. Table II shows the computed MSE for

both the estimation and validation data sets.

The total MSE, MSET , is obtained by summing all the

individual MSE from each genes. In general, the MSE values

are small and similar between the two data sets. With the



TABLE II: MSE for both estimation and validation data sets.

MSE MSE
Gene (Estimation) (Validation)

N1 0.0029 0.0054

N2 0.0013 0.0021

N3 0.0014 0.0031

N4 0.0009 0.0010

N5 0.0010 0.0037

N6 0.0017 0.0036

N7 0.0019 0.0016

N8 0.0012 0.0088

N9 0.0033 0.0050

N10 0.0017 0.0128

MSET 0.0171 0.0470

regulation types in the DREAM3 network as identified, the

network interactions are as shown in Fig. 1(B).

IV. CONTROLLER DESIGN

To achieve an implementable controller for a gene regu-

latory network, a genetic based controller is required, and

there are frameworks available for such designs (see e.g.

[18], [19]), where combination of several proteases can be

utilised to achieve a genetic based lead-lag type of controller.

In this paper, we employ a frequency domain control design

methodology to control the DREAM3 network, motivated

by the design framework proposed in [19]. In order to

design controllers in the frequency domain, a linear model is

required. As the S-System is a nonlinear model, the standard

procedure is to linearise the model. However, linearising the

S-System is not trivial due to the presence of the non-integer

power exponent terms. Thus, as alternative we approximate

the S-System model with a linear transfer function obtained

using the sine sweeping method (see e.g. [14], [20]).

A. Sine sweeping method

In the sine sweeping method, sinusoidal input signals

within the frequency range of interest are given as the inputs

to the system. The output responses within the frequency

range are then analysed in terms of their magnitude and phase

relative to the input signal. By collecting these magnitude

and phase values, the Bode plot of the system can be easily

obtained. Here, we summarise the procedure for obtaining

the Bode plot using the sine sweeping method and refer

readers to [14], [20] for complete details.

Consider a sinusoidal input u(t) = Asin(ω0t), where A is

the amplitude and ω0 is the frequency. For any linear time

invariant system, the output would be also sinusoidal with

the same frequency but with scaled amplitude and a phase

shift. In practice, the output response is subjected to transient

effects, as well as effects of nonlinearities and disturbance

d(t), yielding,

y(t) = Bsin(ω0t +φ)+d(t)+ transient+nonlinearities (7)

where B = A|G( jω0)|, φ = ∠G( jω0) = tan−1 Im|G( jω0)|

Re|G( jω0)|
and

G( jω0) is the transfer function relating the input and output.

The effect of transient and nonlinearities can be reduced by

not considering the initial part of the data and assuming the

linear contribution dominates the nonlinearities respectively.

To reduce the effect of d(t) on y(t), one can use a correlation

method [14], where the idea is to correlate y with a sine and

cosine of the same frequency and average it over the length

of the data NL (see Fig. 3).
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Fig. 3: Correlation method.

From Fig. 3, we obtain,

IS(NL)=
1

NL

NL

∑
t=1

y(t)sin(ω0t) , IC(NL)=
1

NL

NL

∑
t=1

y(t)cos(ω0t)

(8)

Substituting Eqn. (7) into (8), and after some algebraic

manipulation, we arrive at

IS(NL) =
A

2
|G( jω0)|cosφ −

A

2
|G( jω0)|

1

NL

NL

∑
t=1

cos(2ω0t

+φ)+
1

NL

NL

∑
t=1

d(t)sin(ω0t)

IC(NL) =
A

2
|G( jω0)|sinφ −

A

2
|G( jω0)|

1

NL

NL

∑
t=1

sin(2ω0t

+φ)+
1

NL

NL

∑
t=1

d(t)cos(ω0t) (9)

From Eqn. (9), the second term for both IS(NL) and IC(NL)
will go to zero as NL → ∞. Assuming d(t) is a stationary

stochastic process with zero mean value and covariance

function Rd(l) such that ∑
∞
l=0 l|Rd(l)| < ∞, the third term

for both IS(NL) and IC(NL) will be zero as NL → ∞ as the

variance of the third term decays at a rate of 1/NL [14]. From

the remaining terms of Eqn. (9), the magnitude, |G( jω0)| and

the phase, ∠G( jω0) can be estimated using the following

equations, i.e.

|G( jω0)|=
2

A

√

I2
S (NL)+ I2

C(NL), ∠G( jω0) = tan−1 IC(NL)

IS(NL)
(10)

For the DREAM3 network, we assume that the input to

the network is through U3 and the output of interest is the

expression of gene N1. We apply sinusoidal signals in the

frequency range from 0.001 rad/s to 1.000 rad/s. Despite

using a nonlinear model, we note that the output sinusoidal

responses have the same frequency as the input and no

subharmonics are apparent, indicating a dominant linearity



of the model. By computing the magnitude and phase values

using Eqn. (10), the Bode plot of the DREAM3 network

from input U3 to output N1 is obtained and shown in Fig. 4.
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Fig. 4: Bode plot of DREAM3 network from input U3 to

output N1.

From the Bode plot, we note the following: (i) At low

frequency, the magnitude of the system is about -22.5dB.

(ii) The corner frequency is 0.11 rad/s. (iii) At the corner

frequency, the slope is close to -40dB/dec and the phase is

approximately -90◦, suggesting a second order system with

repeating poles. Thus, the transfer function relating input U3

to output N1 can be approximated by

N1(s)

U3(s)
=

0.0750

(1+ s
0.11

)2
=

0.0009

s2 +0.22s+0.012
(11)

With this transfer function identified, we can proceed

with the design of the controller using a frequency domain

approach.

B. Design of a genetic phase lag controller for disturbance

rejection

In this section, we illustrate the design of the genetic phase

lag controller. A phase lag controller is chosen, as this type of

controller is typically used to improve disturbance rejection

and reduce steady state error.

The phase lag controller has the following form:

K(s) =
K1

s+aP

+K2 =
K2(s+aP +

K1
K2
)

s+aP

(12)

where the zero of the controller z=−(aP+(K1/K2)) and the

pole of the controller p=−aP, with the gain of the controller

K2. As both the gain and phase margins of the system

obtained from the Bode plot are infinite, our primary focus

is on improving the transient dynamics of the disturbance

rejection and reducing the steady state error.

The transfer function given in Eqn. (11) is a type 0 system,

and with the use of a phase lag controller, there is no integra-

tor in the open loop gain to eliminate the steady state error.

As such, when choosing the pole of the phase lag controller,

we try to place the pole, aP as close as possible to the origin.

Likewise, the static error constant, Kp = 0.0027K2 should

be chosen as large as possible to reduce the steady state

error. The choice of the design parameters are constrained

by the achievable biological values and following the range

of allowable values given in [19]; the following inequalities

should be adhered to: 0.0002 ≤ aP ≤ 0.0040, K1 < 2.3 and

K2 < 1.8.

C. Simulation examples

While the design of the controller is carried out using the

linear model, for implementation, we carried out our sim-

ulation using the S-System model. In most gene regulatory

network perturbation mitigation problems, we are interested

in maintaining the steady state level of a particular gene of

interest in the presence of a perturbation. Biologically, this

can be interpreted as maintaining the level of expression of a

gene of interest to ensure optimal biological function. Thus,

in this simulation example, we are interested in maintaining

the steady state level of N1 at its desired reference value

in the presence of a disturbance. Here, we assume that the

disturbance enters the network through U1 and our control

action is provided by U3 as depicted in Fig. 1(C).

In the absence of a disturbance, the steady state level of

N1 is 0.486, thus, our control objective is to maintain the

steady state level of N1 close to 0.486 in the presence of

a disturbance. In our simulation, a step disturbance with

amplitude of 2 enters the network at time 4000s. As can

be seen in Fig. 5(A), without control, the steady state level

of N1 increase to 0.63 and is unable to return to its desired

value.
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dashed line: N1 response to large K1.

In the design of the phase lag controller, the following

values are chosen. To have the pole close to the origin, we

choose aP = 0.0002. To have the static error constant as large

as possible, we choose K2 = 1.7. For K1, we consider two

cases, i.e. K1 = 0.04 (controller’s zero close to origin) and

K1 = 2 (controller’s zero far from the origin). The simulation

results are shown in Fig. 5(B). For a small value of K1,

we see that the performance of the system is slow and at



time 6000s, there is still a noticeable steady state error,

i.e. 0.044. On the other hand, for a large value of K1, we

see a significant improvement in the performance, where we

get a faster response and an almost zero steady state error,

i.e. 0.0008. The Bode plots of the system with and without
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Fig. 6: (A) & (B) Gain and phase plots of with control. Red

dash-dotted line: Small K1, Blue dashed line: Large K1. (C)

& (D) Gain and phase plots without control.

control are shown in Fig. 6. For a small value of K1, we note

that the phase margin of the system is 97◦. On the other hand,

for a large value of K1, despite the good performance, we

note that the phase margin of the system reduces from 97◦

to 10◦, which is less than typically specified values. Thus, a

compromise between the transient performance and overall

stability robustness needs to be performed when designing

the controller, and this trade-off can be effectively managed

through the choice of the controller parameter K1.

V. CONCLUSIONS

In this paper, we use system identification techniques to

build a model of a gene regulatory network that is suitable for

the purposes of control system design. We show that standard

approaches employing Michaelis-Menten models with Hill-

type nonlinearities are not appropriate model structures if the

type of regulation between interacting genes in the network

is unknown, and are also not suitable for controller design.

As an alternative approach, we propose the use of the S-

System modeling formalism to model the gene regulatory

network. Through system identification, we are able to obtain

realistic model parameters, identify the type of regulation

between each gene, and derive a model that is suitable

for the design of a synthetic genetic feedback controller.

Using the sine sweeping method, the S-System model can be

approximated by a second order linear transfer function and,

based on this transfer function, we design a genetic phase lag

feedback controller. Simulation results show the satisfactory

performance of the controller in mitigating external network

perturbations. Our proposed modelling and control system

design approach has great potential for application in diverse

application domains in the field of synthetic biology.
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