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Abstract 

Background and Purpose 

Local recurrence is frequent in locally advanced NSCLC and is primarily located in FDG-avid parts of tumour 

and lymph nodes. Aiming at improving local control without increasing toxicity, we designed a multi-centre 

phase-III trial delivering inhomogeneous dose-escalation driven by FDG-avid volumes, while respecting 

normal tissue constraints and requiring no increase in mean lung dose. Dose-escalation driven by FDG-avid 

volumes, delivering mean doses of 95Gy(tumour) and 74Gy(lymph nodes), was pursued and compared to 

standard 66Gy/33F plans.  

Material and Methods 

Dose plans for the first thirty patients enrolled were analysed. Standard and escalated plans were created 

for all patients, blinded to randomization, and compared for each patient in terms of the ability to escalate 

while protecting normal tissue.    

Results 

The median dose-escalation in FDG-avid areas was 93.9Gy(tumour) and 73.0Gy(lymph nodes). Escalation 

drove the GTV and CTV to mean doses for the tumour of 87.5Gy(GTV-T) and 81.3Gy(CTV-T) in median. No 

significant differences in mean dose to lung and heart between standard and escalated were found, but 

small volumes of e.g. the bronchi received doses between 66-74Gy due to escalation.  

Conclusions 

FDG-driven inhomogeneous dose-escalation achieves large increment in tumour and lymph node dose, 

while delivering similar doses to normal tissue as homogenous standard plans. 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Locally advanced non-small cell lung cancer (LA-NSCLC) lacks effective treatment options. Local control and 

survival after curative intended radiotherapy (RT) is poor, despite the use of modern intensive chemo-

radiotherapy schedules[1]. Several studies have suggested that local control can be improved by increasing 

the radiation dose[2,3], but the benefit of dose-escalation has been heavily debated after the publication of 

the RTOG-0617 trial[4]. In RTOG-0617, the entire target volume, including margins, was homogenously 

escalated, resulting in irradiation of large volumes to high dose levels, including substantial volumes of 

normal tissue.  

An inhomogeneous dose-escalation strategy can alternatively be used to reduce the dose-escalated 

volume[5,6], allowing adherence to strict dose constraints for vulnerable normal tissues. Studies on relapse 

patterns have shown good correlation between tumour regions with high 18fluorodeoxyglucose(FDG)-

avidity before treatment and loco-regional failures[7,8]. Furthermore, a low frequency of lymph node-only 

relapse was demonstrated after radical RT[9,10]. This can be used to guide inhomogeneous dose-escalation 

strategies by delivering high dose guided by the most FDG-PET avid parts of the tumour. The increased 

toxicity in the dose-escalated arms of RTOG-0617 furthermore suggests that dose-escalation trials should 

avoid increasing dose to organs at risk (OAR) above the levels reached with current standard RT. This, 

however, requires strict radiotherapy quality assurance (QA), including careful use of intensity modulated 

and image guided radiotherapy (IMRT and IGRT)[11]. 

In RTOG-0617, the 60 Gy schedule was superior to 74 Gy. However, the Danish Oncological Lung Cancer 

Group (DOLG) conducted a randomized phase-II trial (NARLAL) in which patients with LA-NSCLC received 

either 60 or 66 Gy, concomitant with oral vinorelbine[12]. Both arms were well tolerated and the 66 Gy arm 

was chosen as the preferred arm in a pick-the-winner design.   

Based on these considerations, DOLG designed a prospective, randomized, multi-centre, phase-III trial 

(NARLAL2) for patients with LA-NSCLC. NARLAL2 (Novel Approach to Radiotherapy in Locally Advanced Lung 

cancer) is testing the hypothesis that inhomogeneous dose-escalation driven by the most FDG-avid regions 

will result in a higher loco-regional control at 30 months, without an increased risk of severe normal tissue 

complications, compared to a homogenous non-escalated standard treatment.  

As part of the study protocol, both standard and dose-escalated treatment plans are produced for all 

patients, blinded to randomization. This provides a unique opportunity to examine the dose-escalation 

strategy on a patient specific level in a true clinical setting. We here describe the trial design and QA 

programme and report the dose planning results from the first thirty patients treated on trial, in terms of 

ability to dose escalate without increasing mean lung dose and without compromising dose constraints to 

other OARs.  

 

Material and Methods 

The NARLAL2 trial is currently recruiting patients with LA-NSCLC stage IIB-IIIB. It is a randomized, multi-

centre, phase-III trial illustrated in Figure 1.  

Target definition 



A free-breathing FDG-PET scan and a 4D-CT scan with intravenous contrast are acquired for each patient in 

one or two imaging sessions, according to availability on site. The gross tumour volume (GTV) of the 

primary tumour is delineated as GTV-T and each malignant lymph node is delineated separately as GTV-Nx 

;ǆсϭ͕Ϯ͕͙Ϳ͘ Clinical target volumes (CTVs) are created with a 5 mm isotropic expansion of the GTVs, cropped 

with respect to bones, trachea and large blood vessels. Margins are added to create planning target 

volumes (PTVs), to ensure that the planned dose is delivered to the CTVs, taking into account uncertainties 

associated with planning and delivery of treatment[13]. The CTV-to-PTV margins are centre-specific, as they 

depend on the setup and image registration strategy applied. Respiratory motion is included in the patient-

specific margins, either during delineation of the GTV [14] or as a part of the applied margin[15]. 

 

The FDG-scan is used to define optimisation volumes to drive dose-escalation and is rigidly registered to the 

4D-CT scan. For each separate GTV (GTV-T and one or more GTV-Nx) larger than 4 cm3, the peak 

standardised uptake (SUVpeak) value is determined as the average value of SUV in the continuous 1cm3 with 

the highest SUV [16]. No background FDG-signal corrections are applied. Within the delineated GTVs, the 

GTVPET is defined by the 50% of SUVpeak of the FDG signal within that specific GTV. If GTV-T is less than 4cm3, 

the whole GTV-T is used to drive the dose-escalation. In contrast, if GTV-Nx is less than 4cm3, then the 

lymph node is not an object for dose-escalation. Small GTVPET volumes are expanded (by using 40% or 30% 

of SUVpeak), as outlined in Figure 2. 

Treatment planning 

The standard radiation regimen delivers 66 Gy in 33 Fractions (F), 5 days a week, homogenously to the PTV, 

ensuring that the minimum dose is 95% of 66 Gy. The escalated radiation regimen (also delivered in 33 F, 5 

days a week) aims at a treatment plan where each GTVPET receives the highest possible mean doses without 

exceeding a maximal mean dose of 95 Gy for GTV-TPET and 74 Gy for GTV-NxPET, while keeping within dose 

limiting constraints for OARs. The PET volumes are used to drive a heterogeneous escalation of the GTVs 

and CTVs and thus no upper constraints are placed on target structures. Minimum delivered dose to PTV is 

95% of 66 Gy.  

Constraints for the maximum volume receiving x Gy (VxGy) or the maximum dose to a volume of x cm3 

(Dxcm3) are applied to all OARs and are listed in Table 1. 

A standard and a dose-escalated plan are produced for every patient, with the lung dose metrics achievable 

for the standard plan informing the dose-escalated plan: Maximum deviation for the escalated plan relative 

to the standard plan is 1 Gy for mean lung dose (MLD) and 2 percentage points for V20Gy for that specific 

patient. To avoid bias in the treatment planning process, the randomization result is unknown to the 

treatment planner and the radiation oncologist until both standard and escalated plans are approved for 

clinical use.  

Treatment planning is performed with inhomogeneity corrections, using advanced dose calculation 

algorithms and with advanced inverse-optimisation techniques (IMRT or VMAT).  

Chemotherapy 



All patients are treated with concomitant chemotherapy consisting of oral vinorelbine (50 mg three times 

weekly) and, if tolerable, two cycles of Cisplatin (75 mg/m2) in week one and three. One or two cycles of 

induction chemotherapy, using a platinum doublet, are permitted.  

 

Daily imaging and adaptation 

Daily pre-treatment target position verification is done by 3D or 4D cone beam CT (CBCT) scans with 

primary tumour and/or malignant lymph node soft tissue registration. All participating centres are required 

to calculate local CTV to PTV margins sufficient to ensure dose coverage of the CTV given the centre-specific 

uncertainties. The acquired CBCT scans are used to systematically evaluate anatomical changes during the 

course of radiotherapy, and to assess the necessity of treatment adaptation in order to maintain target 

dose coverage and avoid over dosage of OARs. The CTV size is maintained in the adaptation process even 

when tumour shrinkage is present. To this end, all participating centres have guidelines for systematic 

adaptive treatment strategies. 

Quality assurance 

A detailed QA program has been used to ensure uniform planning and delivery processes among all 

participating centres. Compliance to this program was mandatory. The NEMA body phantom was scanned 

on all PET/CT scanners and the four largest spheres delineated according to protocol procedure and 

compared between scanners. The contouring algorithms employed for SUV threshold volume delineation 

were compared for two patient test cases. Consensus on target and OAR delineation was achieved by 

adopting the guidelines of [17,18] and a patient test case was delineated by all centres. Consensus on 

treatment planning was achieved in three test runs of 2-5 patient cases each. Finally, planning margins, 

daily imaging and adaptive strategies were presented and discussed at a mandatory workshop. After local 

trial initiation, a QA group consisting of two radiation oncologists and four medical physicists visit and 

evaluate each participating centre. Treatment of the first two patients at each centre is reviewed in detail 

(delineation, treatment planning, PTV margin, IGRT and adaptive strategies). Furthermore, each centre 

must expect to include at least five patients per year. 

Sample size calculation 



The primary trial endpoint is dose-escalation loco-regional control. A preliminary multi-centre treatment 

planning study, involving five Danish radiotherapy centres, indicated that an average dose-escalation of 14 

Gy to the CTV was feasible, corresponding to 16 %-points improvement in loco-regional control at 30 

months, using the tumour control probability model from [19]. Median loco-regional control in the control 

arm was assumed to be 36 months, based on data from standard clinical practice at Odense University 

Hospital (OUH). Median time for death without loco-regional progression (a competing, censoring event) 

was estimated at 43 months (data from OUH). The aim was 80% power to be able to reject the null 

hypothesis of equal hazard (HR=1) of loco-regional failure in the two arms, with 95% (two-sided) 

confidence. Patients are randomized 1:1 between the two arms over a five-year enrolment period, with 

one year of additional follow-up after enrolment closure. The trial sample size was based on Monte-Carlo 

simulations of possible outcomes of the study, taking the above points into account, and estimated that at 

least 150 patients should be included in each treatment arm. Accounting for 10% loss due to inclusion 

errors and missing follow-up, the study aims to include a total of 330 patients. Several interim analyses are 

planned for toxicity and overall survival, but none for the primary endpoint. 

Data analysis 

Standard and escalated plans for all patients are continually exported to a national DICOM-based 

radiotherapy plan database[20]. The current analysis considered pairs of plans for the first thirty patients 

enrolled (i.e. sixty plans in all), and dose-volume histograms (DVHs) were calculated for all structures for 

those patients. Selected dose metrics were extracted, summarized using medians and interquartile range 

(IQR, first to third quartile), and compared between standard and escalated plans using the Wilcoxon 

signed rank test. 

Ethics 

The study is approved by the Danish Research Ethics Committee (reg.no.43247) and is registred at 

clinicaltrials.gov (NCT02354274). All patients have given informed consent. Patients included in this analysis 

were randomized in the study. However, the results presented in the current analysis are from both the 

standard and escalated treatment plans, irrespective of randomization.  

Results 

The first thirty patients enrolled on the trial consisted of 20 females and 10 males, with a median age of 66 

years (range 46 ʹ 81), treated at three different radiotherapy centres. They were staged as IIB (1 patient), 

IIIA (16 patients), IIIB (12 patients) and recurrence (1 patient). The median (IQR) volume of the total GTV 

including primary tumour and lymph nodes was 54.8 cm3 (25.8-100.8). 

Four patients had no malignant lymph node targets, while two patients had only lymph node targets. The 

28 patients with a primary tumour had median GTV-TPET of 7.1 cm3 (4.6-21.7), which was heterogeneously 

escalated to a mean dose of 93.9 Gy (90.0-94.6) in median. Dose-escalation above 90 Gy was not achieved 

in seven patients due to dose limiting OARs in close proximity to the primary tumour. The main dose-

limiting organs were bronchi (1 patient), thoracic wall (3 patients), and connective tissue (3 patients). The 

26 patients with lymph node involvement had a total of 96 lymph node targets, but only 26 nodes were 

large enough for escalation (GTV-Nx > 4 cm3). The FDG-avid volumes of the 26 escalated lymph nodes 

achieved a median mean dose of 73.0 Gy (71.6-73.7). Four escalated lymph nodes in two patients achieved 



mean doses of less than 71 Gy with dose limiting organs being bronchi (1 patient) and connective tissue (1 

patient). The FDG-volumes drove a heterogeneous escalation of the GTVs and CTVs (see DVHs for GTVPET, 

GTV, CTV and PTV for one patient in Figure 3, panel a and b). The resulting escalated mean doses to GTV-T 

and GTV-N were in median 87.5 Gy (84.1-90.8) and 71.8 Gy (70.3-72.4), compared to 66.5 Gy (66.3-66.9) 

and 66.8 Gy (66.4-67.0), respectively in the standard arm. Corresponding mean doses to CTV-T and CTV-N 

were 81.3 Gy (78.0-83.4) and 70.9 Gy (69.6-71.6) in the escalated arm, compared to 66.5 Gy (66.2-66.8) and 

66.7 Gy (66.4-67.0) in the standard arm.  

The dose metrics for OARs for the standard and escalated plans were compared (presented for one patient 

in Figure 3, panel c and d). The DVHs were very similar, but focusing on doses above 60 Gy reveals 

increment in volumes receiving doses of 66-72 Gy for the escalated plan.  

The median dose metrics values of different OAR revealed no statistically significant differences in mean 

doses to the heart and the lung, and V35Gy of oesophagus, for the standard and dose-escalated treatment 

plans (Table 2). In contrast, dose to small high dose regions (D1cc) in oesophagus, bronchi, heart, trachea, 

aorta, thoracic wall and connective tissue were all statistically significantly larger for the dose-escalated 

treatment plans. 

Six patients received an adaptive plan during the treatment course. The reasons for plan adaptation were 

pleural effusion (1 patient), deformation of primary tumour (2 patients), baseline shift between primary 

tumour and lymph nodes (1 patient), atelectasis (1 patient), and tumour shrinkage (1 patient).  

Discussion 

This study demonstrates the feasibility of conducting a dose-escalation trial for locally advanced NSCLC in a 

multi-centre setting with application of a strict QA programme. The first thirty patients on trial all complied 

with the treatment planning criteria, and no violations of the normal tissue constraints were observed. The 

pre-randomization treatment planning procedure, yielding standard and escalated plans for all patients, 

allowed for analysis of the impact of the dose-escalation strategy on an individual patient level. It 

demonstrated a large increase in tumour dose for all patients if randomized to the experimental arm. 

The current study is based on a fundamental strategy of heterogeneous irradiation of the tumour volume, 

where the dose-escalation is driven by the most FDG-avid tumour areas. No objectives on target dose 

outside the FDG-avid areas are made, except for basic coverage with standard prescription dose. This 

allows for mean doses to the FDG-avid areas of GTV-T of 94 Gy/33 F (median value), without increasing 

MLD or violating the conservative OAR constraints. The trial is designed to have MLD +/-1Gy between the 

standard and dose-escalated arms, which results in statistically equivalent MLD in the two arms. An equal 

risk of lung toxicity in the two arms is thus expected[21]. Since only large lymph nodes (> 4 cm3) are 

escalated, the majority of the lymph nodes (73%) were prescribed the standard 66 Gy/33 F. The FDG-avid 

volumes of the remaining large lymph nodes were in median escalated to 73 Gy in mean dose.  

Dose-escalation driven by the PET-avid regions instead of the entire target volume is based on studies of 

loco-regional recurrence patterns[7,8]. However, there is currently no prospective evidence available to 

support the hypothesis that increased dose to the PET-avid areas will result in better local control, 

compared to either standard treatment or dose-escalation of the whole PTV. The Dutch phase-II PET-boost 

trial [22] examined part of this question, randomizing between isotoxic dose-escalation of the entire PTV 



and dose-escalation of only the FDG-avid tumour areas expanded with an uncertainty margin. The NARLAL2 

trial employs a hybrid approach, where dose-escalation of the entire PTV is not pursued, but not actively 

prevented either. This strategy resulted in high mean doses to GTV-T and CTV-T of 87 and 81 Gy, 

respectively, in this initial trial cohort of thirty patients.  

Radiation dose-escalation in NSCLC is a contentious issue, and the results of the RTOG-0617 trial - where 60 

Gy proved to be better than 74 Gy in terms of overall survival[4] - questioned fundamental assumptions 

about dose-response for local control. The results of RTOG-0617 are still being investigated and debated, 

but care should unquestionably be taken if dose-escalation is pursued. RTOG-0617 stratified for treatment 

technique, 3D-CRT versus IMRT, and secondary analyses report that treatment technique significantly 

affected the risk of toxicity and patient-reported quality of life[11,23]. No interaction between treatment 

technique and impact of dose-escalation has been reported, and consequently there is no guarantee that 

the use of IMRT allows for safe delivery of high-dose radiotherapy. Nevertheless, RTOG-0617 data 

demonstrated the importance of high quality in technical treatment delivery for this patient group. The 

current NARLAL2 trial has, in the treatment planning procedures and the pre- and on-trial QA processes, 

paid close attention to high-quality treatment plan optimization and compliance with dose constraints for 

the OARs. All relevant OARs are delineated, including all mediastinal connective tissue. Normal tissue 

constraints used are consistently conservative, especially with regards to mediastinal structures. No large 

>74 Gy hotspots are allowed, which appears to be a safe dose level for the aorta[24], the bronchi and the 

trachea[25,26], as well as for the thoracic wall and other connective tissues[25]. Dose constraints to the 

oesophagus have been much debated, with most publications on dose metric predictors concentrating on 

acute toxicity, but severe late toxicity such as strictures may primarily be related to high dose volumes[27], 

and therefore a conservative dose limit of 70 Gy was chosen for the trial. Data on cardiac toxicity after 

radiotherapy for NSCLC is currently emerging[11,28], with no clear agreement on dose constraints to be 

used in clinical practice. The treatment plan data reported in the current study demonstrates the lack of 

significant differences between doses to OARs in the two arms - except in the case of comparatively small 

volumes receiving dose in the range 66-74 Gy. Small volumes of lung tissue may receive higher dose (>74 

Gy), but experience from stereotactic lung radiotherapy indicates that this is generally well-tolerated. 

While careful attention to pre-treatment dose planning is undoubtedly important, anatomical changes 

during RT can cause the delivered dose to tumour and malignant lymph nodes as well as to OARs to deviate 

substantially from the planned dose[29,30]. This introduces high risk of under dosage of the tumour and 

lymph nodes and over dosage of OARs, where the latter represents a much more severe problem in the 

case of dose-escalation. To ensure that the planned dose is actually delivered, each participating centre has 

implemented an adaptive strategy prior to patient enrolment. Twenty percent of the first trial patients 

were re-planned during the treatment course, clearly demonstrating the need for such policies.  

In conclusion, the dosimetric results of the first thirty patients treated in the NARLAL2 trial confirmed that 

FDG-driven dose-escalation can achieve significantly increased tumour doses without compromising dose 

constraints to OARs. The feasibility is proven in daily clinical practice in a multi-centre setting. At the time of 

submission, 82 patients have been enrolled and the trial is open for enrolment in 4 centres. 
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Figure Captions 

Figure 1: Study design of the NARLAL2 trial. Patients are randomized 1:1 between standard and dose-

escalated radiation regimens, with dose-escalation driven by the most FDG-avid regions of the primary 

tumour and lymph nodes. All patients will have treatment plans for both arms approved for clinical use 

before the randomization result is known to prevent any bias in the dose planning. Daily treatment is 

image-guided, with centre-specific treatment margins and adaptive treatment strategies.  

Figure 2: Definition of FDG-avid areas used to drive dose-escalation. For a GTV-T smaller than 4 cm3 the 

whole GTV-T is used, while for a GTV-Nx smaller than 4 cm3 no dose-escalation is pursued. For all GTVs 

larger than 4 cm3, GTVPET (dotted black line) is defined as the 50% of the SUVpeak from the PET-signal within 

that specific GTV. However, if the GTVPET is less than 4 cm3 or less than 30% of the GTV (for each specific 

GTV), first the 40% of the SUVpeak, then the 30% of the SUVpeak is utilised.  If the GTVPET is still too small, then 

an isotropic margin is added until the volume requirements are fulfilled. 

Figure 3:  As an example, DVH͛Ɛ ĨŽƌ ŽŶĞ ƉĂƚŝĞŶƚ ŝƐ ĚŝƐƉůĂǇĞĚ͘ TŚĞ ĨŽƵƌ ƉĂŶĞůƐ ŚĂǀĞ ĚŝĨĨĞƌĞŶƚ ƐĐĂůĞƐ ŽŶ ƚŚĞ 
axes. DVHs with solid lines for the standard plan and dashed lines for the escalated plan. Panel a and b 

ĚŝƐƉůĂǇ DVH͛Ɛ ;PTV͕ CTV͕ GTV ĂŶĚ GTVPET) for the primary tumour and the composite lymph nodes. Panel c 

displays the full DVH of selected OARs (Bronchi, Oesophagus and lung) with relative volumes, while panel d 

displays the absolute volume receiving doses above 60 Gy for the Oesophagus and Bronchi.  
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