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We consider fluid-filled spheres and spheroidal containers of eccentricity ǫ in rapid

rotation, as a proxy for the interior dynamics of stars and planets. The fluid motion

is assumed to be quasi-geostrophic (QG): horizontal motions are invariant parallel

to the rotation axis z, a characteristic which is handled by use of a stream function

formulation which additionally enforces mass conservation and non-penetration at

the boundary. By linearising about a quiescent background state, we investigate a

variety of methods to study the QG inviscid inertial wave modes which are compared

with fully 3-D calculations. We consider the recently-proposed weak formulation of

the inviscid system valid in spheroids of arbitrary eccentricity, to which we present

novel closed-form polynomial solutions. Our modal solutions accurately represent,

in both spatial structure and frequency, the most z-invariant of the inertial wave

modes in a spheroid, and constitute a simple basis set for the analysis of rotationally-

dominated fluids. We further show that these new solutions are more accurate than

those of the classical axial-vorticity equation, which is independent of ǫ and thus fails

to properly encode the container geometry. We also consider the effects of viscosity for

the cases of both no-slip and stress-free boundary conditions for a spherical container.

Calculations performed under the columnar approximation are compared with 3-D

solutions and excellent agreement has been found despite fundamental differences in

the two formulations.

Keywords: Inertial modes, quasi-geostrophy, Earth’s outer core

1



I. INTRODUCTION

It is well accepted (since Larmor (1919)) that planetary magnetic fields observed on

Earth and other planets have their origin in the fluid motions powered by thermo-chemical

convection in their outer cores through the geodynamo mechanism (Roberts and Aurnou,

2012). The presence of rotation, thermal and chemical heterogeneities, magnetic forces and

viscosity makes the entire system dynamic and complex. In the Earth’s core, rotation is

thought to be the dominant force acting on the system as illustrated by the smallness of

the large scale Rossby (Ro) and Ekman (E) numbers. These numbers are a measure of the

importance of inertial and viscous forces with respect to the Coriolis force and they have

accepted estimates of Ro ≃−6 and E ≃ 10−15 (Olson, 2015); as a consequence the Earth’s

outer core is said to be in rapid rotation.

One of the main characteristics of rapidly rotating systems is that the dynamics tends

to be independent along the vertical direction defined by the axis of rotation. This is

a consequence of the Taylor-Proudman theorem (Pedlosky, 1992) which states that large

scale, slow motions in the presence of fast rotation are governed at leading order by a

balance between the Coriolis force and the pressure gradient (the geostrophic balance).

Flows strictly governed by the geostrophic balance are invariant along the vertical direction

and therefore bi-dimensional. The tendency of rapidly rotating dynamics to be columnar

has been documented in experiments (Cardin and Olson, 1994) and numerical simulations

of thermal convection in spherical geometries (Zhang, 1992; Christensen, 2002) and in

geodynamo simulations (Kageyama, Miyagoshi, and Sato, 2008). Furthermore, inversion

of geomagnetic observations reveals that the core surface flows possess a high degree of

equatorial symmetry (Hulot, Le Mouël, and Jault, 1990; Gillet, Schaeffer, and Jault, 2011)

in agreement with the presence of columnar flows in the interior.

The other forces that are important in the dynamics are buoyancy and magnetic (Lorentz)

forces. Although in principle the presence of buoyancy can weaken the Taylor-Proudman

constraint (see the discussion in Jacobs (1987), chapter 4), it has been shown through

numerical and experimental studies (Christensen, 2002; Yadav et al., 2016; Cardin and

Olson, 1994) that buoyancy does not completely destroy the vertical invariance of the flows,

even in strongly forced regimes. Similar considerations are valid for the Lorentz force, as the

presence of a strong magnetic field can inhibit the flows in the direction perpendicular to
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the field lines. This law, called the Ferraro law (Ferraro, 1937) can clearly be in competition

with the vertical invariance imparted by rapid rotation if the magnetic field is strong enough

(Davidson, 2013). It has been shown in Jault (2008) and Gillet, Schaeffer, and Jault (2011)

that transient motions remain highly columnar as long as the Lehnert number (Le), a

measure of the importance of the Lorentz force with respect to rotation, is smaller than

10−2 and magnetic diffusivity is negligible. Based on estimated values of magnetic field

intensity in the Earth’s core (Gillet et al., 2010) it can be concluded that these constraints

are valid for motions with interannual to decadal timescales.

Evidence for the presence of columnar motions has paved the way for the development

of models, based on the quasi-geostrophic (QG) approximation, in which it is assumed that

horizontal flows have a columnar structure (i.e. invariant along the vertical) and the non-

penetration condition at the core-mantle boundary (CMB) is satisfied by requiring that

the vertical flows have a linear vertical dependence. These kinds of models have first been

developed for studies of thermal convection (Cardin and Olson, 1994; Aubert, Gillet, and

Cardin, 2003; Gillet and Jones, 2006; Guervilly and Cardin, 2016) and are now being

considered for studying the dynamics of the Earth’s core in presence of magnetic fields

(Schaeffer and Cardin, 2005, 2006; Canet, Fournier, and Jault, 2009; Canet, Finlay, and

Fournier, 2014; Labbé, Jault, and Gillet, 2015). The power of these models has recently been

illustrated in Guervilly and Cardin (2016), in which thermal convection has been studied

for Ekman numbers in the range 10−8 ≤ E ≤ 10−5 and Prandtl numbers (Pr, the ratio of

viscosity over thermal diffusivity) in the range 10−2 ≤ Pr ≤ 10−1. Decreasing the Ekman

number down to E ≤ 10−7, Guervilly and co-authors where able to observe a transition

to a ”strong branch” regime (characterised by more vigorous and efficient convection with

respect to the better known ”weak branch”) and sub-critical convection. Studying these

same dynamics in 3-D is out of reach of current direct numerical simulations whose cutting

edge is at E ≃ 10−6 and Pr ≃ 1 (King, Stellmach, and Aurnou, 2012) and it is difficult for

them to study this phenomenology.

Due to the presence of the Coriolis force, inertial waves can propagate in the outer core

(Greenspan, 1968) and eventually normal modes (also called inertial oscillations) can be

established. The frequency of these oscillations is constrained to be less that twice the ro-

tation frequency of the fluid and at low frequency the oscillations becomes highly elongated

along the vertical direction (Zhang et al., 2001). Calculation of the inertial eigenmodes and
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eigenfrequencies under the columnar approximation is useful for characterising the QG mod-

els and phenomenology in many ways. Columnar inertial oscillations propagate eastward,

in agreement with the propagation of Rossby waves in the atmosphere (Canet, Finlay, and

Fournier, 2014). In the presence of a magnetic field, another class of oscillation emerges,

travelling westward with longer periods and which might possibly be the cause of the west-

ward drift of geomagnetic features observed at the CMB (Hide, 1966; Jackson, 2003). The

magnetic solution can be characterised in terms of the inertial oscillations and in some

cases (Malkus, 1967; Schmitt, 2010; Canet, Finlay, and Fournier, 2014) eigenmodes and

eigenfrequencies can be explicitly calculated from the inertial ones. At the onset of thermal

convection the hydrodynamic instability sets in as a set of perturbed, QG inertial modes

(Zhang, 1994, 1995) so that the sole knowledge of columnar inertial modes is sufficient to

calculate the onset of thermal convection with excellent agreement with 3-D numerical sim-

ulations (Zhang and Liao, 2004; Zhang, Liao, and Busse, 2007; Zhang, Lam, and Kong,

2017). Furthermore it has recently been shown that the 3-D inertial modes in a sphere

(Ivers, Jackson, and Winch, 2015) and in ellipsoids (Vantieghem, 2014; Backus and Rieu-

tord, 2017; Ivers, 2017) form a complete polynomial set. The proof of completeness of the

columnar inertial modes would pose solid theoretical foundations behind the resolution of

generic QG motions on a complete basis set.

The purpose of the present paper is to characterise the inertial modes in a spherical

container in rapid rotation by means of the columnar flow approximation. The structure

of the paper is the following: Section II is devoted to the introduction of the governing

equations and the QG formulation studied throughout the paper. In Section III we study

the inviscid problem containing the essence of inertial wave propagation. For the first time to

our knowledge, we propose a fully analytical solution for the normal mode problem that rests

on the axial vorticity equation formalism, which is commonplace in the development of QG

models. A more general formulation, proposed in Labbé, Jault, and Gillet (2015) allows the

calculation of QG solutions that are in better agreement with 3-D calculations. In Section IV

we analyse this alternative formulation in some detail and we derive an analytical solution

for QG inertial modes in oblate spheroid of arbitrary eccentricity. This general solution

allows for a unification of the axial vorticity formalism and the approach of Labbé, Jault,

and Gillet (2015). A comparison of our QG solution with known 3-D results (Zhang et al.,

2001; Zhang, Liao, and Earnshaw, 2004) is presented in Section V. In Section VI we study
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the effect of viscosity on the novel QG analytical solution in the case of both no-slip and

stress-free conditions at the surface of the domain. A review of the formulation for finding

the viscous correction to the inertial mode eigenfrequencies, decay rate and boundary flows

is reported and specialised to the QG case. Comparison with 3-D calculations is presented.

Discussions and conclusions can be found in Section VII.

II. GOVERNING EQUATIONS

Consider a rotating fluid sphere of radius r0 whose axis of rotation passing through the

center of the sphere we indicate with Ω. Since we are considering motions that are almost

invariant along the vertical direction defined by the rotation axis, we introduce a cylindrical

coordinate system with unit vectors (es, eφ, ez) whose vertical unit vector is aligned with Ω:

ez =
Ω

|Ω| . (1)

Then s is the distance from the rotation axis and φ the longitude. This reference system is

common in studies of columnar flows in the outer core (see for example Cardin and Olson

(1994); Aubert, Gillet, and Cardin (2003); Canet, Fournier, and Jault (2009); Canet,

Finlay, and Fournier (2014); Labbé, Jault, and Gillet (2015) and Guervilly and Cardin

(2016)). We will also make use of a spherical coordinate system (er, eθ, eφ) where r is

the distance from the center of the sphere, θ is the colatitude and φ the longitude. The

relationship between the spherical and cylindrical systems are the following:

s = r sin θ (2)

z = r cos θ. (3)

In cylindrical coordinates the boundary r = r0 is also defined as z = ±
√

r20 − s2, with

2
√

r20 − s2 being the height of the sphere at any point defined by a distance s from the

rotation axis.

We consider that the fluid is incompressible and that no flow is permitted across the

boundary of the spherical container. The momentum equation describing the evolution of

the velocity u is the Navier-Stokes equation:

∂u

∂t
+ (u · ∇)u+ 2Ω× u = −1

ρ
∇P + ν∇2u+

1

ρ
F (4)
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where ρ is the density of the fluid, P is the pressure, ν the kinematic viscosity and F are the

body forces (such as buoyancy) that are neglected in the present study. In analogy to Zhang

and Liao (2004), we non-dimensionalise the governing equations by measuring time and

distances in terms of |Ω|−1 and r0, respectively. Velocity and pressure are then normalised

in terms of |Ω|r0 and ρr20|Ω|2, respectively and the relevant system then is

∂u

∂t
+ 2ez × u+∇P = 2E∇2u (5)

∇ · u = 0 (6)

er · u|r=1 = 0 (7)

er × u|r=1 = 0 (no-slip) (8)

∂

∂r

(uθ

r

)∣

∣

∣

r=1
=

∂

∂r

(uφ

r

)∣

∣

∣

r=1
= 0 (stress-free) (9)

where the Ekman number E has been defined as:

E =
ν

2|Ω|r20
. (10)

Equation (5) is then the non-dimensional form of the momentum equation in absence of body

forces, (6) expresses the divergence free condition of the fluid and (7) is the non-penetration

boundary condition. Under the inviscid approximation E = 0 and (7) is sufficient given the

order of the momentum equation. But real fluids have finite viscosity for which E > 0 and

we must provide an additional boundary condition on the flow. Typical choices are either

no-slip (8) or stress-free (9); the first is appropriate for describing a rigid surface like the

CMB, while the latter is applicable to the outer surface of gas giants or stars.

As long as rotation dominates over all other forces, the momentum equation (5) is

amenable to a perturbative analysis where the leading order is the geostrophic balance.

In a closed container whose shape is symmetric around the rotation axis such as a sphere,

solutions to the resulting equation are time independent zonal flows invariant along both

z and φ. These geostrophic flows clearly are not representative of the complex dynamics

taking place in fluid planetary cores and subdominant orders have to be considered (Gillet,

Schaeffer, and Jault, 2011), hence the quasi-geostrophic approximation. The QG approach

considered here is described in Cardin and Olson (1994); Schaeffer and Cardin (2006) and

Canet, Finlay, and Fournier (2014) and consists of imposing the velocity field to be of the
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form:

u(s, φ, z) =
1

H
∇× (Ψ(s, φ)ez)−

sz

H2
us(s, φ)ez =

1

sH

∂Ψ

∂φ
es −

1

H

∂Ψ

∂s
eφ −

z

H3

∂Ψ

∂φ
ez (11)

where

H =
√
1− s2. (12)

Together with the boundary condition

Ψ(s = 1) = 0 (13)

this formulation describes a columnar flow that satisfies non-penetration boundary condition

over the entire outer boundary (7), the incompressibility constraint (6) and it is entirely

defined by the 2-D scalar potential Ψ(s, φ) that we refer to as a stream function.

III. INERTIAL NORMAL MODES

For now we neglect viscous effects and impose E = 0 in (5)

∂u

∂t
+ 2ez × u+∇P = 0. (14)

We then consider normal mode solutions of the form

u(s, z, φ, t) = û(s, z)ei(mφ+ωt) (15)

with m ≥ 1, and similarly for the pressure P , where m is the azimuthal wavenumber, ω

the oscillation frequency of the solution and the hat indicates a function of the meridional

coordinates (s, z). Given the definition (11) an equivalent ansatz is:

Ψ(s, φ, t) = Ψ̂(s)ei(mφ+ωt). (16)

Substituting (15) in the inviscid momentum equation we obtain the following normal

mode equation

iωu+∇P + 2ez × u = 0 (17)

which is treated in detail in Kudlick (1966) and Greenspan (1968). A well known procedure

(see for example Aubert, Gillet, and Cardin (2003); Canet, Finlay, and Fournier (2014) and

references therein) to eliminate pressure from the momentum equation is to consider the
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axial vorticity equation by taking the curl of (14). The vertical component of the resulting

equation is the axial vorticity equation:
[

∂

∂s

(

s

H

∂

∂s

)

+
1

sH

∂2

∂φ2

]

∂Ψ

∂t
− 2

s

H3

∂Ψ

∂φ
= 0. (18)

By inserting the ansatz (16) in the axial vorticity equation (18) and considering the non-

penetration condition (13) we obtain an eigenvalue problem for the radial function Ψ̂:

ω

[

d

ds

(

s

H

d

ds

)

− m2

sH

]

Ψ̂− 2m
s

H3
Ψ̂ = 0. (19)

For a given m, the eigensolution is given by the set (Ψ̂m
N , ω

m
N ) where N ≥ 1 is an integer

number that indicates a particular solution to the radial eigenproblem (19). By considering

regularity at the origin s = 0 (Lewis and Bellan, 1990), an analytical solution is given by

Ψ̂m
N = smH3P

(3/2,m)
N−1 (2s2 − 1) (20)

ωm
N = − m

N(2N + 2m+ 1) + m
2

(21)

where P
(α,β)
n (x) is a Jacobi polynomial (see for example chapter 22 of Abramowitz and Stegun

(1965)) and Tm
N = 2π(ωm

N )
−1 is the eigenperiod of the N th solution given a certain m. The

pre-factor sm in (20) ensures differentiability of the solution at s = 0 for any values of m

and the factor H3 ensures that the azimuthal velocity field remains finite at s = 1. Equation

(19) is of Sturm-Liouville type (Arfken, Weber, and Harris, 2011) and, complemented by the

conditions of regularity at the origin and non-penetration at the equator, it is a self adjoint

problem. Therefore the solution (20), (21) is unique and each one of the eigenfunctions (20)

corresponds to a distinct eigenvalue (21). Furthermore, as will be illustrated in detail later, it

is possible to define a scalar product under which different solutions (20) are orthogonal and

therefore form a complete set. These results are in agreement with previous studies (Canet,

Finlay, and Fournier, 2014); in particular the eigenperiods are all negative, indicating waves

moving eastward, as expected for hydrodynamic Rossby waves contained in a sphere.

IV. AN ALTERNATIVE FORMULATION AND SOLUTION IN OBLATE

SPHEROIDS

In Labbé, Jault, and Gillet (2015) an alternative formulation is presented that does not

rest on the axial vorticity equation but on the projection of the momentum equation on the
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space of the flows with columnar geometry. Here we follow the procedure described in Labbé,

Jault, and Gillet (2015) and generalise it to an oblate spheroid of equatorial radius s = 1

and vertical axis b ≤ 1. See figure 1 for the geometry under consideration. The spherical

geometry is recovered for b = 1. Since we continue working in cylindrical coordinates we

need to express the direction of the normal n to the surface of the spheroid in this coordinate

system as now the non-penetration boundary condition is

n · u|∂V = 0, (22)

where the ∂V is the boundary of the spheroid. The eccentricity of the spheroid is ǫ =
√
1− b2, where the case ǫ = 0 represents a sphere and ǫ = 1 is a spheroid with vanishing

height above the equatorial plane. We define the surface of the spheroid by its position z

with respect to the equatorial plane

z = ±b
√
1− s2 = ±h, (23)

where the positive and negative signs apply on the Northern and Southern hemisphere,

respectively, and h = bH. This equation is an identity of the form g(s, z) = 0 that describes

the surface of the spheroid. The normal to the surface can be then be readily calculated as:

n = −∇g(s, z) = ∓esb
s√

1− s2
− ez. (24)

The non-penetration boundary condition (22) in cylindrical coordinates is usns + uznz = 0

which, making use of (24) reduces to

uz = ∓b
s√

1− s2
us. (25)

We see that the definition (11) satisfies the non-penetration boundary conditions in

spheroidal geometries for any value of b. Since the momentum equation in non-dimensional

form is still given by (14) following the procedure that leads to the axial vorticity formulation

(19) gives the same normal mode equation and the same solution (20)-(21). We now follow

Labbé, Jault, and Gillet (2015) and we project the Navier-Stokes equation on the space of

the geostrophic flows. This procedure is reminiscent of the one followed in the finite element

methods (Durran, 2010) to obtain the weak form of the evolution equations: assuming that

the flow u(Ψ) is defined as in (11) we form the dot product of the Navier-Stokes equation

with the test function u′(Ψ′), also expressed as a columnar flow:

u′ =
1√

1− s2
∇× (Ψ′(s, φ)ez)− u′

s

sz

1− s2
ez (26)
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and we integrate the resulting equation in the volume V of the spheroid. This leads us to

the following:
∫

V

u′ ·
[

∂u

∂t
+ 2ez × u+∇P

]

dV = 0. (27)

By means of integration by parts we now manipulate this equation with the purpose of

collecting Ψ′ as common factor. We can use the non-penetration boundary condition on ∂V

(22), and in particular at the equatorial boundary

Ψ(s = 1) = 0, (28)

the regularity condition at the origin, requiring that Ψ is proportional to sm as s → 0, and the

incompressibility condition (6). The volume integral over the spheroid can be separated in

an integration along the vertical direction, from −b
√
1− s2 to b

√
1− s2, and an integration

on the equatorial disk, whose surface area is indicated with A. By making use of Gauss’

integration theorem the pressure term in (27) vanishes. Manipulating the remaining terms

leads to

∫

A

Ψ′

[

−2
b

s

∂

∂s

(

s

H

∂

∂s

∂Ψ

∂t

)

− 2b

(

1

s2H
+

1

3

1

H3
b2
)

∂2

∂φ2

∂Ψ

∂t
+ 4

b

H3

∂Ψ

∂φ

]

dA = 0. (29)

where
∫

A
dA =

∫ 1

0

∫ 2π

0
sdφds. Since this integral has to vanish for any value of the test

function Ψ′ we obtain the following equation:

[

∂

∂s

(

s

H

∂

∂s

)

+

(

1

sH
+

s

3

1

H3
b2
)

∂2

∂φ2

]

∂Ψ

∂t
− 2

s

H3

∂Ψ

∂φ
= 0. (30)

Compared to the axial vorticity equation this procedure results in an extra term proportional

to b2. This result is consistent with and can be derived from Labbé, Jault, and Gillet (2015)

upon substituting H with h = bH in their (equation 13f). Note that this operation leaves

the slope β = −(dH/ds)/H unchanged. For b = 0 the spheroid has no vertical extension and

reduces to a 2-D disc. In this case equation (30) reduces to the axial vorticity equation (18)

previously obtained, illustrating how the axial vorticity formulation results in an equation

that retains no information about the parameter b. Substituting (16) in (30) we obtain an

eigenvalue problem with solution:

Ψ̂m
N = smH3P

(3/2,m)
N−1 (2s2 − 1) (31)

ωm
N = − m

N(2N + 2m+ 1) + m
2
+ m2b2

6

. (32)
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As expected (32) reduces to (21) for b = 0. The geometry of the eigenmodes (20) is however

unaffected by the eccentricity of the container. Equation (30) is also a Sturm-Liouville

equation. Therefore the considerations illustrated above for equation (19) apply for (30)

and the eigenfunctions (31) with eigenvalues (32) form a complete basis set.

It is straightforward to deduce that the solutions Ψ̂m
N for any given m are orthogonal

under the following scalar product:

∫ 1

0

Ψ̂m
N(s)Ψ̂

m
K(s)

s

H3
ds =

1

2

Γ
(

N + 3
2

)

Γ(N +m)

(N − 1)!
(

2N + 1
2
+m

)

Γ
(

N + 3
2
+m

)δN,K ≡ ||Ψ̂m
N ||2δN,K .

(33)

For b > 0 corresponding velocities are also orthogonal according to
∫

V

(um′

N )∗ · um
KdV = −4mbTm

N ||Ψ̂m
N ||2δm,m′δN,K ≡ ||um

N ||2b>0δm,m′δN,K . (34)

Here V is the volume of the spheroid defined by a given value of 0 < b ≤ 1, (um′

K )∗ is

the complex conjugate of the normal mode um′

K = ûm′

K eim
′φ and the meridional component

of the velocity ûm′

K is a complex quantity. For b = 0 the spheroid collapses to the equatorial

disc and the analogous version of integral (34) would have to be taken over the plane z = 0.

However in order to make use of (33) and preserve the form of the norm (34) we integrate

over the unit sphere. The integrand (um′

N )∗ · um
K is evaluated on z = 0 before integration,

and the vertical integration is substituted by a multiplication by 2H. The case b = 0 results

then in the following orthogonality condition:

∫

A

∫ H

−H

[

(um′

N )∗ · um
K

]

z=0
dzdA =

∫

S

2H
[

(um′

N )∗ · um
K

]

z=0
dA

= −4mTm
N ||Ψ̂m

N ||2δmm′δN,K ≡ ||um
N ||2b=0δmm′δN,K .

(35)

where Tm
N is now given by (21) and we explicitly indicated the vertical integration from −H

to H and the integration over the surface of the equatorial disc A.

V. COMPARISON WITH 3-D CALCULATIONS

A. The spherical case

It is known (Canet, Finlay, and Fournier, 2014; Labbé, Jault, and Gillet, 2015) that

for high values of m and low values of N , the QG solution (21) calculated from the axial

vorticity equation tends to deviate considerably from the prediction of 3-D calculations. This
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is illustrated in figure 2 where the dashed lines are calculated from the formula (21) and the

crosses are the corresponding 3-D solution from Zhang et al. (2001). The 3-D eigenperiods

considered in the figure are the ones closest to the QG solution and those corresponding to

equatorially symmetric modes with the lowest vertical complexity. For any given m, this

corresponds to the modes with smallest eigenfrequency (in absolute value) which in Zhang

and Liao (2004) are referred to as QGIW (Quasi-Geostrophic Inertial Waves) and are the

only modes for which a comparison with our columnar oscillations is possible. As shown on

the scale of the vertical axis in figure 2, the eigenperiod of the modes considered here can

be much longer than the rotation period of the system.

The full lines in figure 2 are the eigenmodes calculated from the formula (32) with b = 1.

This solution is a better approximation of the 3-D calculations than (21), as also shown in

Labbé, Jault, and Gillet (2015). It remains true that the 3-D solution is better approximated

by QG modes for high values of N and low values of m. The reason for this is understood

by analysing the geometry of the modes (figures 3 and 4). As m increases the maximum is

shifted toward the equator, where the QG approximation is expected to deviate the most

from the fully 3-D calculations of Zhang et al. (2001). In the upper rows of figures 3 and 4

we illustrated this for N = 1 and N = 15 where the stream function Ψ̂ of the QG modes

is compared to an equivalent stream function derived from the equatorial projection of the

3-D modes. Guided by (11) we assume that, for a given N and m, there exists a stream

function Ψ3D(s, φ) such that:

1

2H

∫ H

−H

û3D
s (s, z)dz =

im

sH
Ψ̂3D(s) (36)

where u3D
s (s, φ, z) is the cylindrical radial component of the 3-D normal mode calculated

according to the formulas of Zhang et al. (2001) for the given N and m. The right-hand

side of (36) represents a vertical average of the meridional component û3D
s and the function

Ψ̂3D(s) is represented by the red lines in figures 3 and 4. The agreement with the QG

solution is excellent, indicating that the horizontal structure of the inertial modes is reliably

reproduced in the QG approach for any N and m. The deviations in the dispersion relation

are less pronounced in the higher N modes (like the N = 15 mode shown in figure 4) since

the high amplitude oscillations are further away from the equator while for low N (see

figure 3) the few oscillations are concentrated towards the outer boundary. In the lower

rows of figures 3 and 4 we show the meridional structure of the 3-D eigensolution. The
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z-independence of the 3-D modes increases with N and decreases with m. For larger N ,

the boundary conditions can be matched in ever finer regions, allowing the solution over

the remaining volume to be almost exactly z-invariant. For large m, the modes are focused

close the equator where the QG approximation breaks down. As the 3-D solution shows

more vertical dependence, the deviations in the dispersion relation (figure 2) grow larger.

That the solution becomes more and more equatorial as m increases was expected from the

presence of a pre-factor sm in both the columnar solution (32) and the 3-D modes of Zhang

et al. (2001) and due to the condition of regularity that has to be imposed at the origin

s = 0. Since s ≤ 1, as m increases the pre-factor is smaller closer to the origin and the

modes oscillates preferentially closer to the boundary s = 1.

We now briefly highlight the difference between our approach and the 3-D one presented

in Zhang et al. (2001), who also analysed the slow modes referred to as the QGIW in Zhang

and Liao (2004). They note that an approximate frequency of these waves is

ωG = − 2

m+ 2

(
√

1 +
m(m+ 2)

N(2N + 2m+ 1)
− 1

)

(37)

which is an explicit rather than the normally implicit formula for the frequency, valid only

for the gravest inertial mode given a certain m and N . When one adopts the approximated

QGIW frequency (37), a visual comparison such as figure 2 is unchanged. However, we find

that in adopting (37) the boundary conditions of the 3-D modes are no longer satisfied,

since adherence to the non-penetration boundary condition rests on the use of the exact

eigenfrequency, derivable only as roots of a polynomial equation of degree 2N . On the other

hand, the flows (11) always satisfy non-penetration at the boundary and are, of course,

independent of the frequency.

When N ≫ m the approximate QGIW frequency becomes

ωG ≈ − m

N(2N + 2m+ 1)
, (38)

the similarities with (21) being striking, showing why the comparison in figure 2 is so good.

We should, however, highlight some differences in the form of the eigenfunction, lest a

misleading impression be given. In doing so we dispel any notions that the modes we have

found are in any way a subset of the true 3-D inertial modes satisfying Poincaré’s differential

equation. To do so we take as an example the lowest QGIW, namely the N = 1 mode, whose
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frequency is approximately −m/(2m+ 3); the form of the fluid motions for this mode are:

u3D
s ∝ sm−1(1 + As2 +Bz2)

u3D
φ ∝ sm−1(1 + Cs2 +Bz2) (39)

u3D
z ∝ smz

with known coefficients A, B and C (Zhang et al., 2001). In comparison, our modes have

the form:

us ∝ sm−1(1− s2)

uφ ∝ sm−1(m(1− s2)− 3s2) (40)

uz ∝ smz

with frequency −m/(5m/2 + 3) as given by (21). One can see that the vertical flow has

the same structure, but the u3D
s and u3D

φ components are not z-invariant, as they always

are in our formulation. Both formulations adhere to the regularity conditions required for

continuity and infinite differentiability at the origin (Lewis and Bellan, 1990).

B. The spheroidal case

In figure 5 we show the same comparison as in figure 2 but for different spheroids defined

by different values of b. The QG results are calculated using formula (32) and the 3-D

solutions are calculated using the results of Zhang, Liao, and Earnshaw (2004). As in the

spherical case, the QG solution is compared with the equatorially symmetric 3-D modes with

the lowest vertical complexity. Again we see that with increasing N and for low values of m

the agreement between the 3-D and the QG calculation is remarkable. Since the geometrical

structures of the modes in the spheroid is the same as in the sphere, the reasons are the

same: the QG approximation gives better results when the oscillations are concentrated

away from the boundary s = 1. We also notice that the agreement in figure 5 is better

for very flat spheroids (very low values of b). That is because for very flat spheroids, the

vertical structure has a negligible contribution in the dynamics and for the limiting case

b = 0 the spheroid degenerates into a disk and the geometry of the modes is 2-D, so that

both approaches are equally correct. The eigenperiod, on the other hand, is a function of

the geometry, as indicated by the presence of the height b in the formula (32). For smaller
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values of b the eigenmode with same N and m oscillates with a smaller oscillation period

or, equivalently, at a higher frequency.

From figures 2 and 5 we also notice that the dispersion relation is non-monotonic in both

the spherical and spheroidal cases. For a given eigenmode N , the eigenperiod curves in the

figures reach a minimum at a given m that is a function of the eccentricity of the spheroid.

For very oblate spheroids the minimum is reached for very high values of m and is not visible

in figure 5.

VI. EFFECT OF VISCOSITY AND BOUNDARY LAYERS

So far we considered only the inviscid form of the momentum equation (5) and the non-

penetration boundary condition has been sufficient for the determination of the normal mode

solution (31)-(32). For these modes the flow normal to the boundary is zero at the edge of the

container and the tangential flows are not constrained. In the presence of viscosity additional

boundary conditions must be provided due to the increased order of the momentum equation.

These condition can be either no-slip (8) or stress-free (9). In both cases boundary layers

with radial extension proportional to E1/2 are present (Livermore, Bailey, and Hollerbach,

2016) but their effect on the main flow is reduced in the case of stress-free boundaries. In

the no-slip case the velocity field has to vanish across the boundary layer, thus stronger

secondary flows are driven that can have a significant effect on the dynamics in the rest of

the domain (Greenspan, 1968). In this section we consider both the no-slip (8) and stress-

free (9) conditions and calculate corrections to the normal mode eigenperiods (32) and flow

structure. We mostly consider the spherical case b = 1 but the procedure outlined below

can be easily adapted to the generic b case.

A. The no-slip condition

In the present section we investigate the correction required to model viscous effects in

the case of no-slip boundary condition. We first follow a well-known asymptotic procedure

that is thoroughly illustrated in Kudlick (1966) and Greenspan (1968) that only considers

first order viscous terms in the calculation of the eigenfrequencies and decay rates. We then

consider a novel approach introduced in Liao and Zhang (2008) in which viscous terms are
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treated in a more general fashion and that results in a more precise determination of the

decay rates.

1. First order calculations

We follow the classical procedure outlined in chapter 2 of Kudlick (1966) and chapter 2

of Greenspan (1968) and expand the velocity and pressure in the following way:

u =
∑

N

CN

[

(ûN + (2E)1/2ûN1 + . . .) + (ˆ̃uN + (2E)1/2 ˆ̃uN1 + . . .)
]

eimφ+sN t (41)

P =
∑

N

CN

[

(P̂N + (2E)1/2P̂N1 + . . .) + ( ˆ̃PN + (2E)1/2 ˆ̃PN1 + . . .)
]

eimφ+sN t (42)

where the sum is over the set of normal modes denoted by the index N and the superscript

m has been dropped for convenience. The hat variables are functions of the meridional

coordinates only, (s, z) or (r, θ) and sN is:

sN = iωN + (2E)1/2G+ . . . (43)

where we only consider the first order correction term G, which is in general a complex

quantity. The leading order terms uN and PN are solution of the normal mode inviscid

problem (14) with conditions (6) and (7). Once the viscous terms are being reinstated, we

need to consider boundary layer flows ũN + (2E)1/2ũN1 + . . . and secondary interior flows

(2E)1/2uN1+ . . .. The terms indicated by the dots are of order O(E) and are here neglected.

The boundary terms are negligible in the interior but are of the same order of magnitude

as the interior flow in a thin boundary layer of thickness O(E1/2) as they are needed to

satisfy the no-slip boundary condition u = 0 at the solid boundary. By mass conservation

a secondary interior flow of order O(E1/2) is induced. In addition to a flow correction, the

eigenfrequencies ωN need to be corrected for the presence of the Ekman layer. Inserting

(41) - (43) into (5) and subtracting the leading order, inviscid solution we obtain evolution

equations for ũN and uN1. The frequency correction G appears in the equation for the

secondary interior flow uN1:

iωNuN1 + 2ez × uN1 +∇PN1 = −GuN (44)
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Following Kudlick (1966), the solution for the interior correction uN1 at the solid boundary

is given by:

er · uN1|r=1 =
1

2
er · ∇ ×

[

er × uN

(

1

Z1

+
1

Z2

)

+ ier × er × uN

(

1

Z1

− 1

Z2

)]

r=1

. (45)

with:

Z1 = −
√

i(ωN − 2(er · ez)) ; Z2 = −
√

i(ωN + 2(er · ez)). (46)

In this expression, since only the tangential components of the flow uN are of importance,

we can substitute er×er×uN with −uN and have a simplified expression. If we set ωN = 0

in Z1 and Z2, the above expression reduces to:

er · uN1|r=1 =
1

2
er · ∇ ×

[

−er × uN − uN
ez · er
|ez · er|

]

r=1

1

|ez · er|1/2
(47)

which is expression (2.6.13) of Greenspan (1968) derived under the assumption that the time

derivatives of the boundary layer flows are negligible. Expression (45) is a generalisation

of the Ekman pumping used in QG models (Aubert, Gillet, and Cardin, 2003; Schaeffer

and Cardin, 2005; Gillet and Jones, 2006) to implement non-slip boundary conditions. It

is important to note that it is impossible to simply impose u = 0 at the CMB when the

columnar flow description (11) is implemented, since if the flow is zero at any point on the

CMB, it is zero in the whole vertical chord described by the same (s, φ).

The correction term G is obtained from the solvability conditions for equation (44).

Following appendix A of Kudlick (1966) the result is:

G =
1
2
(K1 +K2)

∫

V
u∗

N · uNdV
(48)

where

K1 =

∫

r=1

(iωNu
∗

N − 2ez × u∗

N) ·
[

uN + ier × uN

Z1

]

dS (49)

K2 =

∫

r=1

(iωNu
∗

N − 2ez × u∗

N) ·
[

uN − ier × uN

Z2

]

dS (50)

To compute G for the columnar inertial modes we made use of the closed form solution

for ωN and uN that can be derived from (31) and (32). The integrals K1 and K2 can be
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manipulated into the following forms:

K1 = 2π

∫ 1

−1

−(1− x)m−1(1 + x)m+1
√

i(ωN − 2x)
{

x2(x− 1)(2N + 2m+ 3)P
(5/2,m+1)
N−2 (2s2 − 1)

−[(m+ 3)x− 3]P
(3/2,m)
N−1 (2s2 − 1)

}2

dx

(51)

K2 = 2π

∫ 1

−1

−(1− x)m+1(1 + x)m−1
√

i(ωN + 2x)
{

x2(x+ 1)(2N + 2m+ 3)P
(5/2,m+1)
N−2 (2s2 − 1)

−[(m+ 3)x+ 3]P
(3/2,m)
N−1 (2s2 − 1)

}2

dx

(52)

where x = cos θ. These integrals are then computed for each N and m in arbitrary precision

using Mathematica and the denominator of (48) is given in (34). The same computation

can be performed for the 3-D inertial modes by making use of the results reported in Zhang

et al. (2001); an alternative but equivalent expression for the formula (48) are reported in

Liao, Zhang, and Earnshaw (2001).

Calculated values of G for the columnar flow solution and for the 3-D modes are compared

in figure 6. See also supplementary tables S1 and S2. Note that the real part of G is always

negative, indicating that the oscillation is damped by the boundary layers. Since we did not

find many calculations for QG inertial modes in the literature, we extended the procedure

reported above to the calculation of values of G for 3-D modes of arbitrary vertical structure.

In fact equations (48), (49) and (50) are not derived under the assumption of QG flows and

are of general validity. A comparison with values reported in the table 1 of Liao and Zhang

(2008) shows excellent agreement and confirmed the validity of our method. From figure 6a

we observe, as in figure 2, that the QG and 3-D calculations are in excellent agreement for

high N and low m but tend to disagree for low values of N and high azimuthal wavenumber

m. Interestingly, this conclusion does not appear to hold for the imaginary part of G in figure

6b. Since the imaginary part of G, multiplied by (2E)1/2, gives the correction to the inertial

modes eigenfrequency, figure 6b suggests that the viscous correction to the eigenfrequency

grows withmmore steeply for the columnar modes than for the equivalent 3-D solution. The

reason for this discrepancy lies in the departure from vertical invariance characteristic of the

high m, low N 3-D inviscid modes reported in figure (3). Close inspection of the formulas

reported in Zhang et al. (2001) reveals that the vertical and equatorial components of the

equatorially symmetric, inviscid modes considered here are, at leading order, proportional
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to z and z2 respectively. The s and φ components of the same columnar modes described by

(11) are independent of z. Given that the QG and 3-D inviscid flows have the same structure

when projected on the equatorial plane, the magnitude of the 3-D modes on the boundary

r = 1 is reduced with respect to the columnar modes. We illustrate this phenomena for the

θ component of the inviscid flow for the N = 1, m = 20 mode, evaluated at r = 1, in figure

7a. It seems physically reasonable then, that the viscous effect has a higher influence on the

columnar mode than on the 3-D ones. We illustrate this point by introducing the function

f(θ) such that:

G =

∫ π

0

f(θ)dθ. (53)

By inspection of (48)- (50) it is clear that:

f(θ) = π sin θ

[

(iωNu
∗

N − 2ez × u∗

N) ·
(

uN + ier × uN

Z1

+
uN − ier × uN

Z2

)](
∫

V

u∗

N · uNdV

)

−1

(54)

which represents local contribution of the Ekman layer to the frequency correction G. The

real and imaginary parts of f are shown in figures (7b) and (7c), respectively, for N = 1 and

m = 20. As expected, the real part of f , whose integral gives the decay rate of the mode,

is point-wise negative for both the QG and 3-D cases. On the other hand, the imaginary

part has a non-trivial structure and positive and negative contributions cancel each other

significantly when integrated over the boundary. This cancellation is less effective for the

QG modes explaining why in figure 6b the frequency correction tends to flatten out for the

3-D modes but continues to grow with m for the QG modes. In fact the minima seen to the

right and to the left of θ = π/2, connected to the minima and maxima of the meridional

flow, are deeper with respect to the central maxima in the QG case, reflecting the stronger

gradients of the flow on the surface of the sphere.

2. An improved estimate of the decay rate

In Liao and Zhang (2008) a novel approach to the calculation of the viscous contribution

to damping and eigenfrequencies has been presented. The procedure does not explicitly

rely on the expansions (41), (42) and (43), thus allowing the authors to consider viscous

effects from sub-dominant terms and obtain an estimate of the decay rate that is in better

agreement with 3-D hydrodynamical numerical simulation. The basic ansatz is that the
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velocity field can be expanded as:

u =
∑

N

CN

[

(ûN + ûN1 + . . .) + (ˆ̃uN + ˆ̃uN1 + . . .)
]

eimφ+iωN t+(dN+iωN1)t (55)

in analogy to expansions (41) - (43), but no explicit assumption is made on the magnitude

of the subdominant flows uN1, ũN1, decay rate dN and frequency corrections ωN1. However

it is required that E ≪ 1, ||uN1|| ≪ ||uN ||, ||ũN1|| ≪ ||ũN ||, |dN | ≪ 1 and |ωN1| ≪ |ωN |.
A similar expansion holds for the pressure as well. The rationale behind this procedure is

the break down of the classical expansion (41) - (43) for |ωN | = O(E1/2), that is, for very

low frequency. Given that the QG modes are low frequency inertial modes, the procedure of

Liao and Zhang (2008) is of relevance for the present study. Following the steps highlighted

in Liao and Zhang (2008) and, crucially, assuming that the viscous stresses at the edge of

the boundary layer vanish, ωN1 and dN are found to be:

(iωN1 + dN) =

(
∫

V

u∗

N · uNdV

)

−1 [

(2E)1/2
1

2
(K1 +K2)− (2E)

∫

V

∇× u∗

N · ∇ × uNdV

]

,

(56)

where K1 and K2 are defined as in (49) and (50). The first part of this formula is equivalent

to (48) and gives the frequency correction and decay rate at order E1/2 in the asymptotic

expansion. The second part is proportional to an integral that is always real and positive,

and contributes to the decay rate at order E. Therefore, formula (56) is equivalent to (48)

in estimating the frequency correction, but not for the decay rate.

In figure 8 we show the result of calculation of −dN for QG and 3-D modes for E = 10−3,

E = 10−7 and E = 10−10, as well as the real part of −(2E)1/2G for the QG modes only, for

comparison. The agreement between the QG and 3-D calculations is excellent, except for

low values of N and high values of m. The differences between the first order approach (48)

and the more general (56) is greater at higher E and tends to vanish as E decreases, as the

terms proportional to E become subdominant. For E ≃ 10−10 there is no visible difference

between the two approaches, apart from the higher order modes, indicating that the leading

order theory is sufficiently accurate. We also notice that for E = 10−3, a value that can be

considered moderately low, the assumption |dN | ≪ 1 is not satisfied.
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B. The stress-free condition

The stress-free case is analysed in a similar way as the no-slip one by considering the first

order expansion (Liao, Zhang, and Earnshaw, 2001):

u =
∑

N

CN(uN + uN1) (57)

and similarly for the pressure P , where ||uN1|| = O(E). The time dependence can be

expressed by the following ansatz:

u(s, φ, z, t) =
∑

N

CN [ûN(s, z) + ûN1(s, z)] e
imφ+(iω0+2Eτ)t. (58)

By inserting (58) in the Navier-Stokes equation (5), neglecting terms smaller than O(E) we

obtain:

iωNuN1 +∇PN1 + 2ez × uN1 = −2EτuN + 2E∇2(uN + uN1). (59)

Following Liao, Zhang, and Earnshaw (2001) we multiply left and right hand sides by u∗

N ,

integrate over the volume of the sphere. Making use of boundary conditions and of the fact

that the normal modes uN all satisfy equation (17) with pressure PN and eigenfrequency

ωN , we obtain:

τ =

∫

V
u∗

N · ∇2(uN + uN1)dV
∫

V
u∗

N · uNdV
. (60)

The denominator is an integral that can be evaluated exactly, and the numerator is an

integral that can be manipulated following Zhang (1994) and making use of the stress-free

boundary conditions:

∫

V

u∗

N · ∇2(uN + uN1)dV = 2

∫

r=1

u∗

N · uNdS −
∫

V

∇× u∗

N · ∇ × uNdV. (61)

Therefore the calculation of the frequency correction τ does not require the explicit evalu-

ation of the flow uN1. We perform the calculation of the factor τ as done for the no-slip

case, making use of both the columnar solution (31)-(32) and the 3-D modes of Zhang et al.

(2001). The integrals on the right hand side of (61) are calculated with arbitrary precision

in Mathematica in both cases for any given N and m. The results are shown in figure 9 and

in supplementary tables S3 and S4. As opposed to the no-slip case, the correction is purely

real, indicating that there is only a decay factor due to the presence of the boundary layer,

but no frequency correction. As for the real part of G (figure 6a), the agreement between
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the columnar and the 3-D solutions increases as m is decreased and for high values of N .

Interestingly, the value of τ spans many orders of magnitude for different values of m and

N . The damping in the case of stress-free boundary condition can therefore be significant

for moderate values of E and for modes with significant structure in both s and φ. For

example, for N = 10 the value of τ is of the order 104. The damping is of order unity if

E = O(10−4).

C. The dissipation integral

From the calculations described in the previous sections it is clear that the quantity:

∫

V

(um
K)

∗ · ∇2um
NdV (62)

is, for K = N , often present in the derivation of viscous corrections to the eigenfrequen-

cies of the inviscid problem as, for example, it emerges from the solvability conditions for

equations (59). In the general case when both N and K are integers greater than zero and

for generic 3-D inertial modes, the quantity (62) is known as the dissipation integral. A

known interesting property of the dissipation integral in the spherical case is that it van-

ishes for N = K (Zhang et al., 2001). In particular it has been shown in Liao and Zhang

(2009) that the dissipation integral is zero for K ≥ N when considering 3-D inertial modes.

This is a property that appears to extend to spheroidal (Zhang, Liao, and Earnshaw, 2004)

and ellipsoidal geometries as well (Vantieghem, 2014). In more recent studies it has been

demonstrated that the dissipation integral vanishes for N ≤ K+1 in spheres (Ivers, Jackson,

and Winch, 2015) and tri-axial ellipsoids (Ivers, 2017). Although we do not offer a rigorous

proof, we calculated, given the formulas (31)-(32) and for a wide range of m and b, that

the dissipation integral (62) is zero for K ≥ N . Thus the result of Zhang et al. (2001) and

Liao and Zhang (2009) that the N = K terms of the dissipation integral vanishes in the

full sphere, also appear to extend to the columnar modes considered here. However, in the

3-D spherical case the non-zero values of the dissipation integral can be both positive and

negative. In the case of columnar inertial modes, the integral (58) assumes only positive

values for K < N .
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VII. DISCUSSION AND CONCLUSIONS

We presented an extensive analysis of the inertial modes resulting from the application

of the QG approximation to the equations governing the dynamics of a rapidly rotating

fluid sphere. In particular we assume that the flows have a prescribed columnar structure

(11) that satisfies the conditions of mass conservation and non-penetration at the boundary.

For the first time to our knowledge, a completely analytical solution of the eigenmodes

and eigenfrequencies solution to the inviscid problem is presented. In order to eliminate

the pressure term that appears in the momentum equation (14) we first consider the axial

vorticity equation (18), an approach that is commonplace in the development of QG models.

Subsequently we investigated an approach introduced in Labbé, Jault, and Gillet (2015)

that consists on the projection of the inviscid momentum equation (14) on the space of

QG solutions. This technique allowed us to obtain a closed form solution that has a general

character and offers interesting insights on the formulation based on axial vorticity equation.

The projection (27) results in an additional term arising from the vertical extension of

the domain whose effect is to modify the inertial mode eigenfrequencies and bring them

closer to the 3-D, QGIW solution. We could demonstrate that the axial vorticity approach

corresponds to the case b = 0 (a flat disk). Although boundary conditions are encoded into

the columnar flow ansatz (11), the fact that the stream function is independent of eccentricity

(and the equivalence of the axial vorticity method to projection onto the plane) means that

the solution derived from the axial vorticity formalism is completely independent of the

eccentricity. This lack of geometric information means that the solutions, for any particular

b, are not as accurate as the alternative approach of Labbé, Jault, and Gillet (2015), which

involves an integration over the whole spheroid and depends, crucially, on b.

The closed form solution (31)-(32) is in agreement with known numerical results for the

spherical case Canet, Finlay, and Fournier (2014); Labbé, Jault, and Gillet (2015) for both

b = 0 and b = 1. Comparison with the relevant 3-D solutions (Zhang et al., 2001) results in

well known departures for modes with simple radial structure (low N) and high azimuthal

wavenumber m. This departure is explained in terms of the different dependence on the

vertical coordinate z of the two solutions.

The calculation of viscous effects in the no-slip case resulted in good agreement with 3-D

calculations, with the noticeable exception of the frequency corrections plotted in figure 6b
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which illustrates significant differences for all values of N for m > 10. On the boundary

the QG flows have sharper gradients that results in enhanced viscous effects. Nevertheless,

despite the fundamental differences between the two formulations and the uncorrelated ways

of deriving the normal mode solutions, we find that the boundary layer calculations and

viscous corrections are in remarkable agreement.

Another outstanding feature of the QG solution is the vanishing of the dissipation in-

tegral (62) for K ≥ N , a property that is well known for 3-D solutions but that was not

expected under the columnar approximation, due to the aforementioned differences in the

two approaches. This might reflect a fundamental property of the Navier-Stokes equation

in the spherical domain that is conserved under the QG approximation.

In the future we plan on taking advantage of the analytical nature of (31)-(32) to further

study the QG phenomenology of the Earth’s outer core. It is for example known (Zhang,

1994, 1995; Zhang and Liao, 2004; Zhang, Liao, and Busse, 2007) that at the onset of

convection the geometry and frequency of the convective flows are, at leading order, deter-

mined as a superposition of QG inertial modes. We can make use of the results presented on

this paper to perform calculations similar to Zhang and Liao (2004) and Zhang, Liao, and

Busse (2007) for the onset of thermal convection in presence of either stress-free or no-slip

boundaries. The advantage over 3-D calculations lies in the reduced dimensionality of our

formulation that offer the possibility to perform calculations at much lower Ekman numbers.

Another application of the results presented here will be the development of a QG numer-

ical model for the study of interannual to decadal dynamics in the presence of a magnetic

field similarly to the approach of Canet, Fournier, and Jault (2009) and making use of the

projection formulation of Labbé, Jault, and Gillet (2015) to handle the momentum equation

and improve the resolution of the equatorial dynamics. The fully analytical nature of our

solution will prove useful in the formulation of such a numerical model and future studies

will be devoted to it.
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FIG. 2. Dispersion relation for the inertial QG modes in a sphere for different values of the radial

solution number N (indicated on the curves) and the azimuthal wavenumber m (on the horizontal

axis). Dashed lines are solutions to the axial vorticity equation (19) and given in (21). Full lines

are the QG approximations to the inertial modes eigenperiods as calculated via formula (32) with

b = 1. The black crosses are the corresponding periods for the 3-D modes of Zhang et al. (2001)

that are best approximated by the QG solutions. On the vertical axis we report the absolute value

of the eigenperiods.
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FIG. 3. Geometry of the QG fundamental mode. First row: Comparison of the stream function Ψ̂

for the fundamental mode N = 1 with m = 1, 6, 12 in the left, middle and right plot, respectively.

Solid blue lines are the solutions derived from Zhang et al. (2001). The black crosses are the

theoretical solutions (20). Second row: Corresponding 3-D solutions for the radial velocity obtained

from the formulas of Zhang et al. (2001).
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FIG. 4. Geometry of the QG N = 15 mode. First row: Comparison of the stream function Ψ̂ for

the N = 15 mode with m = 1, 6, 12 in the left, middle and right plot, respectively. Solid blue lines

are the solutions derived from Zhang et al. (2001). The black crosses are the theoretical solutions

(20). Second row: Corresponding 3-D solutions for the radial velocity obtained from the formulas

of Zhang et al. (2001).
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FIG. 5. Dispersion relation for the inertial QG modes in spheroids of different values of b (indicated

by the different line colours) and for N = 1 (5a) and N = 2 (5b). The full lines are calculated

from formula (32) and the crosses are the results from the equatorially symmetric 3-D modes from

Zhang, Liao, and Earnshaw (2004) with the lowest vertical complexity and negative eigenfrequency

closest to zero. As indicated in the plot, the case b = 0 corresponds to the calculation of the normal

modes from the axial vorticity equation (AV) and the case b = 1 corresponds to the spherical case

(see the discussion in the main text).
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the formulas (31)-(32) for b = 1, and the 3-D modes with the eigenfrequency closest to zero, from

Zhang et al. (2001) are shown. In (a) the real part of ?G is shown while in (b) the imaginary part of

−G is plotted. Note that the real part of G is always negative, indicating that the boundary layer

contribution acts to damp the interior solution. The values of G have been calculated according

to formula (48) for both the columnar inertial modes and the 3D inertial modes.
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