

This is a repository copy of *Epigenetics and primary care*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/119183/

Version: Accepted Version

Article:

Lehane, D., Cunliffe, V., Mitchell, C. orcid.org/0000-0002-4790-0095 et al. (1 more author) (2018) Epigenetics and primary care. British Journal of General Practice, 68 (666). pp. 8-9. ISSN 0960-1643

https://doi.org/10.3399/bjgp17X693977

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

- 1
- **Epigenetics and Primary Care**

2

3 Authors

4 D B Lehane^a, V T Cunliffe^b, C Mitchell^a and C Burton^a

5

6 Epigenetics is the study of how changes to chromosome structure record and/or transmit

7 changes in the expression of genes. Epigenetic mechanisms act during development to control

8 mechanisms such as cell proliferation and differentiation, tissue formation, organogenesis and

9 the emergence of physiological function. They also act throughout life to regulate gene

10 expression over the long-term. Epigenetic mechanisms respond to a wide range of biological

11 signals, including stimuli from the external and social environments. So, why should this matter

12 to General Practice?

13

14 We know that poverty and socio-economic deprivation are directly linked to premature mortality

and morbidity(1). We also know that despite universal access to free healthcare, inequitable

16 health care outcomes persist in socioeconomically deprived populations.(2) While some of the

17 disease-causing effects of poverty and deprivation are biologically direct, such as inadequate

18 diet or exposure to alcohol, tobacco and other toxins, there may also be later-emerging effects,

19 in which epigenetic mechanisms play a part.

20

21

22 Epigenetics across the lifecourse.

23 While scientific understanding of the mechanisms by which adversity and social inequality lead 24 to health consequences is still developing, it seems likely that processes are involved which 25 regulate the production of inflammatory cytokines and stress hormones such as noradrenaline 26 and cortisol. Together the accumulated effect of these stress-related biological signals is known 27 as allostatic load(3). It refers to allostasis, the process of restoring physiological set-points after 28 exposure to stressors (which may be environmental or social). Repeated or chronic exposure to 29 stressors appears to erode the capacity of allostatic mechanisms to restore physiological set-30 points, and so promote survival under duress. Thus, over time, the consequences of prolonged 31 exposure to stressors become more pronounced. By helping us to understand how these 32 processes change, epigenetics provides an explanatory model through which the biological 33 embedding of low socio-economic status (SES) affects the functioning of a person's genome. In 34 turn this model has begun to stimulate new ways of thinking about how environmental factors

35 such as social inequality generate or perpetuate health inequalities.

36

37 Evidence of long-lasting epigenetic effects has been clearly observed in the consequences of 38 the Dutch Winter Famine during 1944-45. For several months, the daily rations in Amsterdam 39 were between 400 and 800 calories. The survivors were a well-defined group of individuals, all 40 of whom suffered just this single period of malnutrition, at exactly the same time. 41 Epidemiologists followed up not just the adult survivors but also the offspring of women who 42 were pregnant during the famine. Early gestation-exposed individuals showed a three-fold 43 increase in coronary heart disease, a more atherogenic lipid profile, increased levels of obesity, 44 increased risk of Type II diabetes and an increased risk of breast cancer (4–6). Other studies of 45 famine have shown similar results (5), and these effects are now being seen in the 46 grandchildren of the women who were malnourished during the first three months of their 47 pregnancy(4,7). Starvation is not the only trigger for long lasting impacts: other population 48 studies have demonstrated associations between maternal mental wellbeing, child abuse and 49 low SES with regard to poor long term mental health and chronic disease(8,9). Furthermore, it 50 seems likely that the increase in type 2 diabetes worldwide – while to some extent heritable – is 51 developing too guickly to be due to genetic differences, but appears to be more long-lasting 52 than the direct exposures to adversity.(10)

53

54 *How do environmental exposures become biologically embedded, and can they be* 55 *reversed?*

56 Epigenetic mechanisms influence the structure of chromatin, which is the complex formed of 57 DNA and chromosomal histone proteins. Chromatin structure influences the accessibility of 58 DNA to the gene transcription machinery, which drives differentiation of every cell type, all of 59 which have the same DNA, by regulating the expression of different genes. A cell, organ or 60 person's phenotype is thus determined not only by genome but also by the epigenome. At 61 present, there are three well-understood mechanisms by which epigenetic factors affect gene 62 expression: DNA methylation, histone modification, and non-coding RNA-mediated pathways. 63 DNA methylation usually results in gene silencing or reduced gene expression. A wide range of 64 histone modifications are known that either increase or decrease the amount of gene 65 transcription, depending on the modification. Finally, microRNAs (miRNAs) are a class of non-66 coding single stranded RNAs of 19-25 nucleotides in length, which regulate gene expression by 67 binding to complementary sequences within messenger RNAs (mRNAs), blocking mRNA

- 68 translation and/or promoting mRNA degradation.
- 69

70 While there is abundant information about how these epigenetic mechanisms are deployed 71 extensively in somatic tissues, their roles in the transgenerational transmission of chronic 72 disease risks, via the germ line, are less well understood. One likely explanation of how 73 epigenetic changes may be passed from one generation to another is that during pregnancy, 74 the foetal germ cells that will give rise to the mother's grandchildren are exposed to the same 75 environmental factors as both the mother and the somatic tissues of the foetus. Epigenetic 76 modifications could thus be acquired by foetal germ cells during gestation, the functional 77 impacts of which may not emerge until later life (11). 78

As epigenetic mechanisms are regulators of gene expression, it is important to ask whether once applied, they are reversible. This appears to be the case: for instance there is accumulating evidence that mind-body therapies designed to reduce stress-related arousal and promote coping are associated with reductions in expression of genes for pro-inflammatory cytokines(12).

- 84
- 85

86 What are the implications of Epigenetics for Primary Care?

87

88 The GP core curriculum emphasises the need to understand the physical health of our patients 89 in combination with the psychological, socioeconomic and cultural dimensions of health. If the 90 epigenome is modifying gene expression, as a direct - but sustained or delayed - response to 91 environmental stressors, then the need to move from the primacy of a biomedical model to an 92 integrative holistic approach becomes particularly important. An epigenetic explanatory model 93 allows us to see how many of our patients from socioeconomically deprived backgrounds are 94 disadvantaged not only by the immediate lack of access to material, nutritional and educational 95 support that are conducive to the development and expression of capabilities for flourishing, but 96 also by the cumulative biological embedding of their ongoing social deprivation, which 97 perpetuates and indeed further widens health and societal inequity (13). In the case of 98 symptoms such as chronic widespread pain(14), where epidemiology shows strong associations 99 with social adversity, but immediate causal links between stress and symptoms are rare(15), 100 epigenetic mechanisms provide potentially useful material for GPs to construct "rational"

101	explanations (16) about the complex links between adversity and illness. Recent progress in	
102	epigenetics research raises many questions about how the social and environmental	
103	determinants of health influence disease risk, and there is a growing awareness of the potential	
104	ethical, social and legal implications of these findings.(17) Future progress in this field will	
105	benefit from the development of collaborative communities of laboratory, behavioural and social	
106	scient	ists, clinicians and policy makers, working with patients and the wider public, in the
107	condu	ct of pioneering research that will help to improve health outcomes for all.
108		
109		
110		
111	1.	Tudor Hart J. The Inverse Care Law. Lancet [Internet]. 1971 Feb [cited 2017 Mar
112		23];297(7696):405–12. Available from:
113		http://linkinghub.elsevier.com/retrieve/pii/S014067367192410X
114	2.	Watt G. What can the NHS do to prevent and reduce health inequalities? Br J Gen Pract
115		[Internet]. 2013;63(614):494–5. Available from: http://dx.doi.org/10.3399/bjgp13X671803
116	3.	McEwen B, Stella E. Stress and the Individual Mechanisms Leading to Disease. Arch
117		Intern Med. 1993;153:2093–101.
118	4.	Painter RC, Osmond C, Gluckman P, Hanson M, Phillips DIW, Roseboom TJ.
119		Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity
120		and health in later life. BJOG An Int J Obstet Gynaecol. 2008;115(10):1243-9.
121	5.	van Abeelen AFM, Elias SG, Bossuyt PMM, Grobbee DE, van der Schouw YT,
122		Roseboom TJ, et al. Famine Exposure in the Young and the Risk of Type 2 Diabetes in
123		Adulthood. Diabetes [Internet]. 2012 Aug 23;61(9):2255 LP-2260. Available from:
124		http://diabetes.diabetesjournals.org/content/61/9/2255.abstract
125	6.	Painter RC, De Rooij SR, Bossuyt PMM, Osmond C, Barker DJ., Bleker OP, et al. A
126		Possible Link Between Prenatal Exposure to Famine Report and Breast Cancer: A
127		Preliminary Study. Am J Hum Biol. 2006;18:853–6.
128	7.	Veenendaal MVE, Painter RC, De Rooij SR, Bossuyt PMM, Van Der Post JAM,
129		Gluckman PD, et al. Transgenerational effects of prenatal exposure to the 1944-45 Dutch
130		famine. BJOG An Int J Obstet Gynaecol. 2013;120(5):548-53.
131	8.	Horwitz A V, Widom CS, McLaughlin J, White HR. The impact of childhood abuse and
132		neglect on adult mental health: A prospective study. J Health Soc Behav [Internet].
133		2001;42(6):184–201. Available from:
134		http://ovidsp.ovid.com/ovidweb.cgi?T=JS&CSC=Y&NEWS=N&PAGE=fulltext&D=emed5

135 &AN=11467252

Leenen FAD, Muller CP, Turner JD. DNA methylation: conducting the orchestra from
 exposure to phenotype? Clin Epigenetics [Internet]. Clinical Epigenetics; 2016;8(1):92.
 Available from:

139 http://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-016-0256-8

- 140 10. Ling C, Groop L. Epigenetics: A molecular link between environmental factors and type 2
 141 diabetes. Diabetes. 2009;58(12):2718–25.
- 142 11. Bohacek J, Mansuy IM. Molecular insights into transgenerational non-genetic inheritance
 143 of acquired behaviours. Nat Rev Genet [Internet]. Nature Publishing Group;
 144 2015;16(11):641–52. Available from: http://dx.doi.org/10.1038/nrg3964
- 145 12. Bower J, Irwin M. Mind-body therapies and control of inflammatory biology: A descriptive
 146 review. Brain Behav Immun. 2016;51:1–11.
- 147 13. Cunliffe VT. The epigenetic impacts of social stress: how does social adversity become
 148 biologically embedded? Epigenomics [Internet]. 2016;8(12):1653–69. Available from:
 149 http://www.futuremedicine.com/doi/10.2217/epi-2016-0075
- 14. Livshits G, Malkin I, Freidin MB, Xia Y, Gao F, Wang J, et al. Genome-wide methylation
 analysis of a large population sample shows neurological pathways involvement in
 chronic widespread musculoskeletal pain. Pain. 2017;0(0):1–10.
- 15315.Van Gils A, Burton C, Bos EH, Janssens KAM, Schoevers RA, Rosmalen JGM. Individual154variation in temporal relationships between stress and functional somatic symptoms. J
- 155 Psychosom Res [Internet]. Elsevier Inc.; 2014;77(1):34–9. Available from:
- 156 http://dx.doi.org/10.1016/j.jpsychores.2014.04.006
- 157 16. Burton C, Lucassen P, Aamland A, Hartman TO. Explaining symptoms after negative
 158 tests: towards a rational explanation. J R Soc Med [Internet]. 2014;0(0):1–5. Available
 159 from: http://www.ncbi.nlm.nih.gov/pubmed/25389231
- 160 17. Rothstein MA, Cai Y, Marchant GE. The ghost in our genes: legal and ethical implications
 161 of epigenetics. Health Matrix [Internet]. 2009;19(1):1–62. Available from:
- http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3034450&tool=pmcentrez&ren
 dertype=abstract
- 164
- 165
- ¹⁶⁶ ^aAcademic Unit of Primary Medical Care
- 167 Samuel Fox House
- 168 Northern General Hospital

- 169 Herries Road
- 170 Sheffield
- 171 S5 7AU
- 172
- 173 ^bDepartment of Biomedical Science
- 174 The University of Sheffield
- 175 Western Bank,
- 176 Sheffield S10 2TN
- 177 United Kingdom
- 178