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Is it worth changing pattern recognition methods for 

structural health monitoring? 

L A Bull, K Worden, E J Cross, N Dervilis 

Department of Mechanical of Engineering, University of Sheffield, Sheffield, UK 

Email: lbull1@sheffield.ac.uk    

Abstract. The key element of this work is to demonstrate alternative strategies for using pattern 

recognition algorithms whilst investigating structural health monitoring. This paper looks to 

determine if it makes any difference in choosing from a range of established classification 

techniques: from decision trees and support vector machines, to Gaussian processes. 

Classification algorithms are tested on adjustable synthetic data to establish performance metrics, 

then all techniques are applied to real SHM data. To aid the selection of training data, an 

informative chain of artificial intelligence tools is used to explore an active learning interaction 

between meaningful clusters of data.  

1.  Introduction and problem statement  

The main aim of structural health monitoring (SHM) is the development of diagnostic systems capable 

of detecting and classifying structural degradation. Machine learning techniques have become 

increasingly relevant to the field of SHM as advanced pattern recognition algorithms can learn 

complicated relationships from system data whilst offering a variety of techniques for novelty detection 

[1]. 

When following a data-based approach to SHM, a lack of information representing the damaged 

structure can result in a significant undersupply of labelled data. This makes machine learning tasks – 

such as classification – very difficult, as the information required for wholly supervised methods is not 

available. Consequently, a need for adaptive semi-supervised learning techniques, such as active 

learning, is very important for SHM. 

The intention of this work is to demonstrate alternative strategies for using pattern recognition 

algorithms, and investigate their performances for SHM purposes. The main objective is to provide 

performance comparison metrics for a range of classification techniques, whilst illustrating an active 

learning methodology to select the training sets that carry the most information. Three datasets are 

introduced, two synthetic sets and an acoustic-emissions (AE) data set. The synthetic data is generated 

as a toy example in a two-dimensional feature space for SHM demonstration, and they will be used to 

quantify performance metrics for each classification algorithm. Each technique will then be applied to 

acoustic emission data, obtained from experiments concerning the box-girder of a bridge. 

2.  Background 

2.1.  Classification algorithms 

The techniques presented in this paper are selected to provide performance metrics for alternative 

methods to the conventional choices in SHM. Some benchmark algorithms, such as multi-layer 
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perceptrons, have been excluded from this work as their correct application makes these experiments 

highly computationally expensive and they have already been discussed extensively in an SHM context. 

Comprehensive comparisons including a wider range of algorithms have been suggested (see Section 

6.1) and MLPs will be included in this wider remit.  

Basic descriptions of the techniques tested in this work are provided, for more details the reader is 

directed to reference [2]. All algorithms are applied in Python, using the machine learning package 

scikit-learn [3]. During initial experiments, certain algorithm hyperparameters were defined through 

engineering judgement – relevant values are provided in braces. Of course, this is not good practice in 

practical engineering applications, as any hyperparameters must be optimised with the use of a 

validation subset (or otherwise); however, the elected values serve well to establish a general 

comparison for the purposes of this paper and will be optimised in future work. 

2.1.1.  Linear support vector machine (SVM).  A sparse technique in which the learning task maximises 

the ‘margin’ around a linear decision boundary [2]. The margin is defined by the perpendicular distance 

between the decision boundary and the closest points either side (support vectors). A soft margin 

parameter 𝐶 is introduced to allow for misclassification and prevent over fitting. {𝐶 = 1}  

{stopping criteria = 1e-4} {multiclass strategy: one vs. rest classifiers}  

2.1.2.  Kernel support vector machine (KSVM). Applies the ‘kernel trick’ to SVMs, transforming data 

into some new space to make clusters more separable with a linear decision boundary [2]. This is 

achieved through the use of a specific kernel function in place of any inner products in the original 

space. {𝐶 = 1} {kernels: polynomial 3rd degree 𝛾=0.5 and Gaussian 𝛾=0.5} {stopping criterion = 1e-4} 

{multiclass strategy: one vs. rest classifiers}  

2.1.3.  Relevance vector machine (RVM). A sparse kernel technique based on a Bayesian formulation 

that shares many characteristics with the SVM, but produces probabilistic outputs [4]. An Automatic 

Relevance Determination (ARD) prior distribution is placed over the SVM weight vector. This 

introduces precision hyper-parameters (𝛼𝑖), which are optimised during training through likelihood 

maximisation. The use of an ARD prior over the parameter vector results in a number of the parameter 

weights concentrating at zero (large 𝛼𝑖); these weights have a small contribution to the classification, so 

if a given threshold is broken they are ‘pruned’ out. Relevance vectors are not available in scikit-learn, 

so an alternative implementation using the scikit-learn API is used here [5].  

{kernel: linear} {threshold 𝛼𝑖 = 1e09} {stopping criterion: 1e-03}   

2.1.4.  Decision tree (DT): A simple yet effective algorithm, shown in the literature to give excellent 

parametric performance, even when compared to more complex methods [6]. During classification, the 

classification and regression tree (CART) algorithm partitions the input/feature space into cuboidal 

regions according to threshold values that minimise an impurity measure [2]. This measure is assessed 

with the Gini index, which quantifies the ‘mixture’ of classes in each split; minimising this value 

encourages the formation of regions that contain a high proportion of data assigned to one specific class 

[2]. The tree will continue to grow, splitting at each node, until a predefined number of samples remain, 

or the Gini index falls below a given value. Given the greedy learning strategy of DTs, pruning 

techniques may be applied to reduce their size by removing the nodes that contribute least to 

classification, no pruning methods are applied here. {min. samples to split = 2} {threshold Gini = 1e-7} 
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Ensemble methods can be applied to any classifier with the aim to reduce the risk of overfitting [2].  

As DTs are computationally inexpensive and ensemble methods have been shown to work well with the 

algorithm in the existing literature [6], the following ensemble methods are applied: 

 

 Bootstrap aggregating (Bagging): ‘Bootstrap’ sample N random subsets with replacement from 

the training set. Train classifiers on each sample to create a committee of models and ‘aggregate’ 

by combining whilst minimising the unweighted average error of the base classifiers [2].  

{𝑁 = 10}  

 Boosting (AdaBoost): Combines multiple base classifiers; however, unlike bagging, the models 

are trained on the complete training set, with weights associated to each sample. Weights are 

updated during the learning process to prioritise misclassified samples from preceding models 

[2]. {𝑁 = 10} {learning rate = 1}  

2.1.5.  Random forests (RF).  Similar in concept to bagged DTs, however the algorithm is modified to 

introduce extra variability into the learner. Rather than using all the available features, the RF classifier 

selects a random subset of features to determine the best split at each node. {𝑁 = 10}  

{min. samples to split = 2} {threshold Gini = 1e-7} {no. features in subset = 1} 

2.1.6.  Gaussian process classifiers (GPC). A probabilistic method that shares many characteristics with 

the RVM; however, the parametric models are abandoned and a Gaussian prior is placed over the basis 

functions directly [7]. Samples are then taken form this Gaussian process (GP) to create a technically 

infinite range of functions to describe the classification [7]. In the case of GPs, the kernel function is 

used to describe elements of the covariance matrix. Often a spherical covariance is assumed, but it is 

also possible to define an elliptical covariance using the Gaussian (rbf) kernel [7]; this introduces the 

hyper parameter 𝛾𝑖, which is optimised during training through likelihood maximisation.  

{kernel: Gaussian, initial 𝛾𝑖 = 1} {multi class method: one vs. rest classifier} 

2.2.  Active learning 

Active-learning, or query-learning, is a semi-supervised machine learning approach; its main premise is 

that a learner can perform with increased efficiency given less training data, if it can select the data from 

which it learns. This eliminates the time-consuming process of labelling large volumes of trivial data, 

but more importantly for SHM, active learning significantly reduces the need for extensive training sets.  

A wide range of active learning algorithms exist within the remit of machine learning. Some 

examples include the ‘Active Support Vector Machine’ (SVMactive) [8] and ‘Manifold Adaptive 

Experimental Design’ (MAED) [9]. Each employ various ‘querying’ methods to determine which 

unlabeled data carry the most information; measures include the distance from the decision boundary 

(SVMactive) or the average squared predicted error (MAED). The details of these algorithms are out of 

scope for this specific paper, however the key concept behind active learning tools is summarised in 

Figure 1. 

 

  
  

Provide unlabelled 
instances from the 

input data 

By some ‘querying’ 
method, establish 

which data carry the 

most information   

Provide labels for 

these data 

Train the classifier 
on this informed 

subset  

Figure 1. Active learning methodology. 
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2.3.  Metric measures 

To assess classification performance, accuracy (𝐴𝐶𝐶) and F1-score (𝐹1) metrics [10] will be used: 

 Accuracy: percentage of correctly classified data.  

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100 (1) 

Where: true positives = 𝑇𝑃, true negatives = 𝑇𝑁, false positives = 𝐹𝑃, false negatives = 𝐹𝑁 

 

 F1-score: the balanced average of precision (PRE) and recall (RE). A weighted average is used 

to combine PRE and RE for each class and account for class imbalance [10]. 

𝑃𝑅𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

𝑅𝐸𝐶 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3) 

𝐹1 = 2 × 
𝑃𝑅𝐸 × 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
 

(4) 

2.4.  Clustering – unsupervised 

Various algorithms are available to find clusters in unlabelled data: examples include K-means [2], 

Affinity Propagation [11] and Gaussian Mixture Models (GMM) [2]. Initial experiments found that 

GMMs were particularly effective when applied to the data analysed in this work. K-means clustering 

is also referenced in Section 3.2, so brief descriptions are provided.  

2.4.1.  Gaussian mixture model (GMM). A linear superposition of 𝐾 Gaussian components. After 

defining 𝐾 number of components – and therefore clusters – a GMM is fitted to the data by updating 

parameters whilst using the Expectation-Maximisation algorithm [2]. {𝐾 = 3} {covariance = full} 

{stopping criterion = 1e-03}  

2.4.2.  K-means: Data is separated into some predefined number of clusters 𝐾. A cluster can be 

considered as a group of data whose inter-point Euclidean distances are small compared to points outside 

the cluster [2]. The algorithm aims to choose cluster centroids that minimise the cluster inertia or 

‘separation’. {𝐾 = 3} {stopping criterion = 1e-04}  
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3.  Methodology 

3.1.  Data: synthetic  

Synthetic ‘toy’ data have been generated using three 2D Gaussian distributions. These data aim to 

represent 3 classes of structural degradation in two-dimensional feature space, following dimension 

reduction. The classes are imbalanced and the total number of samples 𝑁𝑠 = 1050 (class1=500, 

class2=250, class3=300). Two versions of these data were generated, a challenging set with significant 

cluster overlap (Figure 2) and a forgiving set with more separable clusters (Figure 3). 

 
Figure 2. Challenging synthetic data: class 1 (×), class 2 (+), class 3 (○). 

 
Figure 3. Easy synthetic data: class 1 (×), class 2 (+), class 3 (○). 

3.2.  Data: experimental acoustic emissions (AE).  

Experimental data were obtained from tests at Cardiff University, concerned with collecting AE data 

from the box girder of a bridge [12]. Each sample represents a typical AE burst (Figure 4) and the total 

number of samples NAE = 91. For further pre-processing and experimental details, see Reference [13]. 

Four traditional AE features – rise time, peak amplitude, duration and ring down count – are extracted 

from each burst, normalised, then projected though a linear transformation on to two dimensions using 

Principal Component Analysis (PCA) – Figure 5.  The new co-ordinates, or principal component scores 

(𝑥1, 𝑥2), are a linear combination of the information retained within the original features and account for 

the maximum variance within the data [2]. As definite labels are not available, K-means clustering is 

used to predict 3 class labels, which are then assumed as the definitive classes (class1=22, class2=59, 

class3=10). 
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Figure 4. Time signal of a typical AE burst. Figure 5. PCA reduction applied to AE 

features, labelled following K-means 

clustering (K = 3). 
 

3.3.  Method 

Each data set is initially split into two subsets: a training set and test set. Basic active learning principles 

are demonstrated by selecting a given fraction of the most informative points for training – each 

classifier is then trained on these data. All the remaining data will be used as a test set to establish the 

accuracy and F1-score. 

3.3.1.  Selecting the training set. A simplified active learning regime is used to select 15% - 45% of the 

most informative synthetic data in 10% increments. Steps are listed below and illustrated in Figure 6: 

I. Start with unlabelled data. 

II. Fit a GMM model to find clusters within the data, without knowledge of labels. 

III. Randomly sample a given fraction of data from each cluster to select representative examples. 

IV. Provide class labels to this informed training-set.  

    
 

   
 

Figure 6. Visual representation of the active learning steps: 25% sample, easy synthetic data.  

II. 

III. 

I. 

IV. 
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The querying regime used here hopes to provide a smaller, more informed training set than the 

alternative of one random sample across the whole data. Applying more sophisticated active learning 

algorithms to SHM is out of the scope of this paper but will be explored in future projects. 

3.3.2.  Data applications. For each training set size of the synthetic data, all classification algorithms 

will be trained and then tested 1000 times. The mean F1 and ACC, along with one standard deviation 

will be provided. Following analysis of the performance metrics, algorithms will be applied to the AE 

data to illustrate the relevance of this work to the remit of SHM. A 15% sample training set is used with 

the AE data, as this provided an array of performance metrics. 

4.  Performance metrics & discussion 

The ‘No Free Lunch Theorem’ tells us that any two optimisation algorithms become equivalent when 

their performance is averaged across all possible problems [14]. In other words, classification results 

are highly data-dependant and there exists no single, optimal algorithm. The metrics presented in Figure 

7 and Figure 8 are intended to illustrate algorithm behaviour across a range of scenarios to aid algorithm 

selection when investigating SHM. 
 

 

 
Figure 7. Challenging synthetic data performance metrics, ranked by F1-score. 
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Figure 8. Easy synthetic data performance metrics, ranked by F1-score. 

4.1.  Linear support vector machine 

Linear SVMs poorly predict class labels when applied to challenging data (Figure 7). Considering the 

linear decision boundary this is not surprising – it can be seen from Figure 2 that the samples are far 

from linearly separable. Intuitively, it then makes sense that the labels predicted for the easy data (Figure 

8) are more accurate, where SVMs show good overall performance. A low variance is produced when 

compared to alternative methods, which is most likely due to the sparse nature of the algorithm, as every 

classifier is defined by similar support vectors.  

4.2.  Kernel support vector machine 

For challenging datasets, the kernel trick succeeds in improving SVM performance – particularly with 

a polynomial kernel. However, when applied to the easy data, kernel techniques become a disadvantage. 

This is reasonable, as the data is already relatively separable in the original space (Figure 3), therefore 

transforming the data into some alternative space is unlikely to improve separation. 
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4.3.  Relevance vector machine  

RVMs perform very well when used with smaller training sets of the challenging data. The Bayesian 

framework of the classifier appears to reduce the risk of overfitting, enabling it to perform especially 

well with smaller training samples; however, their relative performance drops as more training data 

become available. When applied to the easy data, the RVMs rank lower, again their performance 

deteriorates as the size of the training set increases. The pruning regime could hinder competitiveness 

as more data becomes available and the complexity reduces, so optimisation of the precision threshold 

{𝛼i = 1e09} must still be considered. The RVMs tested in this work are shown to be optimal when 

applied to complicated data sets with limited training resources. 

4.4.  Decision tree methods 

In agreement with the findings in the existing literature [6], DT methods appear to provide the best 

overall performance across various training sets and data complexities. Despite their simplicity, 

respectable ACC and F1-scores are produced throughout, even with smaller training sets. As expected, 

metric variance increases with the use of ensemble methods – particularly RFs. However, this increase 

in variance comes with increased performance, showing that averaging techniques are successfully 

reducing the susceptibility of DTs to overtraining. 

4.5.  Gaussian process classification 

GPCs provide very accurate predications in most experiments, indicating the resilience of the 

probabilistic algorithm to overfitting. However, metric rankings fall (with increased variance) when 

applied to the challenging data with a 15% training set. In this case, the mapping of the Gaussian (rbf) 

kernel might not be suited to the specific manifold of the smallest training sample. 

5.  Acoustic emission application 

The AE data can be described as relatively ‘easy’ as it has linearly separable clusters. A small training 

set (15%) is used to challenge each classifier. Each classification method is then trained 100 times, and 

the mean along with one standard deviation is provided – see Figure 9. 

 

 
Figure 9. Classification methods applied to AE data. 

In agreement with the findings from synthetic experiments, linear SVMs work well to classify these 

data as they are linearly separable in the original space; consequently, transformations with kernel 

methods show no advantage (KSVM). With this in mind, GPCs should be tested on these data with 
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alternative kernel functions, particularly a linear kernel.  RVMs provide equivalent performance to linear 

SVMs, which is intuitive given model similarities and the simplicity of the data. DT algorithms provide 

reasonable classification performance, but with a lot of variation. The use of ensemble methods offers 

little advantage for this application as the data set is particularly small; for this reason, introducing extra 

variability fails to improve the already weak learners. 

6.  Conclusions 

This work has illustrated the necessity for a wide variety of algorithms whilst investigating SHM. The 

performance of any given classification is highly dependent on the properties of the data themselves, as 

well as the choice of any relevant parameters. Decision Tree methods provide excellent overall 

performance across a range of scenarios despite their simplicity, even when applied to complex data and 

a small training set.  Probabilistic algorithms – including GPCs and RVMs – show potential, particularly 

when applied to challenging data. With these methods, a variety of kernel functions and pruning 

parameters should be explored through cross-validation for optimal performance. Traditional SHM 

techniques, such as SVMs, continue to provide competitive metrics; especially when the data is ‘easy’. 

Active learning interactions have been successfully demonstrated in this work; the data-dependence of 

classification performance highlights the potential advantages of this tool in selecting an informative 

data set in the context of SHM. 

6.1.  Future work  

For comprehensive metric comparisons, any predefined parameters must be optimised through cross 

validation (or otherwise); particularly those relating to non-probabilistic methods. It would be interesting 

to compare a wider variety of kernel functions for the computationally expensive algorithms, whilst 

including multi-layer perceptron metrics. Ensemble methods could be applied to more techniques in an 

SHM context; however, the reader is directed to the work done in reference [6] as it provides a 

comprehensive analysis for non-probabilistic methods. Alternative clustering algorithms should be 

tested to provide an array of unsupervised techniques whilst selecting data for training, along with the 

use of more sophisticated active learning algorithms. 
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