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‘Cell-based’ models provide a powerful computational tool for studying the mechanisms 
underlying the growth and dynamics of biological tissues in health and disease. An 
increasing amount of quantitative data with cellular resolution has paved the way for 
the quantitative parameterisation and validation of such models. However, the numerical 
implementation of cell-based models remains challenging, and little work has been done to 
understand to what extent implementation choices may influence model predictions. Here, 
we consider the numerical implementation of a popular class of cell-based models called 
vertex models, which are often used to study epithelial tissues. In two-dimensional vertex 
models, a tissue is approximated as a tessellation of polygons and the vertices of these 
polygons move due to mechanical forces originating from the cells. Such models have been 
used extensively to study the mechanical regulation of tissue topology in the literature. 
Here, we analyse how the model predictions may be affected by numerical parameters, 
such as the size of the time step, and non-physical model parameters, such as length 
thresholds for cell rearrangement. We find that vertex positions and summary statistics 
are sensitive to several of these implementation parameters. For example, the predicted 
tissue size decreases with decreasing cell cycle durations, and cell rearrangement may 
be suppressed by large time steps. These findings are counter-intuitive and illustrate that 
model predictions need to be thoroughly analysed and implementation details carefully 
considered when applying cell-based computational models in a quantitative setting.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational modelling is increasingly used in conjunction with experimental studies to understand the self-
organisation of biological tissues [1,2]. Popular computational models include ‘cell-based’ models that simulate tissue 
behaviour with cellular resolution. Such models naturally capture stochastic effects and heterogeneity when only few cells 
are present and can be used to explore tissue behaviour when complex assumptions on the cellular scale prevent us from 
deriving continuum approximations on the tissue scale. The applications of cell-based models range from embryonic devel-
opment [3–7], to wound healing [8] and tumour growth [9]. However, the numerical solution of cell-based models remains 
challenging since multi-scale implementations of such models, coupling processes at the subcellular, cellular, and tissue 
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scales, may suffer from numerical instabilities [10,11], and many such models include parameters of numerical approxi-
mation or parameters that have no direct physical correlate. These issues are of growing importance as cell-based models 
become used in an increasingly quantitative way [12–14]. Thus, we need to be aware of any impacts that numerical imple-
mentation choices may have on model predictions.

Here, we analyse a well-established class of cell-based model, the vertex model [15], to understand to what extent 
choices of numerical implementation and non-physical model parameters may affect model predictions. Vertex models 
were originally developed to study inorganic structures, such as foams [16] and grain boundaries [17,18], where surface 
tension and pressure drive dynamics. They have since been modified to study epithelial tissues [19–22], one of the major 
tissue types in animals. Epithelia form polarised sheets of cells with distinct apical (‘top’) and basal (‘bottom’) surfaces, 
with tight lateral attachments nearer their apical surface. The growth and dynamics of such sheets play a central role in 
morphogenesis and wound healing, as well as in disease; for example, over 80% of cancers originate in epithelia [23]. In 
two-dimensional vertex models, epithelial cell sheets are approximated by tessellations of polygons representing cell apical 
surfaces, and vertices (where three or more cells meet) move in response to forces due to growth, interfacial tension and 
hydrostatic pressure within each cell (Fig. 1A–C). Vertex models typically include cell growth and proliferation. In addition, 
cells exchange neighbours through so-called T1 transitions (Fig. 1D) whenever the length of a cell–cell interface falls below 
a threshold, and any triangular cell whose area falls below a threshold is removed by a so-called T2 transition (Fig. 1E).

Vertex models have been used to study a variety of processes in epithelial tissues [3–6,24–38]. These processes include 
growth of the Drosophila wing imaginal disc [3,4], migration of the visceral endoderm of mouse embryos [5], and tissue size 
control in the Drosophila embryonic epidermis [31]. A common approach in such studies is to consider forces on vertices 
arising as a result of minimising the total stored energy in the tissue. The functional form for this total stored energy varies 
between applications, but is typically chosen to reflect the effect of the force-generating molecules which localise at or 
near the apical surface. This energy function is then used either to derive forces that feed into a deterministic equation of 
motion for each vertex, which must be integrated over time [4,24,28], or else minimised directly assuming the tissue to be 
in quasistatic mechanical equilibrium at all times [3,25]. A third approach is to apply Monte Carlo algorithms to find energy 
minima [39,40].

Previous theoretical analyses of vertex models have elucidated ground state configurations and their dependence on 
the mechanical parameters of the model [41], inferred bulk material properties [42–44], and introduced ways to superim-
pose finite-element schemes for diffusing signals with the model geometry [45]. In other work, vertex models have been 
compared to lattice-based cellular Potts models and other cell-based modelling frameworks [46,47].

In the case of vertex models of grain boundaries, the authors of [18] proposed an adaptive time-stepping algorithm to 
accurately resolve vertex rearrangements without the need of ad-hoc rearrangement thresholds and provide a numerical 
analysis of the simulation algorithm. However, vertex models in that context only consider energy terms that are linear 
in each grain-grain (or cell–cell) interface length, whereas the energy terms in vertex models of biological cells typically 
depend non-linearly on cell areas and perimeters.

Importantly, previous studies such as [18] do not analyse to what extent changes in hidden model parameters, such as 
parameters of numerical approximation, like the size of the time step, or non-physical model parameters, such as length 
thresholds for cell rearrangement, can influence vertex configurations and other summary statistics. Here, we analyse a 
force-propagation implementation of vertex models [48,49] as applied to a widely studied system in developmental biology, 
the larval wing disc of the fruit fly Drosophila [3,4,25]. We conduct convergence analyses of vertex positions with respect to 
all numerical and non-physical model parameters, and further analyse to what extent experimentally measurable summary 
statistics of tissue morphology, such as distributions of cell neighbour numbers and areas, depend on these parameters.

We find that vertex model predictions are sensitive to the length of cell cycle duration, the time step, and the size of the 
edge length threshold for cell rearrangement. Specifically, vertex configurations do not converge as the time step, the edge 
length threshold for cell rearrangement, or the area threshold for cell removal are reduced. For example, reductions in the 
cell cycle duration may promote cell removal and reduce the size of the simulated tissue by up to a factor of two. We find 
that both the size of the time step and the size of the edge length threshold can influence the rate of cell rearrangement. 
Counterintuitively, the rate of cell removal is robust to changes in the area threshold for cell removal over multiple orders 
of magnitude. Further, analysing the active forces within the tissue reveals that vertices are subject to stronger forces during 
periods when cells grow and divide.

The remainder of the paper is organised as follows. In section 2, we describe our vertex model implementation of growth 
in the Drosophila larval wing disc. In section 3 we present our results. Finally, we discuss our results and draw conclusions 
for the use of cell-based models in quantitative biology in sections 4 and 5.

2. Methods

We consider a vertex model of the growing Drosophila wing imaginal disc, a monolayered epithelial tissue that is one 
of the most widely used applications of vertex models. The wing imaginal disc initially comprises around 30 cells, and 
undergoes a period of intense proliferation until there are around 10,000 or more cells [3,25]. Here, we outline the tech-
nical details of our model implementation. We start by introducing the equations of motion, then describe the initial and 
boundary conditions and implementations of cell growth and neighbour exchange.
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Fig. 1. Two-dimensional vertex models represent cells in an epithelial tissue as polygons and allow different types of vertex rearrangement. (A–C) Snapshots 
of an example vertex model simulation used in our analysis. The growing in silico tissue undergoes five rounds of cell division. (A) The initial condition is 
a hexagonal packing of 36 cells. (B) Simulation progress after 6,750 time units at an intermediate stage of tissue growth. The tissue boundary is allowed 
to move freely and individual cells grow before division. (C) Snapshot of the tissue at the end of the simulation at 27,000 time units. After the fifth (last) 
round of divisions the tissue relaxes into a stable configuration. Simulated tissues in (B–C) are rescaled to fit the view, a scale bar of fixed length is added 
for comparison. Parameter values are listed in Table 1. Throughout the simulation, vertices may rearrange by T1 transitions (D), T2 transitions (E), boundary 
merging (F), and cell division (G).

Equations of motion In two-dimensional vertex models epithelial tissues are represented as tessellations of polygons that ap-
proximate the apical cell surfaces. We propagate the position of each vertex over time using an overdamped force equation, 
reflecting that cell junctions are not associated with a momentum. The force equation takes the form

μ
dxi

dt
= −∇i E, (1)

where μ is the friction strength, xi(t) is the position vector of vertex i at time t , and E denotes the total stored energy. 
The number of vertices in the system may change over time due to cell division and removal. The symbol ∇i denotes the 
gradient operator with respect to the coordinates of vertex i. The total stored energy takes the form

E =
∑

α

K

2
(Aα − A0,α)2 +

∑

〈i, j〉
�li, j +

∑

α

�

2
P 2

α. (2)

Here, the first sum runs over every cell α in the tissue, Aα denotes the area of cell α and A0,α is its target area. This 
term penalises deviations from the target area for individual cells, thus describing cellular bulk elasticity. The second sum 
runs over all cell edges 〈i, j〉 in the sheet and penalises long edges (we choose � > 0), representing the combined effect of 
binding energy and contractile molecules at the interface between two cells. The third sum also runs over all cells, and Pα

denotes the perimeter of cell α. This term represents a contractile acto-myosin cable along the perimeter of each cell [3]. 
The parameters K , �, and � together govern the strength of the individual energy contributions.

Before solving the model numerically, we non-dimensionalise it to reduce the number of free parameters [3]. Rescaling 
space by a characteristic length scale, L, chosen to be the typical length of an individual cell, and time by the characteristic 
timescale, T = μ/K L2, equations (1) and (2) become

dx′
i

dt′ = −∇′
i E ′, (3)

E ′ =
∑

α

1

2
(A′

α − A′
0,α)2 +

∑

〈i, j〉
�l′i, j +

∑

α

�

2
P ′2

α , (4)

where x′
i , A′

α , A′
0,α , l′i, j and P ′

α denote the rescaled ith vertex positions, the rescaled area and target area of cell α, the 
rescaled length of edge 〈i, j〉, and the rescaled cell perimeter of cell α, respectively. The symbol ∇′ denotes the gradient 
i
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Table 1
Description of parameter values used in our simulations.

Parameter Description Value Reference

� Cell–cell adhesion coefficient 0.12 [3]
� Cortical contractility coefficient 0.04 [3]
�t′ Time step 0.01 [48]
A′

min T2 transition area threshold 0.001 [48]
l′T1 T1 transition length threshold 0.01 [48]
ρ New edges after a T1 transition have the length l′new = ρl′T1 1.5 [48]
A′s Initial cell area 1.0 [3]
A′s

0 Initial cell target area 1.0 [3]
Ns Initial cell number 36 [3]
t′
l Mean cell cycle duration 1,750 –

t′
tot Simulation duration 27,000 –

nd Total number of divisions per cell 4 –

For parameter values for which no reference is given, please see main text for details on how these 
values were estimated. Spatial and temporal parameters are non-dimensionalised (see section 2 for 
details).

with respect to the rescaled ith vertex position. In the non-dimensionalised model, cell shapes are governed by the rescaled 
target area of each cell A′

0,α and the rescaled mechanical parameters, � and �. For these parameters we use previously 
proposed values [3], unless stated otherwise. A complete list of parameters used in this study is provided in Table 1.

To solve equations (3) and (4) numerically we use a forward Euler scheme:

x′
i(t

′ + �t′) = x′
i(t

′) − ∇′
i E ′(t′)�t′. (5)

We analyse the dependence of simulation outcomes on the size of �t′ in the Results section.

Initial and boundary conditions Initially, the sheet is represented by a regular hexagonal lattice of six by six cells (Fig. 1A). 
The boundary of the lattice is allowed to move freely throughout the simulation. Each cell has initial area and target area 
A′s = A′s

0 = 1, respectively.

Cell neighbour exchange and removal T1 transitions (Fig. 1D) are executed whenever the length of a given edge decreases 
below the threshold l′T1 = 0.01. The length of the new edge, lnew = ρ lT1 (ρ = 1.5), is chosen to be slightly longer than this 
threshold to avoid an immediate reversion of the transition.

A second topological rearrangement in vertex models is a T2 transition, during which a small triangular cell or void is 
removed from the tissue and replaced by a new vertex (Fig. 1E). In our implementation any triangular cell is removed if 
its area drops below the threshold A′

T2 = 0.001. The energy function, equation (2), in conjunction with T2 transitions can 
be understood as a model for cell removal: cells are extruded from the sheet by a T2 transition if the energy function, 
equation (2), leads to a sufficiently small cell. Note that in equation (2) the bulk elasticity or area contribution of a cell α is 
finite even when the area Aα is zero, allowing individual cells to become arbitrarily small if this is energetically favourable. 
As cells decrease in area they typically also reduce their number of sides. Hence, it is sufficient to remove only small 
triangular cells instead of cells with four or more sides [3,4,25].

We further model the merging of overlapping tissue boundaries (Fig. 1F). Whenever two boundary cells overlap, a new 
edge of length lnew is created that is shared by the overlapping cells. In cases where the cells overlap by multiple vertices, 
or if the same cells overlap again after a previous merging of edges, the implementation ensures that two adjacent polygons 
never share more than one edge by removing obsolete vertices. The merging of boundary edges is discussed in further detail 
in [48].

Cell growth and division Unless stated otherwise the tissue is simulated for nd = 5 rounds of division, i.e. each cell divides 
exactly nd times. To facilitate comparison with previous simulations of the wing disc where vertices were propagated by 
minimising the energy function (2) [3,41], we model each cell to have two cell cycle phases: quiescent and growing. The 
duration of the first, quiescent, phase of the cell cycle is drawn independently from an exponential distribution with mean 
2t′

l/3, where t′
l is the total cell cycle duration. We introduce stochasticity in this phase of the cell cycle to avoid biologically 

unrealistic synchronous adjacent divisions; this also helps keeping the simulations in a quasistatic regime since adjacent 
divisions are prevented from influencing each other, thus maintaining mechanical equilibrium. The duration of the second, 
growing, phase of the cell cycle is fixed at length t′

l/3 for each cell. During this time the target area, A′
0,α , of the cell grows 

linearly to twice its original value. Upon completion of the growth phase, the cell divides. We choose a fixed duration for 
the growth phase to ensure gradual, quasistatic cell growth. Two-stage cell cycles with an exponentially distributed and a 
fixed length contribution have previously been observed in various cell cultures [50,51] and have been applied to model 
growth in the Drosophila wing imaginal disc [28].

The assigning of these cell cycle stages to two thirds and one third of the total cell cycle duration t′
l , respectively, allows 

us to modify the average age of a dividing cell with a single parameter. This decomposition of the cell cycle ensures that 
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Initialise time t′ = 0;
Generate initial configuration;
while t′ < t′

tot do
1. Update cell target areas;
2. Perform cell division on cells that have reached the end of their cell cycle;
3. Perform any T2 transitions;
4. Perform any T1 transitions;
5. Perform boundary merging;
6. Propagate vertex positions using equation (3);
7. Increment time by �t′;

end

Algorithm 1: Pseudocode of the simulation algorithm.

cell cycle durations are stochastic, while allowing the growth phase to occupy a significant proportion of the total cell 
cycle duration, ensuring gradual, quasistatic growth. The assumption that the tissue is in a quasi-steady state is common in 
vertex models [3,27,28,34] and reflects the fact that the time scales associated with mechanical rearrangements (seconds to 
minutes) are an order of magnitude smaller than typical cell cycle times (hours) [3].

At each cell division event, a new edge is created that separates the newly created daughter cells (Fig. 1G). The new 
edge is drawn along the short axis of the polygon that represents the mother cell [48]. The short axis has been shown 
to approximate the division direction (cleavage plane) of cells in a variety of tissues [52], including the Drosophila wing 
imaginal disc [53]. The short axis of a polygon crosses the centre of mass of the polygon, and it is defined as the axis 
around which the moment of inertia of the polygon is maximised. Each daughter cell receives half the target area of the 
mother cell upon division.

Applying this cell cycle model, we let the tissue grow for nd = 5 generations until it contains approximately 1,000 cells, 
making it sufficiently large to obtain summary statistics of cell packing. Note that the precise number of cells at the end 
of the simulation varies, due to variations in the number of T2 transitions by which individual cells are removed from the 
tissue. Each cell of the last generation remains in the quiescent phase of the cell cycle until the simulation stops. We select 
the total simulation time to be t′

tot = 27,000, unless specified otherwise. This duration is chosen such that the tissue can 
relax into its equilibrium configuration after the final cell division.

Computational implementation We implement the model within Chaste, an open source C++ library that provides a system-
atic framework for the simulation of vertex models [48,49]. Our code is available in the supplementary material as a zip 
archive. Pseudocode for our implementation is provided in Algorithm 1. Each time step starts by updating the cell target 
areas. Then, cell division, removal (T2 transitions), rearrangement (T1 transitions), and boundary merging are performed 
before incrementing the simulation time. The algorithm stops when the end time of the simulation is reached.

3. Results

In this section, we analyse how model behaviour depends on numerical and non-physical model parameters. Vertex 
models are typically used to predict summary statistics of cell packing and growth, such as the distribution of cell neighbour 
numbers and areas [3,25]. We analyse how these summary statistics depend on simulation parameters. Specifically, we focus 
on the final number of cells in the tissue, the total tissue area, the numbers of cell rearrangements (T1 transitions) and cell 
removals (T2 transitions), the distribution of cell neighbour numbers, and the correlation between cell neighbour number 
and cell area. Note that we exclude cells on the tissue boundary from statistics of cell neighbour numbers in order to avoid 
boundary artefacts, which can be seen in Fig. 1C. In Fig. 1C, cell shapes along the tissue boundary differ from those in the 
bulk of the tissue, and the cell neighbour number is poorly defined for cells along the tissue boundary, since it does not 
coincide with the number of cell edges.

Tissue size is sensitive to cell cycle duration

In previous vertex model applications [3,4,25], experimentally measured summary statistics of cell packing were repro-
duced using an energy minimisation implementation. Such energy minimisation schemes assume quasistatic evolution of 
the sheet, where the tissue is in mechanical equilibrium at all times. It is unclear to what extent summary statistics are 
preserved when the tissue evolves in a dynamic regime.

We analyse the dependence of the summary statistics on the cell cycle duration, t′
l , in Fig. 2. The cell number and tissue 

area at the end of the simulation, and the total number of cell rearrangements, vary by up to a factor of two as the mean 
cell cycle duration increases from five to 2000 non-dimensional time units (Fig. 2A–D). The cell number and tissue area 
increase with the mean cell cycle duration, whereas the amount of rearrangement (T1 transitions) decreases, reflecting a 
reduction in cell removal events (T2 transitions). The cell number and the tissue area do not increase further for mean 
non-dimensional cell cycle durations larger than 1,000 time units. In this regime, the total number of rearrangements and 
cell removals also cease decreasing. We thus identify this regime as the quasistatic regime, where the tissue maintains 
mechanical equilibrium throughout the simulation. Note, however, that neither the total cell number, nor the tissue area, 
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Fig. 2. Variation of cell numbers (A), number of T2 transitions (B), tissue area (C), total number of T1 transitions (D), cell neighbour number distribution (E) 
and mean area per polygon class (F) with mean cell cycle duration. Error bars denote standard deviations across 100 simulations. All simulation parameters 
are provided in Table 1.

the number of cell rearrangements or the number of cell removal converge numerically as the mean cell cycle duration 
increases, due to the stochastic nature of the system.

The cell neighbour number distribution depends on the cell cycle duration in a non-linear fashion (Fig. 2E). For example, 
the number of hexagons peaks at cell cycle durations of 10 as well as 1,000 time units. For cell cycle durations longer than 
1,000 time units the numbers of pentagons and heptagons increase as the cell cycle duration increases, while the number 
of hexagons decreases. We interpret this non-linear dependence as resulting from changes in cell neighbour numbers due 
to cell division and due to cell neighbour exchanges. As the cell cycle duration exceeds t′

l = 10, a decrease in the number 
of cell removal events leads to an increase in cell division events which, in turn, drives the polygon distribution away from 
its hexagonal initial condition. As the number of cell divisions ceases to increase the number of cell rearrangements drops 
as well, and the number of hexagons reaches a second peak. Increasing the time between cell divisions further decreases 
the number of hexagons. Note that none of the simulated polygon histograms coincide with previously reported histograms 
in which pentagons outweigh hexagons [3,25], despite choosing identical parameters in energy equation (2). We discuss 
possible reasons for this difference in section 4.
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Fig. 3. Magnitude of area (A), edge (B), and perimeter force (C) contributions over time. The solid lines represent the average of force contribution mag-
nitudes across all vertices of one simulation. The shaded regions represent one standard deviation of the force contribution magnitudes across the tissue. 
A cell cycle duration of t′

l = 2000 is used. All other parameters are listed in Table 1.

Another common summary statistic of cell packing is the mean area of cells of each polygon number 〈A′
n〉, where 〈·〉

denotes an average across all cells in the tissue that are not on the tissue boundary, A′ is the rescaled cell area, and n is 
the polygon number, i.e. the number of neighbours that each cell has. This summary statistic is often used to characterise 
epithelia [3,26,54,55]. We find that the mean cell area for each polygon number is not sensitive to changes in cell cycle 
length and increases monotonically with polygon number (Fig. 2F).

We interpret the data in Fig. 2 as follows. Differences in tissue size and cell packing arise due to a sensitive interplay 
between the cell cycle duration and the timescale for mechanical relaxation of the tissue, T . Growing cells push against their 
neighbours, leading to tissue growth. This outward movement is counteracted by the friction term in the force equation (1). 
As cells grow more quickly, i.e. with smaller cell cycle durations, the force required to push the surrounding cells outward 
increases. For sufficiently small cell cycle durations, the forces may become strong enough to cause cell extrusion. This 
finding may not be biologically relevant when studying growth in the Drosophila wing imaginal disc, since in this system 
the time scales for mechanical rearrangement are orders of magnitude smaller than the time scales associated with growth 
and proliferation [3]. However our results suggest that, in other systems, where cells divide on the time scales of minutes 
rather than hours, such as the Drosophila embryonic epidermis, cell extrusion may be induced during periods of fast tissue 
growth.

Cell growth and division increase forces within the tissue

The energy expression (4) leads to three different force contributions on each vertex: an area force; an edge force; and 
a perimeter force. In Fig. 3 we analyse the magnitude of these contributions for a simulation with mean cell cycle duration 
t′
l = 2000. The solid line represents the average magnitudes for the individual contributions for all forces in the tissue, 

and the shaded areas mark one standard deviation. The strongest force contribution is the area force (Fig. 3A), whereas 
the weakest is the edge force (Fig. 3B). This relationship is intuitive if one considers the directions of the individual force 
contributions when both � and � are positive: Most cells in the tissue have areas smaller than their target area of 1.0 
(compare with Fig. 2F), hence for an individual cell, the area force contribution points outwards from the cell. The edge 
contribution and perimeter contribution (Fig. 3C) point inwards for individual cells, thus counteracting the area force. It 
follows that the area contribution is strongest since, in mechanical equilibrium, it counteracts the sum of the edge and 
perimeter contributions. The variation of each force contribution has the same order of magnitude as their mean values, 
illustrating that the forces on vertices can vary strongly across the tissue. The force magnitudes change throughout the 
simulation, and they peak at a value that is 50% higher than the final values. For times larger than 15000 time units, the 
forces do not change with time in Fig. 3. At this time cells stop dividing and the final cell number is reached, illustrating 
that the forces are largest when the tissue size is increasing most rapidly. This transient rise in forces emerges because cells 
in the interior of the simulated tissue push on their neighbours as they grow before division. These observations enable us 
to predict that cells undergoing active processes, such as growth and division, are subject to significantly higher forces than 
cells in quiescent tissues.

Large time steps suppress cell rearrangement

When using an explicit Euler method to propagate the model forward in time, such as in equation (5), the time step 
should be chosen sufficiently small to provide a stable and accurate numerical approximation of the model dynamics. To 
this end, we conduct a convergence analysis. To reduce simulation times, we conduct the convergence analysis on sample 
simulations in which each cell divides nd = 4 times instead of five, and set the total simulation time as t′

tot = 21,000. We 
choose a series of decreasing time steps, �t′ , and define the error function
k
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Fig. 4. Variation in simulation result with the time step. (A) The error function (6) for 100 different realisations of the model plotted as overlapping, 
opaque curves. The error function decreases as the time step is decreased, but does not converge for all simulations. (B) The dependence of the number 
of T1 transitions on the time step for 100 model realisations. The number of T1 transitions in the simulations is stable for time steps smaller than 0.02 
and decreases with time steps greater than 0.002. (C) For time steps �t′ < 0.02 the cell neighbour number distribution is stable; the means of individual 
polygon class proportions vary by less than 0.01. In these simulations, cells undergo nd = 4 rounds of division, and the total simulation time is t′

tot = 21,000. 
All other parameter values are listed in Table 1. Error bars denote standard deviations across 100 simulations.

εt
k =

∥∥∥∥∥∥

∑

j

xk
j −

∑

j

xk−1
j

∥∥∥∥∥∥
, (6)

where the sums run over all rescaled vertex positions, xk
j , at the end of the simulation with time steps �t′

k and �t′
k−1. The 

error function (6) evaluates the differences between the sums of final vertex positions at decreasing values of the time step. 
To ensure that simulations with consecutive values of the time step follow identical dynamics we generate fixed series of 
exponentially distributed random variates from which we calculate the cell cycle durations.

We plot results of our analysis of the convergence of the vertex positions with the time step �t′ in Fig. 4. In general, the 
error function does not converge. However, for most simulations the error function (6) assumes values smaller than 10−1

for time steps smaller than 10−2 (Fig. 4A). Note that this time step is five orders of magnitude smaller than the average 
cell cycle duration. When the time step is larger than 10−2 the error function (6) is larger than one since a significant 
number of T1 transitions are suppressed. On rare occasions, for less than five examples out of 100, the error function may 
be non-negligible even if the time step is smaller than 10−2. These large values of the error function (6) reflect changes 
in the number of T1 transitions as the time step decreases (Fig. 4B). When the time step is smaller than 10−2 summary 
statistics of cell packing, such as the distribution of cell neighbour numbers (Fig. 4C) or the total number of cells, do not 
change as the time step is decreased further. Note that the distribution of cell neighbour numbers in Fig. 4C differs from 
those in Fig. 2 due to the decreased number of divisions per cell, nd . Further, we conclude from our analysis in Fig. 4 that it 
is necessary to use a time step smaller than 0.01 in order to arrive at physically meaningful solutions of the vertex model, 
since otherwise the amount of cell rearrangement and summary statistics of cell packing will be affected by the numerical 
implementation of the model.

An example of how differences in the number of T1 transitions and final vertex positions can emerge when the time 
step is smaller than 0.01 is shown in Fig. 5. In this figure, a cell division occurs in two simulations using a time step of 
0.004 (Fig. 5A) and a time step of 0.002 (Fig. 5B). Both simulations use the same, fixed, series of cell cycle times, and vertex 
positions in both simulations are similar over time up until the illustrated division. Here, and throughout, cells divide along 
their short axis. In this example, the short axis of the cell intersects the cell boundary close to an existing vertex. Due to 
differences in the vertex positions of the cell, the new vertex is created on different cell–cell interfaces as the size of the 
time step varies. As the simulation progresses, these different vertex configurations propagate towards different final tissue 
configurations, leading to differences in the total number of T1 transitions and the error function. In Fig. 4, differences in 
final vertex positions are observed for all considered values of the time step. However, such differences in vertex positions 
do not propagate through to tissue-level summary statistics such as the distribution of cell neighbour numbers or areas.
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Fig. 5. Differences in vertex configurations can arise in simulations run with different temporal resolution. A dividing cell in simulations run with time 
steps �t′ = 0.004 (A) and �t′ = 0.002 (B) is shown in bold. During the cell division, a new cell–cell interface (dashed line) is created along the short 
axis of the dividing cell by creating new vertices (see Methods section for details). The daughter cells of the dividing cell contain different vertices in the 
configurations corresponding to the two time steps. This leads to different vertex configurations at the end of the simulations.

Fig. 6. Variation in simulation result with the time step if a fourth-order Runge–Kutta scheme is used. The error function (6) for 100 different realisations 
of the model, evaluated using a fourth-order Runge–Kutta scheme, is plotted as overlapping, opaque curves. The error function decreases as the time step 
is decreased, but does not converge for all simulations. This result is similar for simulations run with a forward Euler scheme in Fig. 4A.

Model convergence with time step is not improved if higher-order numerical methods are used

The results in Figs. 4 and 5 were generated by propagating the vertex positions using a forward Euler time-stepping 
scheme. The choice of a forward Euler scheme over more accurate numerical methods is common in vertex models. For 
example, in a previous application where a tissue was relaxed starting from a random initial condition, it was shown that, 
in order to accurately resolve all T1 transitions, sufficiently small time steps had to be chosen that the benefits of higher 
order numerical methods were negligible [56]. However, in Figs. 4 and 5 vertex positions do not converge as the time 
step is decreased due to differences in T1 transitions and cell divisions for varying values of the time step, suggesting that 
convergence might be achieved if higher-order numerical methods were used. We test this hypothesis in Fig. 6, where we 
record the error function (6) when propagating the vertex model with a fourth-order Runge–Kutta time-stepping scheme 
as follows. First, all vertices are accumulated into the vertex vector x′ , such that if there are N vertices at time t′ then the 
vector x′(t′) has 2N components. We propagate the vertex vector using

x′(t′ + �t′) = x′(t′) + �t′

6
(k1 + 2k2 + 2k3 + k4) , (7)

k1 = −∇′E ′(t′,x′(t′)), (8)

k2 = −∇′E ′(t′ + �t′

2
,x′(t′) + �t′

2
k1), (9)

k3 = −∇′E ′(t′ + �t′

2
,x′(t′) + �t′

2
k2), (10)

k4 = −∇′E ′(t′ + �t′,x′(t′) + �t′k3). (11)

Here, ∇′ denotes the gradient with respect to the vector x′ .
Similar to the error function obtained using a forward Euler numerical scheme in Fig. 4A, the error function obtained 

using a fourth-order Runge–Kutta numerical scheme in Fig. 6 assumes values smaller than one for time steps below 0.01, 
but does not converge as the time step is decreased further. Comparing Figs. 4A and 6 we conclude that a higher-order 
time-stepping scheme does not improve the accuracy of vertex model propagation, since both the forward Euler and the 
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Fig. 7. Variation of simulation result with size of the T1 transition threshold, l′T1. (A) The dependence of the error function on l′T1 for 100 model realisations. 
The error function (12) does not converge as l′T1 decreases. (B) For small values of the T1 transition threshold, some simulations fail to complete (see main 
text). (C) The dependence of the number of cell rearrangements on l′T1 for 100 model realisations. The number of cell rearrangements is larger than 100 
for a large value of the rearrangement threshold, l′T 1 > 0.1, whereas cell rearrangements are suppressed for small values of the rearrangement threshold, 
l′T1 < 0.001, with cell rearrangement numbers less than 30. (D) Varying amounts of cell rearrangement lead to different distributions in cell neighbour 
numbers. Parameter values are listed in Table 1. Error bars denote standard deviations across 100 simulations.

fourth-order Runge–Kutta scheme require time steps smaller than roughly 0.01 in order for the error function (6) to assume 
values smaller than one on average, while exhibiting a similar degree of variability across all simulations.

Occurrence of cell rearrangements is regulated by rearrangement threshold

We further analyse the dependence of vertex positions and summary statistics on the T1 transition threshold, l′T1. Similar 
to the time step convergence analysis, we define a series of decreasing values of l′T1,k and the error function

εT1
k =

∥∥∥∥∥∥

∑

j

xk
j −

∑

j

xk−1
j

∥∥∥∥∥∥
, (12)

which measures the difference between the final vertex positions of simulations with decreasing values of the T1 transition 
threshold, l′T1,k . The variation of the error function with decreasing values of l′T1,k is shown in Fig. 7A. For all considered 
values of l′T1 the error function does not converge and varies between values of 1 and 103. Only for l′T1 < 10−3 is the error 
function (12) smaller than one for some simulations. However, for such small values of l′T1, many simulations fail as the 
simulation algorithm encounters situations that it cannot resolve, for example configurations including overlapping cells 
(Fig. 7B).

A large T1 transition threshold of 0.2 length units leads to a large number of T1 transitions, whereas T1 transitions are 
suppressed for thresholds of 0.003 length units or smaller (Fig. 7C). This variation in the number of cell rearrangements 
influences summary statistics of cell packing, for example leading to variations in the cell neighbour number distribution. 
For large rearrangement thresholds, e.g. l′T1 = 0.2, the number of cell rearrangements is high, leading to a high proportion 
of hexagons (around 0.6), whereas suppression of cell rearrangements for small cell rearrangement thresholds, for example 
l′T1 = 0.2, leads to a wider distribution of cell neighbour numbers with a proportion of hexagons below 0.4. The number of 
cell rearrangements is stable between T1 transition thresholds of 0.02 and 0.003. In this regime, the proportion of hexagons 
varies slightly between 0.425 and 0.409 (Fig. 7D). Despite the stable number of T1 transitions across this parameter regime 
between 0.02 and 0.003 the final vertex positions differ for any two values of the T1 transition threshold, as reflected in 
values of the error function.

As illustrated in Fig. 7B, if the T1 transition threshold is smaller than 0.001, simulations fail to complete as the simulation 
algorithm encounters situations that it cannot resolve, for example due to overlapping or self-intersecting cells. An example 
of how a simulation can fail due to a small value of the T1 transition threshold is provided in Fig. 8. A snapshot is taken of 
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Fig. 8. Small values of the T1 transition threshold, l′T1 < 10−3, suppress rearrangement and lead to failure of the simulation algorithm. One of the failing 
simulations in Fig. 7 is analysed. The tissue configuration in the last time step before simulation failure contains two vertices that appear to be merged 
due to a short edge on the tissue boundary. The short edge is indicated by an arrow (A) and magnified for the penultimate (B) and final completed time 
step (C) of the simulation. Since the short edge in the penultimate time step is prevented from rearranging, the two adjacent boundary cells intersect each 
other, leading to failure of the simulation.

Fig. 9. Dependence of simulation results on the length of edges created by T1 transitions, l′new = ρl′T1. The error function (13) is recorded for 100 simulations. 
All simulation parameters are listed in Table 1. The error function is smaller than one for ρ < 2.0.

the simulation at the last two time steps before simulation failure. Due to a short edge two boundary vertices in the tissue 
appear merged (arrow in Fig. 8A). This short edge is magnified for the penultimate (Fig. 8B) and last time steps (Fig. 8C) 
before simulation failure. At this last time step, one of the boundary cells becomes concave. The simulation then fails 
since our vertex model implementation cannot resolve this configuration. When two boundary cells overlap, the simulation 
procedure attempts to merge the vertex with its closest cell boundary. This procedure fails because the identified boundary 
is internal to the tissue rather than a boundary interface.

Simulation results are robust to variation in length of newly formed edges

When cells exchange neighbours by way of T1 transitions, new edges are formed. Each new edge has length l′new = ρl′T1. 
In order to investigate the extent to which changes in the length of newly formed edges can affect simulation results we 
define a series of increasing values for ρk and the error function

ε
ρ
k =

∥∥∥∥∥∥

∑

j

xk
j −

∑

j

x0
j

∥∥∥∥∥∥
, (13)

which measures the difference in vertex positions relative to simulations with ρ0 = 1.05. As shown in Fig. 9, individual 
simulations may result in different final tissue configurations than the reference configuration if newly formed edges are 
twice as long as the rearrangement threshold or longer. Such differences in configuration were observed for three out of 
100 simulations, illustrating the robustness of simulation results to the length of newly formed edges.
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Fig. 10. Dependence of simulation results on the T2 transition threshold, A′
T2. (A) The dependence of the error function (14) on the T2 transition threshold 

for 50 model realisations. The error function assumes values less than one for AT2 < 10−2 but does not converge. (B) The total number of T2 transitions 
for 50 model realisations is stable for all observed values of AT2. (C) Tissue-level summary statistics such as the cell neighbour number distribution are not 
affected by changes in the threshold. Error bars denote standard deviations across 50 simulations. Simulations are run with nd = 8 rounds of division, a cell 
cycle duration of t′

l = 700, and total simulation time t′
tot = 19600. All further simulation parameters are listed in Table 1.

Rate of T2 transitions is robust to variation in the T2 transition threshold over five orders of magnitude

Next, we turn to the value of the T2 transition threshold. We define a series of decreasing values of A′k
T2 and the error 

function

εT2
k =

∥∥∥∥∥∥

∑

j

xk
j −

∑

j

xk−1
j

∥∥∥∥∥∥
, (14)

which measures the difference between the final vertex positions of simulations with decreasing values of the T2 transition 
threshold, A′k

T2. To analyse the value of the error function (14) in a simulation with a significant amount of cell rearrange-
ment and removal we run simulations with nd = 8 generations, a cell cycle duration of t′

l = 700, and total simulation time 
t′

tot = 19600. All other parameter values are listed in Table 1.
The value of the error function, on average, is small (Fig. 10A). However, the error function does not converge for 

individual simulations and may be large between consecutive values of the threshold. In particular, the error function 
does not converge to zero. As the threshold decreases, the overall number of T2 transitions in the simulations is stable 
at approximately 150 T2 transitions per simulation (Fig. 10B). However, for individual simulations, the total number of 
T2 transitions may vary by up to 10 as the threshold A′

T2 is decreased. The overall number of T2 transitions does not 
change over a large range of T2 transition thresholds that covers multiple orders of magnitude, and all simulations complete 
without errors even if the T2 transition threshold is smaller than 10−6, which is three orders of magnitudes smaller than 
the standard value for this parameter in our simulations. The independence of the number of T2 transitions of the threshold 
A′k

T2 is reflected in tissue-level summary statistics, such as the distributions of cell neighbour numbers, which are unaffected 
by changes in the T2 transition threshold (Fig. 10C).

Dependence of the simulation results on the update ordering in each time step

Finally, we investigate whether the update ordering within Algorithm 1 may affect simulation results. To this end, we 
randomise the order in which T1 transitions are conducted during one time step. We find that the update order does 
not lead to differences in final vertex positions in 100 simulations. This is intuitive, considering that the order in which 
individual events are conducted is most likely to be relevant in situations where events happen directly adjacent to each 
other, for example if two adjacent edges undergo T1 transitions at the same time step, if there are two adjacent divisions, 
or if a dividing cell also participates in cell rearrangement. In these examples, the order in which these events occur during 
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one time step may have an impact on simulation outcomes. Our results imply that no adjacent two edges undergo T1 
transitions in 100 sample simulations.

4. Discussion

Cell-based models have the potential to help unravel fundamental biophysical mechanisms underlying the growth and 
dynamics of biological tissues. However, the numerical implementation of such models is rarely analysed and the depen-
dence of model predictions on implementation details often remains unexplored. Here, we analyse a widely applied class 
of cell-based models, a vertex model, and probe to what extent experimentally relevant summary statistics can depend on 
implementation details, such as the choice of numerical or non-physical model parameters.

For example, we find that the speed at which cells grow and divide relative to the speed of tissue relaxation can 
significantly alter in silico tissue behaviour. The total number cells in the tissue, as well as the tissue area and the number 
of cell rearrangements, varies by up to a factor of two as the mean cell cycle duration is changed. Summary statistics of cell 
packing, such as the distribution of cell neighbour numbers, or the correlation between cell neighbour number and area, 
are less strongly affected by the exact choice of timescale; the main features of these statistics are preserved in all cases. 
This finding that the total cell number and tissue area depend on the mean cell cycle duration suggests that cell extrusion 
may be induced in fast-growing tissues.

The distribution of cell numbers for the case of quasistatic simulations, identified as simulations where increases in the 
cell cycle duration would not lead to an overall increase in tissue area or cell number, differs from previously reported 
results [3]. Specifically, we observe fewer pentagons than hexagons. This discrepancy might arise from a difference in how 
equation (2) is used to evolve the tissue. For example, our implementation of the cell cycle differs from other implemen-
tations where the cell cycle duration varies spatially in the tissue [4,24,28]. Further, in [3], a global energy minimisation 
scheme is used to propagate vertex positions, whereas a more accurate force-based approach is used here. A major differ-
ence between the two approaches is the fraction of cells in the tissue that are allowed to grow and divide concurrently. In 
our implementation, up to one third of the cells undergo cell-growth at any given time, whereas in other implementations 
all cells grow and divide sequentially. Further analysis is required to understand to what extent synchronous growth and 
division can affect cell packing in epithelial tissues. Milan et al. report that up to 1.7% of cells in the early wing disc are 
mitotic at any given time [57]. However, mitosis and cell growth may not happen consecutively, hence the optimal choice 
of the duration of the growth phase in our simulations is unclear. Overall, it is unclear to what extent different choices for 
the cell cycle model may influence summary statistics of cell packing.

Our analysis of forces throughout simulations, presented in Fig. 3, reveals that, on average, the area force contribution 
is stronger than the edge force contribution and the perimeter force contribution on a given vertex. Further, forces on cells 
increase during phases of proliferation and growth. Our findings may be of relevance in force-inference approaches that 
estimate forces using segmented microscopy images of epithelial tissues [58–60]. Force-inference methods often assume that 
the measured configuration of cells is in equilibrium and it is unclear to what extent force-inference approaches introduce 
errors if this is not the case. In our simulations, forces are up to 50% higher when simulations are run in a dynamic regime, 
where cells grow and divide, than in the static regime at the end of the simulation, where cells are relaxed into a static 
configuration.

The vertex positions, as well as simulation summary statistics, vary as the time step is changed, and differences in 
vertex positions decrease with the time step. Counterintuitively, large time steps can suppress cell rearrangement in vertex 
simulations. This may be explained by considering that, for large time steps, vertex positions move further than the length 
threshold for cell rearrangements, and instances when the lengths of cell–cell interfaces fall below this threshold may 
not be resolved. Importantly, in order for differences in simulation results to be negligibly small, a time step has to be 
chosen that is five orders of magnitude smaller than the average cell cycle duration in our simulation, and six orders of 
magnitude smaller than the simulation time. For individual simulations, simulation outcomes may change if a smaller time 
step is chosen, an effect that is preserved even when a higher-order numerical scheme, such as fourth-order Runge–Kutta, 
is used. The latter finding confirms that, for vertex model implementations with ad-hoc rules for cell rearrangement and 
division, such as in this study, the benefits of higher-order numerical schemes diminish, and it is beneficial to reduce the 
computational cost of the algorithm by using a simpler numerical scheme, such as forward Euler. A forward Euler scheme 
is more computationally efficient than a fourth-order Runge–Kutta scheme since it requires fewer floating point operations 
per time step. In our simulations, differences in simulation outcomes with decreasing time steps occurred at all observed 
choices of the time step for both numerical schemes investigated. More research is required to analyse the extent to which 
further decreases in the time step can lead to convergence of the simulation results. Here, we stopped investigating the 
effects of further decreasing the time step due to prohibitive increases in calculation times as the time step is decreased. In 
previous studies, vertex models have been reported to converge as the time step is decreased [45,56]. Our analysis differs 
from these previous studies by considering a tissue undergoing cell division and rearrangement rather than relaxation from 
an initial condition.

The simulation results are sensitive to the T1 transition threshold chosen in the simulation. The size of the T1 transition 
threshold can be used to regulate the extent to which the simulated tissue is allowed to rearrange in order to minimise 
energy. Literature values for this quantity span a range from 0.1 [4,48] to 0.01 [31]. Final vertex positions of individual 
simulations change with the value for the T1 transition threshold and do not converge as the threshold is decreased.



J. Kursawe et al. / Journal of Computational Physics 345 (2017) 752–767 765
Our results that both the time step and the cell rearrangement threshold may influence the rate of T1 transitions illus-
trates that these parameters are interconnected. When the time step is chosen sufficiently large such that vertices move 
further than the cell rearrangement threshold between time steps, cell rearrangement is suppressed. This means that if a 
small cell rearrangement threshold is chosen, a sufficiently small time step needs to be chosen. A careful choice of time 
steps and cell rearrangement threshold is crucial since an incorrect choice may lead to failure of the simulation algorithm. 
For vertex models designed to simulate polycrystalline materials an adaptive time-stepping scheme has been developed that 
resolves the exact time at which the end points of a short edge meet, and a T1 transition is performed whenever this hap-
pens [18]. More work is required to understand how rates of T1 transitions differ if different conditions for rearrangement 
are implemented, such as the shortening of an edge to a given threshold or the shrinking edge of an edge to a point. Ulti-
mately, the optimal algorithm to simulate cell rearrangement in epithelial tissues can only be chosen through comparison 
with experimental results.

While simulated vertex model configurations are sensitive to the size of the time step and thresholds for cell rearrange-
ment, they are less sensitive to the length of newly formed edges, and to thresholds for cell removal. We find that the 
length of newly formed edges may be up to twice as long as the threshold for T1 transitions without affecting final vertex 
configurations. However, this may change in other parameter regimes, for example if larger values for the cell rearrangement 
threshold are chosen.

The size of the area threshold for cell removal may be varied over six orders of magnitude without impacting tissue-level 
summary statistics, even though the exact number of T2 transitions may differ for any two values of the area threshold. 
In particular, it seems to be possible to choose arbitrarily small values for the T2 transition threshold without causing the 
algorithm to fail. There are three effects that may contribute to the stability of small elements in our simulations. First, 
since small cells with areas close to the threshold for cell removal are far away from their preferred area in our simulations 
(A0,α > 1.0), their area force is larger than that of adjacent neighbours. This makes the cells stiff and prevents them from 
becoming inverted or otherwise misshapen. Second, the relationship between area and cell neighbour numbers presented in 
Fig. 2 shows that small elements are most likely to be triangular. Our simulation algorithm does not permit T1 transitions 
if the short edge is part of a triangular cell in order to prevent triangular elements from becoming inverted and thus the 
algorithm from failure. Third, this relationship between cell area and cell neighbour number may also contribute to the 
stability of the algorithm when the area threshold is large, for example 0.2. In this case, individual cells may be smaller 
than the area threshold without undergoing T2 transitions if they are not triangular.

The energy equation (2) provides a geometrical hypothesis for the removal of cells from epithelia, in which cells are 
removed from the tissue if this is energetically favourable. Mechanical effects of cell death are an area of increasing bio-
physical interest [61], and it is the subject of future work to design vertex models that allow alternative hypotheses for cell 
death to be tested.

Here, we analysed how numerical and non-physical parameters can influence experimentally measurable summary statis-
tics in cell-based models by examining a force-propagation-based implementation of vertex models. Individual results may 
be relevant to other implementation choices. For example, our finding that the duration of the cell cycle in our model influ-
ences simulation outcomes may mean that parameters that control the rate of energy-minimisation may influence results 
in other vertex model implementations [3,25,62]. In general, further work is required to understand how other choices of 
implementation schemes may impact computational model predictions. For example, the noise strength in a Monte Carlo 
vertex propagation scheme [39,40] or the choice of energy-minimisation algorithm may influence vertex model behaviour.

While most of our findings are of a numerical nature, some have explicit biological relevance. Our analysis of the de-
pendence of tissue properties and forces on the mean cell cycle duration reveals that the vertex model predicts increased 
forces in tissues undergoing growth and proliferation, and that fast tissue growth may induce cell extrusion. Our findings 
further suggest that statistics of cell packing may depend on the nature of the cell cycle or the boundary condition of the 
tissue. Note that findings that do not make explicit biological predictions, such as the robustness of the vertex model to 
changes in the area threshold for cell removal, or its sensitivity to changes in the length threshold for cell rearrangement, 
are nonetheless highly relevant, since these findings highlight that choices of model design and implementation have to be 
carefully considered when applying vertex models quantitatively.

Throughout the manuscript we use non-dimensional parameters that arise when rescaling time and space by the charac-
teristic length and time scales of the model. The use of such rescaled parameters is beneficial in this case since it allows, for 
example, the comparison of our model parameters to previously used values [3,4,28]. Further, we identify reference param-
eter values for which our simulations are physically reasonable. By providing non-dimensional values for these parameters 
we facilitate their reuse in other applications where the physical values of the characteristic length or time scales may be 
different.

5. Conclusions

Our results illustrate that care needs to be taken when drawing predictions using cell-based computational models be-
cause implementation details such as the size of the time step or non-physical parameters, such as length thresholds for 
cell rearrangement, may influence model predictions significantly. With the rise of quantitative analysis and quantitative 
model-data comparison in biophysical applications, choices of model implementation become increasingly relevant. To en-
able the use of cell-based models in quantitative settings, it is important to be aware of any influences that implementation 
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choices may have on model predictions when analysing a specific biophysical phenomenon. Understanding model behaviour 
in detail is crucial to prevent modelling artefacts from influencing experimental predictions and clouding our biophysical 
understanding and, as such, our findings emphasise the need to fully document algorithms for simulating cell-based models. 
Close attention to implementation details is required in order to unravel the full predictive power of cell-based models.
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