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Abstract—Service-Orientation has long provided an effective
mechanism to integrate heterogeneous systems in a loosely cou-
pled fashion as services. However, with the emergence of Internet
of Things (IoT) there is a growing need to facilitate the integration
of real-time services executing in non-controlled, non-real-time,
environments such as the Cloud. With the need to integrate both
cyberphysical systems as hardware-in-the-loop (HIL) components
and also with Simulation as a Service (SIMaaS) the execution
performance and response-times of the services must be managed.
This paper presents a mathematical framework that captures
the relationship between the host execution environment and
service performance allowing the estimation of Quality of Service
(QoS) under dynamic Cloud workloads. A formal mathematical
definition is provided and this is evaluated against existing
techniques from both the Cloud and Real-Time Service Oriented
Architecture (RT-SOA) domains. The proposed approach is
evaluated against the existing techniques through simulation and
demonstrates a reduction of QoS violation percentage by 22%
with respect to response-times as well as reducing the number
of Micro-Service (µS) instances with QoS violations by 27%.

Index Terms—Real-Time, QoS, Services, SOA, Micro-Services,
Schedulability, Resource Modelling, IoT, IoS, SIMaaS, Cloud

I. INTRODUCTION

Predicting and guaranteeing service performance has long

been a topic of research from domains of real-time scheduling

through to Cloud Software as a Service (SaaS). With the

emergence of Internet of Things (IoT), providing Quality of

Service (QoS) guarantees is evermore vital to ensuring correct

system performance. This introduces a particular challenge

with ensuring that the services advertised QoS is actually met

when deployed in the real-world where there are interfering

workloads. This paper proposes a technique that captures the

relationship between service performance and the execution

environment in which it operates.

The importance of managing service performance becomes

more significant with both the integration of cyberphysical

systems and also the emergence of the Internet of Simulation

(IoS) whereby simulations are deployed as services (SIMaaS)

[1]. In the former, with hardware-in-the-loop (HIL) systems if

the timing properties are not guaranteed the resulting action,

or data, may be incorrect or unsafe [2]. When integrating

simulations, either as a co-simulation or with other systems

such as driver-in-the-loop (DIL) systems, the accuracy of the

timing integration is critical to obtaining accurate results. The

challenge to providing the necessary guaranteed response-

times in this multi-domain, cross-organisation context is the

lack of a fully controlled host environment for the services

themselves. Alternatively there may not be a real-time oper-

ating system meaning that the approaches from the real-time

systems community are not necessarily appropriate.

In the context of Cloud-based services where there are

real-time constraints, the expected QoS may not be upheld

under the influence of interference due to resource contention

of CPU, memory, or even networks [3]–[6]. Currently most

approaches for defining QoS and Service Level Agreements

(SLAs) use static methods [7], [8] which assume the isolated

execution of services. This paper evaluates those approaches

which dynamically redefine QoS definitions in order to ac-

count for performance degradation due to task interference or

degradation of the physical host machines.

In this paper we present both a review of the existing

approaches from the Real-Time Service Oriented Architecture

(SOA) (RT-SOA) and Cloud domains for predicting QoS

and also a mathematically rigorous approach to capturing the

QoS of services hosted in uncontrolled environments. The n-

dimensional model captures the relationship between environ-

mental resources, such as CPU and memory, and response-

time. We also present a detailed analysis of the proposed

technique against the existing approaches and we demonstrate

an improved accuracy of 4% against the best Cloud technique

and reduced QoS violation of 13% against real-time QoS

techniques.

The remainder of this paper presents a review of state-of-

the-art in QoS for RT-SOA. This is followed by proposed

mathematical framework fo Real-Time QoS (RT-QoS) in Sec-

tion III. Section IV presents an evaluation of both the proposed

against the existing techniques followed by conclusions in

Section V.

II. BACKGROUND: QOS FOR RT-SOA

Service Oriented Architectures (SOAs) have emerged as

the premier set of standards for building cross-organisational

dependable distributed systems [9]. In our previous work we

utilised service-orientation in the development of a virtual

engineering environment for the integration of vehicular sim-

ulations [5], [10]. In that context, models & simulations were



provided as services through a paradigm known as Simulation

as a Service (SIMaaS) and integrated into workflows which

themselves could be provided as services (Workflow as a Ser-

vice (WFaaS)) facilitating the simulation of an entire vehicle

[1].

The SIMaaS and WFaaS paradigms were introduced as part

of the wider Internet of Simulation (IoS), which extends the

Internet of Things (IoT) with simulation for the purposes

of decision support and in the context of engineering and

manufacturing for rapid prototyping and product analysis [1].

These evolving domains, are hosted on infrastructure such as

Cloud which mostly do not provide performance guarantees

for individual services [5]. These environments are also shared

with potentially millions of other processes and systems and

the total workload experienced will vary [11], [12].

Hardware-in-the-loop cyberphysical systems require

performance guarantees in order to maintain safe and correct

operation. Mechanisms should consequently be in place to

accurately predict and manage the execution performance of

services which have real-time deadlines within the context of

uncontrolled environments.

It is therefore necessary to consider how SOAs can be

adapted to support real-time services. SOA research has fo-

cussed primarily on the challenges of service discovery, re-

factoring of legacy systems as services throughout system

evolution [13], and online re-composition of services into

workflows based on QoS violation. There has however been

little work on providing a Real-Time QoS (RT-QoS) mecha-

nism for RT-SOA that is capable of working in non-traditional

real-time environments.

The remainder of this section therefore introduces the

central concepts of real-time systems schedulability and then

considers the state-of-the-art in RT-QoS techniques.

A. Real-Time Systems Scheduling

In order to guarantee the timely delivery of service, the

appropriate formalisms from real-time systems research in

real-time systems worst-case response times can be computed

as a function of resource utilization and resource availability.

Typically this is in terms of the number of processors available

for execution and the time available:

U =

n
∑

i=1

Ci

Ti

≤ N (1)

Where the sum of the utilisation factors U of each process i is

less than the available processing defined by N . The utilisation

factors are normally defined as the Worst-Case Execution

Time (WCET) divided by the available time for computations

Ci/Ti. The bounding condition N varies with the adopted

scheduling model, for example in Fixed Priority Scheduling

lim
n→∞

N = n(2
1

n − 1) = 69.3% or N = 1 in the case of

Earliest Deadline First (EDF) [14]–[16]. Using equation 1 and

a complete knowledge of all processes that will be executed

it can be proved whether those processes will meet or miss

their respective deadlines.

Fig. 1: SOA fault tree showing fault propagation mitigated by

dynamic QoS, adapted from [18]

In more general distributed systems scheduling theory, the

WCET can be adjusted with a speedup ς(i) = p(1)
p(i) where p(1)

defines the WCET of the process with no interference and full

complete access to a processor and p(i) the WCET across i
processors [17].

B. Managing Fault Propagation in SOAs

In the context of SOAs there have been several approaches

that aim to provide support for real-time systems and therefore

provide guarantees about the QoS that any individual service

can provided.

Specifically these approaches aim to mitigate the fault prop-

agation depicted in Figure 1. There are a subset of SOA faults

[18] that are directly related to the published execution time

of a service followed by the actual observed response-time.

If the service description specifies a response-time that could

only achieved under certain circumstances a late timing fault

can occur due to resource limitations. Therefore techniques

are required which dynamically update the QoS definitions to

mitigate the fault propagation through to causing a contract vi-

olation. Unless static approaches consistently overallocate time

for execution they cannot provide guarantees in real-world

execution environments with dynamic interfering workloads

and physical equipment that will degrade over time.

1) Data Distribution Service (DDS): DDS is a real-time

middleware that utilises a publish/subscribe methodology to

facilitate real-time communication between systems [19]. The

iLand project [20], [21] utilises DDS to build a RT-SOA which

considers the schedulability of the services with respect to

the CPU utilisation and observed WCET. Subsequently the

QoS is updated to predict a response time of C ×
1−Uprev

Uworst
.

This approach has two primary limitations: the need for full-

system control for a real-time middleware, and the need for

full knowledge of the WCET of services.

2) Containers: The RT-Llama project utilised containers

to provide bounding boxes to control the resource utilisation

of services [22]–[24]. Services are dealt with as either real-

time or best-effort where the former requires managed real-

time CPUs with EDF scheduling. Similar to the previous

technique this requires known WCETs and utilisation patterns



for the services. Real-time processes are accepted on either

an immediate or reserved basis. Immediate execution will

only be admitted if the estimated response-time is less than

the deadline given the currently available resources. These

approaches require a fully controlled system with real-time

CPUs.

3) Fuzzy-Logic: Is a technique that refers to the use of

fuzzy terms such as “good” and “bad” along with probabilistic

models. This has been applied to predicting QoS by defining

“good” and “bad” response-time or memory consumption [25],

[26]. Analysing the probability of a fuzzy term occurring pro-

vides the likelihood of observing a given level of performance.

The likelihood is calculated from the number if appearances

of the fuzzy term in the events of the service, divided by the

number of executions of that service. This technique, as well

as all the remaining techniques, is not explicitly a real-time

approach and does not provide the levels of guarantee that are

required by real-time systems.

4) Correlation: The use of Pearson’s Correlation Coeffi-

cient (PCC) by Zheng et al. [27]–[29] in analysing and then

predicting the QoS of web services has been adopted and

integrated into many other approaches. This approach utilises

the historical data regarding response-times around clusters

of similar services. It correlates similar users and services

using PCC and applies a significance weighting representing

the density of invocations. They then select the Top-K similar

neighbours, either users or services, and are able to recom-

mend a service to a user.

5) Optimisation: Is another technique with a wide range of

approaches, the majority focussing on the optimisation of the

selection of services for workflows rather than the optimisation

of QoS itself. Canfora et al. [30] do however optimise the

specification of QoS using a genetic algorithm, accounting for

cost, response-time, availability, and reliability. However since

a minimum of 100 generations are required, the computation

time to find a suitable QoS is not feasible for a system

which must re-compute QoS and expected completion time

at runtime.

6) Historical & Probabilistic: The simplest technique is

the use of raw historical data to predict the service response-

times. This could either use the mean observed response-

time for previous execution instances of the service, or the

worst observed response-time, or some other value based on

a probabilistic model.

The NECTISE project took a different slant calculating the

probability that the service would miss the desired deadline

[31]. This approach was then used to inform the selection

of services, specifically the level of service redundancy that

would be required to provide a satisfactory likelihood of

providing the services within the required timeframe: 1− pr.

This approach can also be applied to sequential workflows by

using the sum of products.

7) Cost-Aware: Another approach models only the cost of

execution, and therefore isn’t directly useful for predicting

service performance. However the modelling cost facilitates a

trade-off between performance, power or energy, resource util-

isation, and infrastructure pricing which in most circumstances

must be considered and therefore features as a parameter in

many of the other approaches [32]

Each of the approaches, except cost-awareness, that has

been introduced here will be evaluated in Section IV. The

next section presents a new approach for modelling QoS in

dynamic and changing environments which are not supported

by the real-time techniques.

III. MATHEMATICAL FRAMEWORK FOR RT-QOS

This section outlines the mathematical framework for pre-

dicting the response-time and time-to-finish of executing ser-

vices. The framework is defined by considering first the

services and their host environments, followed by the models

for resource utilisation, and finally the predictive model itself.

First however, the schedulability test in Equation 1 can be

redefined in terms of the resource availability Ar such that the

total availability of resources from the request time until the

deadline be greater than or equal to the resources required by

the service itself:

∀r,

(

Ar ≡ 1−

D
∑

t

Ii,r

)

≥ Ci,r (2)

Where D is the deadline, t is the current time, and I is

the interference experienced by service i with regards to

resource r. The interference is equivalent to the utilisation

factor calculated in Equation 1 without the service of interest.

A. Service & Environment Model

Services can often be decomposed into µSs as those “func-

tional elements for which it is not practical to decompose

into smaller components” [33] and the interactions between

them. A given µS (s) may be invoked one or more times,

each instance referred to as sn, and execution progress p is

monitored with a frequency f to provide k observations.

Each execution instance of a µS will exist on a host h

which has a set of available resources A at time t. At each

observation during µS execution the resource availability can

be recorded:

∀r ∈ R, ∀t, α(h, sn) = 1− (U(h(sn))r,t − U(sn)r,t) (3)

Where U provides either the sum of resource utilisation by all

processes hosted by h (the host of the µS), or the resources

utilised by the µS at time t. R is the set of resource types

being monitored, e.g. CPU and memory. Alternatively, in terms

of traditional real-time systems notation, availability can be

defined with respect to interference as 1 − Ir (Eq. 2). The

observed availability can then be collated to provide a total

AΣ
r (Eq. 4) and average Ar (Eq. 5) observed availability over

the duration of an execution instance sn:

AΣ
r (h, sn) =

k
∑

p=0

α(h, sn)r,t[t ≡ p] (4)

Ar(h, sn) =
AΣ

r (h, sn)

k
(5)



Fig. 2: Framework multi-dimensional coordinate system in-

dexed by j, calculated from the availability Ar and the discrete

space dr

Fig. 3: Visual representation of proposed QoS approach

Finally these availability values can be converted into co-

ordinate values j in the discrete space dr of possible values

for Ar as shown in Figure 2:

j = {r ∈ R : ⌊Ar(h, sn)× |dr|⌋} (6)

Where |dr| can be configured based on experimental evidence

or based on system constraints monitoring constraints.

B. Resource Utilisation

Given an executing µS its resource utilisation can be

observed, recorded, and normalised into a resource utilisa-

tion model U indexed by the constraint jand the execution

progress p. U is a 4-tuple comprising of the mean µ, minimum

∧, maximum ∨, and variance σ2 for each observation point.

This model can then be used to provide a forecast F of the

remaining resource required for execution to complete from a

given point p:

F (s)
x∈{µ,∧,∨}
j,r,p =

k
∑

i=p

U(s)xj,r,k−i (7)

F (s)σ
2

j,r,p =

∑k

i=p U(s)σ
2

j,r,k−i

k − p
(8)

Where the summations are performed in reverse from i = k
to i = 0 allowing the calculation of F to be performed in

O(n) time.

C. Predictive Model

These models are used to populate the predictive model

M which is an |R| + 1 dimensional model representing the

resource types and time. As shown in Figure 2 and in Equation

6, the finite set of possible coordinates of j ∈ J acts as a

coordinate map applied to index the model:

m : J → M, j 7→ mj (9)

Which allows the observed resource availability to act as a

constraint on the model. Each model element mj is a 6-tuple

〈t∨, tµ, Tj , Uj , Fj , Ij〉. Where T stores the historical response-

times and Ij = |MT
j | is the indicator density function, as used

by Zheng et al. [27] as a significance weighting.

The model is then used to estimate the response-time of

µSs as they are deployed:

RTT[A(h(sn)](sn) =

〈

∑

mT
j

M I
j

,mt∨

j

〉

(10)

Where the currently observed resource availability acts as a

constraint (shown using Iverson brackets [34]) on the model

to provide a pair of values representing the average and

worst observed response-times. In the same fashion, once

execution has started, the time-to-finish T T F for the µS can

be estimated:

T T F [A(h(sn)](sn) =
(

1−
p

k

)

M(sn)j (11)

Where the execution is progress is estimated by compared the

observed and expected resource utilisation in a pessimistic but

non-decreasing manner:

p(sn)t = max
{

p(sn)t−1,min
{

∀r ∈ R : 1
k

⌊

k·
∑

t
x=0

[[U(sn)j,r,x]]0..1
F (s)j,r

⌋}}

(12)

D. The Sparse & Initial Cases

The model so far facilitates the estimation of response-

times and remaining computation time of µSs using previous

µS execution data under the currently observed environmental

resource availabilities. There are however two situations where

the current model is not sufficient:

1) Initial-case where the model is empty with no execution

information about the µS.

2) Sparse-case where there is information about execution

performance under a subset of resource availability con-

figurations.

In the first instance for a prediction to be made one of the

following must be provided:

1) Response-time purely as a nominal value where the

resource utilisation must be assumed to be 100% of the

best available host h.

2) WCET with a utilisation model or resource requirement.

3) Response-time with or without resource utilisation infor-

mation but alongside a host specification.



Algorithm 1: Core Algorithm

1 begin Online Monitoring

2 Invoke s on h
3 Start Timer

4 p= 0

5 while s running do

6 if Timer.Elapsed ≥ ω then

/* Utilisation and availability

are observed in parallel */

7 u = OBSERVE UTILISATION(s,h)

8 a = OBSERVE AVAILABILITY(h)

9 (p,T T F)=UPDATE PREDICTION(s,u,a)

10 end

11 RTT= Stop Timer

12 end

13 end

14 begin Model Updating

15 T = UPDATE DATA SETS(RTT, A)

16 U,A = BUILD UTIL AVAIL MODEL(u, a)

17 n++
18 M= BUILD TIME MODEL

19 end

Allowing for a traditional real-time systems estimation of

WCET.

In the second instance of a sparsely populated model, a

neighbourhood approach can be used to predict the missing

value:

RTT[A(h(sn))](sn) =

∑

i 6=j

(

I(s)j · M(s)j · D
−1(i, j)

)

∑

i 6=j (I(s)j · D
−1(i, j))

(13)

Where D−1 is the inverse distance measure between the point

j of interest and all other points i in the model at the current

point in time: D−1 = 1
dist(i,j) .

Therefore overall the framework can be summarised as a

set of three cases, Initial (A), Sparse (B), and Full (C):

RTT[A(h(sn))] =











A MT ≡ ∅

β1B + β2A MT
j ≡ ∅, ∃i : MT

i 6= ∅

γ1C + γ2B + γ3A MT
j 6= ∅

(14)

This is shown visually in Figure 3 as a multidimensional

space recording utilisation and availability over time. The

algorithmic representation is also shown in Algorithm 1.

The next section takes the proposed framework and evalu-

ates it against the techniques outlined in Section II.

IV. EVALUATION & COMPARISON OF APPROACHES

In this section the metrics used to evaluate the proposed

approach against the approaches discussed in Section II are

discussed. Then the simulation infrastructure is described

before the evaluation is presented focussing on QoS violation

and wasted resource allocation.

TABLE I: µS response-times and QoS allocation

A. Measures & Metrics

There are several metrics that have been commonly used to

evaluate QoS techniques with respect to:

• Prediction Accuracy using Mean Absolute Error (MAE)

as used by Zhu et al. [35] and Mean Percentage Waste

(MPW). The former compares the measured Qi against

the predicted QoS value Q̂i whilst the later takes the

average overallocation of QoS:

MAE =

∑N

i |Q̂i −Qi|

N
(15)

MPW =

∑N

i (Q̂i −Ri)[Q̂i > Qi]

N
(16)

• QoS Violation measuring the Absolute Violation Count

(AVC) as well as the Mean Absolute Violation (MAV)

and Mean Percentage Violation (MPV), specified below

using the square Iverson Brackets for summation condi-

tions [34]:

AV C =
∑

i

[(Q̂i < Qi) = 1] (17)

MAV =

∑

i(Q̂i −Qi)[Q̂i < Qi]

AV C
(18)

MPV =
MAV
∑

i Q̂i/N
(19)

B. Cloud Simulation of RT-QoS

For the purposes of analysing the QoS approaches simula-

tions of services executing in a Cloud environment will be used

[36]. The existing workload on the servers is represented as a

periodic workload pattern with an average CPU and memory

load of 80-95% [11]. The µSs themselves are modelled

as Cloud tasks with resource utilisation patterns [37]. The

elements of the cloud, including the server models, virtual

machines, and tasks themselves are those used in other work

studying the behaviour of Cloud through simulation [3], [6],

[38] and only the QoS approaches themselves are introduced.

8 Cloud task types were used based on the short and medium

Cloud task types [37], eager and lazy resource acquisition,

and also active and non-releasing resource release paradigms

[39]. Each task type defines a µS which was then executed

100 times. An initial QoS estimate was calculated by each

approach based only on the Cloud task length parameter (7

and 16 million instructions respectively).



TABLE II: QoS MPV across µSs and approaches

Table I outlines the response-times of the 8 µSs execution

instances and the predicted QoS by the historical, correlation

by Zheng et al. [27], fuzzy-logic by Benbernou et al. [25],

and the proposed approach. The average QoS allocation by the

real-time approach by [21] is 2553.4, more than 40× greater

than largest prediction by any of the other approaches and in

the remainder of this section can not normally be reasonably

shown on the graphs.

The remainder of this section will look in detail at the results

of the QoS approaches with regards to violation and wastage.

C. QoS Violation Analysis

Table II details the MPV by each of the QoS approaches, in-

cluding the proposed method, across all of the µS execution in-

stances. The proposed method reduces the MPV in comparison

to each of the existing methods with 10% compared to MPVs

between 14% and 39%. Figure 4b also depicts the difference

between QoS violations between the different approaches. For

each µS execution instance where the MPV is above the

benchmark line, defined by the proposed method, the observed

violation is improved using the proposed method. Alternatively

for each MPV below the benchmark the respective existing

method performed better than the proposed method.

Looking, as an example, specifically at the 100 execution

instances of the first class of µS (a small a Cloud task with lazy

resource acquisition and eager resource release), the Absolute

Violation Count (AVC) can be clearly seen in Figure 4a.

The correlated and historical based approaches have only 2

violations and the proposed approach only 3, whilst the real-

time approaches using fuzzy-logic and DDS have a total of

23 and 20 violations respectively for this µS.

D. QoS Waste Analysis

In terms of MPW, Table III details the overallocation by

each of the QoS approaches. The real-time iLand approach

overallocates by an average of 8474% whilst the historical,

correlation-based, and fuzzy-logic approaches overallocate on

average by 39%, 48%, and 21% respectively. The proposed

also returns an MPW of 39% which as can be seen in Figure

5b is a slight improvement on the historical approach.

Again looking specifically at the first µS, the correlation

approach by Zheng et al. followed by the pure historical

approach waste the most time whilst the fuzzy-logic approach

TABLE III: QoS MPW across µSs and approaches

TABLE IV: Difference in QoS violation and wasted exec-

ution time between existing approaches and proposed method:

Approach− Proposed (Average’ ignores the iLand method)

wasted the least total time over the 100 execution instances

(see Figure 5a).

E. Evaluation of Violation vs. Waste

With regards to QoS violation the historical and correlated

approaches appear to show a slight improvement on the

proposed method in Figure 4a. However, as shown in Table

IV the proposed approach across all 8 µSs was significantly

more accurate than the correlated approach, wasting 14% less

and reducing violation by 18%.

The proposed approach demonstrates a significant improve-

ment over the real-time DDS and fuzzy-logic approaches with

an accuracy over 9000% better than DDS and with an average

violation percentage improved by 28% and 13% respectively.

The proposed approach resulted in 38 QoS violations com-

pared to 18 for the correlation technique, 21 for the historical

approach, 97 for DDS, and 241 for the fuzzy-logic approach.

Although the fuzzy-logic approach demonstrated the most

accurate predictions compared to each of the approaches the

level of QoS violation is significantly worse.

The improvement against the historical technique is the

least, 4% reduced MPW. This improvement is represented

across 82% of µS execution instances. The historical approach

bears the greatest It is anticipated that performance will

improve with further µS executions and with a wider range

of workload interference.



(a) Absolute Violation Count (AVC) of 1st 100 µSs (b) Difference of Percentage Violation of all µS instances between
approaches

Fig. 4: µS QoS violation

(a) Waste/Overallocated time of 1st 100 µSs (b) Difference of Percentage Waste/Over-allocated between ap-
proaches

Fig. 5: µS QoS wasted overallocation

V. CONCLUSION AND FURTHER WORK

This paper has presented the need for a robust mathemat-

ical framework for guaranteeing response-times in Service

Oriented Architectures (SOAs) with real-time constraints. A

discussion of the existing techniques including the use of Data

Distribution Service (DDS), fuzzy-logic, PCC, optimisation,

and pure historical data has been presented. These techniques

have then been evaluated against the proposed n-dimensional

framework which captures the relationship between compu-

tational resources, such as CPU and memory, and service

performance.

The proposed approach has been demonstrated using Cloud

workload simulation to improve the Mean Percentage Vio-

lation (MPV) by over 13% for real-time QoS techniques. It

has also increased the accuracy and therefore reduced the

overallocation of time by general Cloud QoS approaches by

between 4% and 14%.

There is further work to evaluate properties of the proposed

approach, including the impact of the dimensionality and

the impact of the granularity of each of the dimensions on

prediction accuracy. Additional interfering workload patterns

can be analysed with a greater degree of variation. Furthermore

any dynamic QoS approach requires a training set of data

before being deployed, deciding on the size of the training set

for a given service type remains an open question.
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