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Abstract We compare the predictions of Extended Ki-
netic Theory (EKT), where the roles of surface friction

and correlation in fluctuation velocities are taken into
account, with discrete element simulations of steady,
fully-developed, inclined flows of identical spheres over

bumpy bases, in the presence and absence of flat, fric-

tional sidewalls. We show that the constitutive relation

for the pressure of EKT must be modified in the prox-

imity of the boundary, because of the influence of ex-

cluded volume and shielding associated with collisions
of particles with the boundary itself. We also note that
currently available boundary conditions for flows over

bumpy planes in kinetic theory underestimate the en-

ergy dissipation. These two observations explain the

lack of agreement of EKT with the simulations, in terms

of the maximum angles of inclination for which steady,

fully-developed flows are possible. That is, for some

high angles of inclination, EKT does not have solu-

tions, while steady flows are predicted in DEM. How-

ever, whenever a solution to the system of differential

equations of EKT does exist, the predicted distributions

of velocity, solid volume fraction and granular tempera-

ture satisfactorily match the numerical measurements.
The incompressible, algebraic approximation of EKT,
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which ignores the conduction of energy in the energy

balance, admits solutions for a wider range of angles

of inclination, as in the simulations, but fails to repro-

duce the quantitative and qualitative behaviour of solid

volume fraction and granular temperature in the two

conductive layers at the top and bottom of the flow.

When frictional sidewalls are added to the domain, we

show that the spanwise ratio of shear stress to pres-

sure is linearly distributed in the dense core region of
the flow, confirming that the sidewalls exert, on aver-
age, a Coulomb-like resistance to the flow with an effec-
tive friction coefficient which is less than half the actual

particle-wall friction.

Keywords Kinetic theory ·Discrete Element Method ·
Inclined flow · Bumpy base

1 Introduction

Flowing granular materials driven by gravity are en-

countered in a diverse range of geophysical contexts

such as rock avalanches, landslides and debris flows

and in a variety of industrial processes involving han-

dling and transporting of bulk materials. Considerable

research has been undertaken in the last few decades
to develop a fundamental understanding of this class of
materials. Although significant progress has been made,

complete constitutive models that are able to fully char-

acterize the behaviour of these flows still remains a chal-

lenge for engineers and physicists alike.
At present, even the simple case of steady, fully-

developed, dry granular flows comprised of identical,

nearly spherical, rigid particles is not completely un-

derstood. Furthermore, even though isolated physical

mechanisms are well described, their inclusion in one

general model is still problematic.
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Inclined chute geometries have been widely used to

investigate the mechanics of granular flows. Experimen-
tal [1–4] and numerical [5–8] works usually find common
agreement and help their constitutive description. How-

ever, simply changing the boundary conditions (bot-

toms and sidewalls), slope angles and flow rates pro-

duces remarkably different behaviours. Over a flat base,

a shallow flow behaves as an agitated and dilute layer
while, for increasing flow depth, a large region of plug
flow with high slip velocity and vanishing shear rate

develops [9]. Conversely, a rough bottom generally re-

duces slip at the base while sustaining a sheared flow. In

this case, depth-averaged velocities strongly depend on

inclination and flow height, which, in turn, determine

whether a flow stops, steadily propagates or constantly

accelerates [2,6]. It is also seen that sidewalls have the

dual effect of supporting flows over rough bases at in-

creasingly high slope angles and stabilizing flowing piles

over erodible surfaces of heaps at inclinations greater

than the angle of repose [10,4,9].

When the flowing system is dilute, it is commonly
accepted that particles mainly interact through instan-

taneous, binary, uncorrelated collisions. Assuming that

this process is the main mechanism of energy dissipa-

tion, classic kinetic theory of granular gases [11–13] has

been found to describe the regime. However, in any

practical application, gravity typically acts to collapse

the flows into denser system, where the solid volume

fraction, ν, can exceed the freezing point at which a

phase transition to a crystalline state is first possible

(0.49 for monosized spheres [14]). In this dense regime,

it is widely considered that kinetic theory is not a good

candidate for describing granular flows, because of the

role of frictional, long-lasting contacts and the fact that

collisions are no longer perceived as binary, instanta-

neous and uncorrelated. As a consequence, a very popu-

lar approach has been proposed based on a phenomeno-
logical local rheology that links the stress ratio (ratio
of shear stress to pressure) to the inertial parameter

(shear rate made dimensionless using the pressure, par-

ticle density and diameter) [15]. It suits flow regions

well, where the density is uniform; however, it fails close

to the boundaries [16], and in describing phase transi-

tions [17].

A more fundamental approach that relies on exten-

sions of classic kinetic theory has emerged as a valid al-
ternative. The role of particle friction has been included
in the collisional dissipation rate of translational, fluc-

tuation energy through an effective coefficient of resti-

tution [18,19]. The breaking of the molecular chaos as-

sumption at solid volume fractions larger than 0.49 has

been shown to mainly decrease the collisional dissipa-

tion rate of fluctuation energy with respect to the ex-

pression of classic kinetic theory [20]. This has been

taken into account by introducing a phenomenological
correlation length in the classic expression of the colli-
sional dissipation rate [21,22] leading to what has been

called Extended Kinetic Theory (EKT). More recently,

it has been shown how particle friction is a factor in the

dependence of both stresses and correlation length on

volume fraction [23]. Finally, it has been suggested [24]

how to include the role of finite particle stiffness, which

affects the collision duration and allows for the devel-

opment of rate-independent components of the stresses

at solid volume fractions exceeding a critical value [25].

The aforementioned ingredients have enabled the ap-

plicability of kinetic theory even to dense flows.

EKT has been successfully tested against discrete

numerical simulations of dry, simple shear flows [23,

24] and shearing flows between bumpy planes [26] and

against physical experiments on dry, inclined flows over

bumpy and erodible beds [27–30]. However, the latter

comparisons were affected by the limited measurements

attainable in physical experiments. For example, pro-

files of solid volume fraction and velocity fluctuations

were not available; the flow interior, i.e., away from the

sidewalls, where present, was not accessible.

In this paper we test EKT against numerical sim-

ulations using the Discrete Element Method (DEM)

of steady, fully-developed, inclined granular flows over

bumpy planes, in the presence or absence of flat, fric-

tional sidewalls. We perform the simulations by chang-

ing the coefficient of normal restitution en (the negative

of the ratio between the pre- and post-collisional normal

relative velocity between two colliding spheres) and the

angle of inclination of the bumpy plane and measure

profiles of solid volume fraction, velocity, velocity fluc-

tuations and stresses. We numerically solve the system

of differential equations governing the flow, according

to EKT, by making use of boundary conditions at the

bumpy plane derived by Richman [31] for frictionless,

nearly elastic spheres. Those boundary conditions un-

derestimate the energy dissipation at the bumpy base
for inelastic, frictional spheres: as a consequence, EKT
predicts that steady and fully-developed flows are only

possible below some critical value of the angle of inclina-

tion of the bumpy bottom, although we obtain steady

and fully-developed DEM simulations also above this

angle. We also show that, in the proximity of the bumpy

plane, the relation between the pressure and the inten-
sity of the velocity fluctuations (the granular tempera-
ture T ) is affected by particle-boundary collisions [32]:

ignoring this causes EKT to predict an increase of the
solid volume fraction when approaching a dissipative
boundary, in contrast with the DEM simulations, and

to further underestimate the maximum angle of incli-
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nation at which steady and fully-developed flows are

possible. In the presence of flat, frictional sidewalls, we

first prove that, when averaged along the spanwise di-

rection, the ratio of the shear stress to the pressure

linearly increases with the distance from the bottom

plane, as often assumed [4,27,29,30], except for thin

regions close to the free surface and the bottom. We

obtain, from the slope of that linear relation, an effec-
tive wall friction coefficient which is much less than the
actual friction coefficient of the particle-wall contacts

and is independent of both the coefficient of normal

restitution and the angle of inclination. We then use

the effective wall friction to solve the differential equa-

tions of EKT by considering the average effect of the

sidewalls on the flow and make comparisons with the

spanwise averaged measurements in the numerical sim-

ulations. In addition to numerically solving the system

of differential equations of EKT, we also obtain approx-

imate analytical solutions with and without sidewalls,

by assuming that the solid volume fraction is uniform

throughout the flow. To do this we use the algebraic

relation between the shear rate and the intensity of the

velocity fluctuations which derives from the fluctuation

energy balance when the divergence of the energy flux

is neglected [27]. This latter approach is formally ana-

logue to assuming a local rheology for the granular ma-

terial which does not involve a measure of the particle

velocity fluctuations.
The paper is organized as follows. In Sec. 2 we ex-

plain the simulation methodology. We then describe ex-

tended kinetic theory for inclined flows over a bumpy

base in Sec. 3. Finally, we present the results of the sim-

ulations and the comparisons with the theory in Sec. 4,

followed by conclusion remarks in Sec. 5.

2 Numerical simulations

As already mentioned, we have performed numerical

simulations via Discrete Element Method (DEM). This
a well-known tool in contact mechanics and many works
[6,7,33,8] have previously used this approach for the

study of granular flows. The simulations presented here

were carried out using the open-source DEM software

mercuryDPM [7,34]. This particular code has been val-

idated against single-particle experiments [35] and com-

pared in [7] against the previous DEM work of Silbert
et. al. [6] where similar systems to those presented here
were studied. An additional advantage of this code is

that it offers a post processing tool to extract the con-

tinuum fields from numerical simulations via coarse-

graining (CG). This technique has been used here to

retrieve the field of interests for the comparisons with

the results of extended kinetic theory (EKT). While

DEM and CG have been already presented elsewhere

[36,37], we briefly introduce these methods in order to
support our later discussions and comparisons.

δ ij
n

grain i

grain j

ωj ωi

vivj

nij

Fn

Ft

xi
xj

(a)

k
n

k
t

γ
n

γ
t

μ

δ ij
n

(b)

Fig. 1 Contact model: (a) two identical particles at contact;
(b) sketch of the spring-dashpot model.

2.1 Contact model

In DEM, the material is treated as an ensemble of

discrete particles, where every grain i is resolved as

a Lagrangian point with position xi, mass mi, veloc-

ity vi, moment of inertia Ii, and angular velocity ωi.
Considering a simple system of soft spherical parti-

cles of diameter d, contact forces are generated when

particles interact with each other. This produces de-

formation to the particles which may be resolved via

Hertz-Mindlin contact mechanics or similar. To simplify

the contact behaviour, in this DEM code, interaction

forces between rigid particles are related linearly by an
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ideal particle overlap δ. This can be schematically vi-

sualized by considering a system where the interaction
occurs between a pair of identical particles i, j (Fig.

1(a)). The two are in contact if δn > 0, i.e., the nor-

mal overlap is positive. The overlap is easily defined as
δnij = (di/2 + dj/2)− (xi − xj) · nij , where the normal
contact vector nij = (xi − xj)/|xi − xj | . It is assumed

that the contact takes place at the centre of the overlap,
a justifiable assumption as long as the overlap remains
small.

The forces acting on particles i, j are determined us-

ing a standard spring-dashpot model (Fig. 1(b)). The
same contact model is assumed in our simulations. Fol-
lowing this approach, the force acting from particle i to

particle j can be decomposed into normal and tangen-

tial contributions, Fij = Fn
ij+Ft

ij . These are calculated

in both normal and tangential directions as the com-

bination of a linear repulsive and a linear dissipative

components:

Fn
ij = knδ

n
ij − γnv

n
ij ;

Ft
ij = −ktδtij − γtv

t
ij , (1)

where, kn and kt are, respectively, the normal and tan-
gential spring constants, γn and γt the normal and tan-

gential viscous damping and the relative velocities in
normal and tangential direction are defined as vn

ij =

(vij · nij)nij and vt
ij = vij − vn

ij + lij × ωi − lij ×
ωj . Here, the relative velocity of the pair is defined as

vij = vi − vj and, for equal size particles, the vector

lij = −(xi − xj)/2.

It is straightforward to derive the collisional time

tc between two particles and the coefficient of normal

restitution en from the normal component of the force
as:

tc = π/
[

kn/mij − (γn/2mij)
2
]1/2

;

en = exp(−tcγn/(2mij)), (2)

where mij = mimj/(mi −mj) is the reduced mass (mi

and mj being the masses of particles i and j, respec-

tively).

The tangential component of the force is used to

recreate the effect of particle surface roughness and to
determine whether the particles stick or slide against

one another. This effect is reproduced taking into ac-
count the generated force which is proportional to the
elastic tangential displacement δtij . At the time of con-

tact this is set to zero and its rate of change is given by

[6,7]:

dδtij
dt

= vt
ij −

(δtij · vij)nij

rij
. (3)

Due to the possible rotation of the reference frame at

the contact over time, the second term on the right

hand side makes sure that the tangential displacement

is always rotated: thus, at every time interval, it is kept

tangential to the contact point. The magnitude of the

tangential displacement is truncated to satisfy a yield

criterion based on Coulomb’s law, |Ft
ij | ≤ µ|Fn

ij |, where
µ is the interparticle friction. Tangential sliding at a
contact takes place when |Ft

ij | = µ|Fn
ij |.

If all the contact forces Fc
i =

∑N
j=1,j 6=1

Fc
ij acting

on the single particle i are known (e.g. from the contact

with particles or the boundaries), its translational and
rotational degrees of freedom can be solved by integrat-
ing Newton’s equations of motion:

mi
d2xi

dt2
= Fc

i +mig;

Ii
dωi

dt2
= ji, (4)

where g is the gravitational force (which here represents

the only external force) and ji =
∑N

j=1,j 6=1
(lij × Fij)

is the total torque. Once the forces are known, these

equations are a set of ordinary differential equations
that can be solved numerically to update the particle
positions at a chosen time step. The same process is
performed for particle-wall interactions, with a new set

of parameters (stiffness, dissipation and friction) that

needs to be specified independently.

2.2 Coarse-graining

Coarse-graining is a technique used to simplify highly

detailed and complex (anisotropic) microscopic quanti-

ties of heterogeneous materials and extract macroscopic

continuum fields. The advantages of coarse-graining are

that the equations of continuum mechanics are auto-

matically satisfied, the particles can have different stiff-
ness and shape and the results are even valid for a
single time step, i.e. no ensemble-averaging is required
[38]. The fields of interest in particle simulations are ob-

tained by applying a local smoothing kernel (the coarse-

graining function) characterized by a specific smoothing

length (coarse-graining scale) denoted as w. A Gaussian

defined with its standard deviation and scale (or vari-

ance) is a common example of a coarse-graining func-

tion. The scale, or resolution, is essential for obtaining

correct measurements. Considering a general field, very

fine resolutions (smaller than the particle scale) lead to

strong fluctuations of the same field. However the value

can plateau at a spatially dependent number and there-

after becomes independent of the scale. The plateaued
value is what is usually referred to as the macroscopic
field [39]. Narrower plateaus can also be found at large

resolutions (larger than the particle scale) but they are

strongly dependent on the field macroscopic gradients.
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In explaining the procedure for coarse-graining, we

consider velocity, solid volume fraction, granular tem-
perature, stresses and kinetic energy flux. We take into
consideration a system of N flowing particles while the

particles fixed at the boundaries are labelled Nf .

The microscopic (point) mass density ρmic, at a

point r and time t is defined from statistical mechanics

as

ρmic(r, t) =

N
∑

i=1

miΘ(r− ri(t)), (5)

where Θ is the Dirac delta function. The macroscopic

mass density is calculated by convoluting the ρmic with

a coarse-graining function ψ(r):

ρ(r, t) =

N
∑

i=1

miψ(r− ri(t)). (6)

Here, we assume the coarse-graining function to be a

Gaussian:

ψ(r− ri(t)) =
1

(
√
2πw)3

exp

(

−|r− ri(t)|2
2w2

)

(7)

with coarse-graining width w. The volume fraction ν is

expressed as

ν(r, t) =

N
∑

i=1

Vψ(r− ri(t)), (8)

where (for a sphere) V = 1/6πd3 is the volume of the

particle and ρp its density.

The flux of kinetic energy q(r, t) is calculated as

q(r, t) =
1

2

N
∑

i=1

mivi · viviψ(r− ri), (9)

where vi is the velocity of particle i.

Momentum density vector M(r, t) is defined as:

M(r, t) =

N
∑

i=1

miviψ(r− ri). (10)

The ratio of momentum to mass densities leads to

the macroscopic velocity V(r, t):

V(r, t) = M(r, t)/ρ(r, t). (11)

This allow to define the particle fluctuation velocity as:

Ci(r, t) = vi(t)−V(r, t). (12)

The macroscopic stress can be obtained considering
the momentum conservation equation [37]. This stress

is subdivided into kinetic (i.e., streaming) and colli-

sional stresses, σ = σk +σc whose explicit formulation
reads:

σ
k =

N
∑

i=1

miCiCiψ(x− xi); (13)

σ
c =

N
∑

i=1

N
∑

j=i+1

Fijxij

∫ 1

0

ψ(r− ri + srij)ds

+

N
∑

i=1

N+Nf
∑

k=N+1

Fikaik

∫ 1

0

ψ(r− ri + saij)ds,

(14)

with the interaction force between two particles Fij =

−Fij , vectors xij = xi − xj and aij = xi − bij , where

bij is the contact point between the particle i and a

fixed wall particle j.

Once the stresses are known, the pressure, p, and
the granular temperature, T , can be calculated as

p(x, t) = tr(σ(r, t))/3 (15)

and

T = tr(σk)/3ρ, (16)

respectively.

We remark that, for granular systems, the defini-
tion of the particle fluctuation velocity (Eq. 12) leads

to scale dependency effects [37] due to gradients devel-

oping in the flow. For inclined flows, it has been sug-

gested [37] that the scale dependency can be removed

a posteriori from the kinetic stress σk, which becomes:

σ
k′ =

N
∑

i=1

miCiCiψ(r− ri)− ργ̇2
w2

3
(17)

where γ̇ is the shear rate. The same correction has been
applied here, while the factor 3 appearing in the denom-

inator in the right hand side expression is an integration

constant [37].

Following the procedure described above, correct

coarse-grained fields can be obtained near boundaries

made of fixed particles (e.g. those at the bottom of the
inclined chute). Other boundaries (e.g. lateral periodic
or flat rigid walls) lead to local underestimations of

these fields due to “vacuum” effects [40]. This happens

when the coarse-graining function has to be partially

defined beyond these boundaries. There are strategies

to correct this, e.g. [40], but they are not implemented

here. Instead, we disregard measurements taken within

two diameters of the lateral boundaries. In consider-

ing these issues, it is striking to note that, usually, in

physical experiments, the majority of available mea-

surements for dry and opaque flowing materials are

those taken close to the sidewalls, while the only reli-

able measurements in discrete element simulations are

away from them.
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2.3 Simulation methodology

We employ DEM to perform three-dimensional numeri-

cal simulations of granular systems flowing over a bumpy

inclined plane in the absence and in the presence of flat,

frictional sidewalls. In our reference coordinate system,

x represents the streamwise (flow) direction, y the span-

wise (vorticity) direction, and z is the direction perpen-

dicular to the bed. We use three angles of inclination

of the plane, i.e., θ = 24◦, 26◦ and 28◦. These values
are within the range of possible inclinations that al-

low steady and fully-developed flows. The particles are

identical spheres of diameter d and mass m which are

subjected to the gravitational acceleration g.

To simulate flows in the absence of lateral confine-

ment, we employ a simulation cell with lateral periodic
boundaries along x and y. The system has dimension

lx×ly = 20d×10d. A single layer of 180 particles is glued
at random spacing on the flat surface at z = 0 (so that

their centres of mass are located at z = d/2). The av-

erage distance between the edges of two adjacent glued
particles is 0.4d. These particles cover the entire x− y

plain, although a few gaps are always present. These are
generally filled during the simulations although parti-

cles trapped there are allowed to recirculate, i.e., are not
fixed. All the simulations consist of 3500 flowing spher-
ical particles which, within the simulation domain, can

reach heights that are approximately 20d.

When flat, frictional sidewalls are added, the do-

main is enlarged and periodic boundaries are used only

along x (flow direction). The domain of simulation is
lx × ly = 30d × 66d. The bumpy bottom is generated

as described above, using 1760 particles so that the av-

erage distance between the edges of two adjacent par-

ticles is still 0.4d on average. A total of 27500 flowing

spheres are simulated with typical heights of approxi-

mately 15d.

For the contact model, we employ parameters sim-

ilar to those used in other studies [6,37,8]. The con-

stant particle stiffness in normal direction is kn = 2 ×
105mg/d. The damping γn is adjusted to obtain the
desired value of the coefficient of normal restitution

en. Here, results are given for en having values of 0.5,

0.6, and 0.7. The collisional time is tc = 0.005(d/g)1/2.

For accurate simulations, a sufficiently small integration

time step can then be defined as ∆t = tc/50 [6]. The
tangential stiffness and damping are set as kt = 2/7kn
and γt = 2/7γn, respectively. All these parameters are

used as inputs for both particle-particle and particle-

flat wall collisions. Only the coefficient of sliding fric-

tion, µ, changes, being set 0.45 for particle-particle in-

teractions and 0.35 for the particle-flat wall contacts.

x

z

y

g

θ

(a)

x

y

z

(b)

Fig. 2 Simulation cell with periodic boundaries of size lx ×

ly = 20d × 10d. A total of N = 3500 particles are simulated
at different angles of inclination (θ). The side-view (a) shows
the velocity gradient from slow (blue), at the bottom, to fast
(red) particles, at the free-surface. The rough bottom base
(b) is made by random placed particles (black) with centres
at z = d/2.

Examples of snapshots of the DEM simulations ob-

tained in the presence and in the absence of lateral con-
finement are reported in Fig. 2 and Fig. 3, respectively.

At the beginning of the simulations, the bumpy plane

is set horizontally and particles are randomly allocated

within the simulation domain so that they do not over-

lap. Then, under the imposed force of gravity, particles

settle until they form a packing. At this stage, the in-

clination is increased to give the particles enough en-

ergy to flow. Simulations are run until a steady state is

reached. To verify this, as in [7], we check that the to-

tal kinetic energy of the system has reached a constant

value over time. Steady flows can generally exist over a

range of angles of inclination. For comparable simula-

tion domains (at least in the absence of sidewalls), flow
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y

z

x

g

θ

Fig. 3 Front view of a flow laterally confined by flat, rigid and frictional sidewalls. The simulation domain is lx×ly = 30d×66d
with a total of N = 27500 particles simulated. As in Fig. 2, glued (black) particles make the base bumpy and the colour gradient
represents slow (blue) to fast (red) particles as z increases. Notably, there is an additional influence of wall friction in the
spanwise (y) velocity gradient.

heights and contact parameters, it has been shown in
numerical simulations [7] that steady flows are possible
between 21◦ and 29◦. This observation motivated our

choice of θ.

In the presence of lateral confinement, steady flows

are possible also at angles of inclination greater than
29◦, due to a well-known stabilizing effect of frictional
sidewalls [10,4]. Conversely, intermittent oscillations of

kinetic energy and flow height were found to occur for
values of the coefficient of normal restitution en ≥ 0.6

at θ = 24◦. A similar behaviour was previously reported

[41], although for different bottom roughness and slope

angles.

Finally, coarse-graining is used to obtain the fields of

interest and, after the steady state is reached, measure-
ments are averaged over a time interval of 200(d/g)1/2

(longer time intervals do not alter the results).

3 Theory

In what follows, we assume that all quantities are av-

eraged along the spanwise direction, with no change in

notation for simplicity. Derivatives with respect to the

z-direction are indicated with a prime. The spanwise

averaged momentum balances along the z and x direc-

tions for steady and fully-developed inclined flows in

the presence of sidewalls reduce to [27]:

p′ = −ρpνg cos θ, (18)

and

s′ = −ρpνg sin θ + 2
µw

ly
p, (19)

respectively, where s is the shear stress and µw is an

effective wall friction coefficient, which accounts for the
average force exerted by the sidewalls on the flow [4].

The expression for the sidewall force is just an approxi-
mation given that all particle-wall contacts are taken to
be sliding and gradients in the velocity along the span-
wise direction are ignored. We must emphasize that, in

Eqs. (18) and (19), we have assumed that the normal

stresses are isotropic and coincide with the pressure,

although this is not strictly true for granular flows [42].

The balance of the fluctuation kinetic energy is

su′ = Q′ + Γ, (20)

where u is the x-component of the particle velocity, Q is

the fluctuation energy flux along z and Γ is the rate of

collisional dissipation. The term on the left hand side

of Eq. (20) represents the energy production through

the work of the shear stress, while the divergence of the

energy flux, Q′, is the energy diffusion associated with

the velocity fluctuations of the particles.

We use the constitutive relations for p, s, Q and Γ
of kinetic theory [13,26]

p = ρpf1T, (21)

s = ρpdf2T
1/2u′, (22)



8 Devis Gollin et al.

Γ = ρp
f3
L
T 3/2, (23)

and

Q = −ρpdf4T 1/2T ′ − ρpdf5T
3/2ν′, (24)

where f1, f2, f3, f4 and f5 are explicit functions of the

volume fraction, the coefficient of normal restitution

and the interparticle friction and are listed in Tab. 1.

There, g0 is the radial distribution function at con-

tact, which accounts for two mechanisms: the increase

in particle-particle collision probability due to excluded

volume brought about by finite-size particles and its de-

crease due to shielding (binary encounters screened by

other particles present along the colliding paths). [14]

Here, we use the expression suggested in [26] and

valid for en less than or equal to 0.95:

g0 =
2− ν

2 (1− ν)
3
, (25)

if ν ≤ 0.4; and

g0 =

[

1−
(

ν − 0.4

νc − 0.4

)2
]

2− ν

2 (1− ν)
3
+

(

ν − 0.4

νc − 0.4

)2
2

νc − ν
, (26)

if ν > 0.4.

In Eq. (26), νc represents the critical value of the

solid volume fraction at which g0 is singular for per-
fectly rigid spheres (i.e., the mean interparticle distance

is zero along the principal compression axis, so that ran-

dom aggregates of rigid particles develop a shear rigid-

ity), which is only a function of surface friction [23].

Besides influencing the solid volume fraction at which
g0 diverges, surface friction also induces particle rota-

tion. This would imply, in principle, the need to solve,

in addition, rotational momentum and energy balances.

A simplified approach consists of considering the trans-

formation of translational kinetic energy into rotational

kinetic energy as an additional loss for the former. As

a consequence, an effective coefficient of restitution ǫ
must be used in the function f3 of Tab. 1 instead of en
[18]. Numerical simulations [19] have provided a simple

expression for the dependence of ǫ on en and µ:

ǫ = en − 3

2
µ exp(−3µ). (27)

In Eq. (23), L is the correlation length of extended

kinetic theory, which decreases the rate of collisional

dissipation due to the correlated motion of particles

that occurs at solid volume fractions exceeding the freez-

ing point [20,21,43]. When L is equal to one diame-

ter, the molecular chaos assumption is valid and EKT

reduces to classic kinetic theory. Jenkins [21], using

heuristic arguments, suggested to use

L

d
= f0

u′

T 1/2
, (28)

where f0 is a function of solid volume fraction, coeffi-
cient of normal restitution and surface friction (through

ǫ) [22,23]:

f0 =

[

2J

15(1− ǫ2)

]1/2

×
[

26 (1− ǫ)

15

max(ν − 0.49, 0)

0.64− ν
+ 1

]3/2

. (29)

We do not further complicate the theory by includ-
ing the role of particle stiffness because this is rele-

vant only at solid volume fractions close to νc [24] (i.e.,
νc ' 0.58, where collisions cannot be considered in-

stantaneous) and this does not occur in our numerical

simulations (see later).

3.1 System of differential equations and boundary
conditions

As in previous works [27,26], we can now write a system

of differential equations that needs to be numerically
integrated to solve for steady, fully-developed inclined
flows.

Taking the derivative along z of Eq. (21), and using
Eqs. (18) and (24), we obtain the equation governing
the distribution of the solid volume fraction in the flow:

ν′ =

(

Qf1
ρpdf4T 1/2

− νg cos θ

)[

T

(

f1,ν − f1f5
f4

)]−1

,

(30)

where f1,ν represents the derivative of f1 with respect

to ν.

The distribution of the shear stress is governed by

Eq. (19), which reads, with Eq. (21),

s′ = −ρpνg sin θ + 2ρp
µw

ly
f1T. (31)

The distribution of the particle velocity is given by

Eq. (22):

u′ =
s

ρpdf2T 1/2
. (32)

Eq. (20), with Eqs. (32), (23) and (28), governs the
distribution of the energy flux:

Q′ =
s2

ρpdf2T 1/2
−
ρ2pT

5/2f2f3

sdf0
. (33)
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Table 1 List of auxiliary coefficients in the constitutive re-
lations of kinetic theory.

f1 = 4νGF

f2 =
8J

5π1/2
νG

f3 =
12

π1/2
(1− ǫ2) νG

f4 =
4MνG

π1/2

f5 =
25π1/2N

128ν

G = νg0

F =
1 + en

2
+

1

4G

J =
1 + en

2
+

π

32

[5 + 2(1 + en)(3en − 1)G] [5 + 4(1 + en)G]
[

24− 6 (1− en)
2
− 5(1− e2n)

]

G2

M =
1 + en

2
+

9π

144 (1 + en)G2
×

[

5 + 3G (2en − 1) (1 + en)
2
]

[5 + 6G (1 + en)]

16− 7 (1− en)

N =
96ν (1− en)

25G (1 + en)

5 + 6G (1 + en)

16 + 3 (1− en)
×

{

20νH
[

5 + 3G (2en − 1) (1 + en)
2
]

48− 21 (1− en)
−

en (1 + en)G (1 + νH)

}

H =
1

G

dG

dν

The governing equation for the distribution of the

granular temperature is given by Eq. (24), with Eq.
(30):

T ′ =

(

− Q

ρpdf4T 1/2
+
f5νg cos θ

f1,νf4

)(

1− f5
f1,νf4

)−1

.

(34)

As in [27], the information about the number of par-
ticles in the system can be given in terms of the mass

hold-up per unit basal area (the total mass of particles
over unit area), M. This can then be implemented as a

boundary condition to a first order differential equation

for the partial mass hold-up, m(z) =
∫ z

0
ρpνdz,

m′ = ρpν. (35)

Boundary conditions need to be specified at the top

and the bottom of the flow. We consider the top of the
collisional flow to be located at z = h; we assume that,

above h, the mean inter-particle distance is larger than

the mean free path of kinetic theory, so that particles
follow the free falling trajectories and particle-particle
collisions can be neglected (ballistic layer). Pasini and

Jenkins [44] determined the pressure at the interface
with this ballistic layer, which gives, using the con-
stitutive relation for the pressure in the dilute limit
(p = ρpνT ),

ρpνtTt = 0.039, (36)

where, here and in what follows, the subscript t indi-
cates that the quantity is evaluated at z = h (top).

At the interface with the ballistic layer (Fig. 4), the

shear stress and the energy flux have been evaluated by

Jenkins and Hanes [45] as

st = ρpνtTt tan θ (37)

and

Qt = −ρpνtT 3/2
t tan2 θ, (38)

respectively.

Richman [31] derived boundary conditions for the
flow of spheres over a plane made bumpy by means

of rigid, nearly elastic semi-spheres attached to it in a

regular hexagonal fashion. Those boundary conditions

apply at a distance of half a diameter from the top of

the semi-spheres, i.e., at z = 1.5d in our configuration
(where whole spheres are glued at the bottom). In what

follows, the subscript b indicates that the quantity is
evaluated at z = 1.5d (bottom). The slip velocity there

results in

ub

T
1/2
b

=
(π

2

)1/2 sb
pb

×
[

1

3
√
2Jb

23/2Jb − 5Fb (1 +B) sin2 ψ

2 (1− cosψ) / sin2 ψ − cosψ

+
5Fb

21/2Jb

]

, (39)

where B = π [1 + 5/ (8Gb)] /
(

12
√
2
)

, and Jb, Fb and
Gb are obtained from the corresponding expressions of

Tab. 1 with ν = νb. The boundary condition for the

energy flux is [31]

Qb = sbub −
(

2

π

)1/2
pbT

1/2
b d

Lb
(1− ǫ)

2 (1− cosψ)

sin2 ψ
, (40)

where, consistent with EKT, we have introduced the

correlation length and the effective coefficient of resti-

tution in the expression of the rate of collisional dissi-

pation at the bumpy plane (second term on the right
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hand side of Eq. (40)). In Eqs. (39) and (40), ξ mea-

sures the bumpiness of the base and is defined as sin ξ =
(d + l)/(2d) where l is the distance between the edges

of two adjacent spheres glued at the boundary [31]. Al-

though ξ in Richman’s boundary conditions refer to

equally spaced semi-spheres attached in an hexagonal
array, here we adopt the same definition by using, as

l, the average distance between the edges of two adja-
cent spheres in our random configurations at the base.

It is worth emphasizing that the analysis of Richman

holds for π/6 ≤ ξ ≤ π/3: when ξ = π/6, the boundary

particles are in close contact; while, when ξ = π/3, the

flowing particles can fall, and therefore get trapped, in
between two boundary particles.

Finally, we use the following boundary conditions

for the partial mass hold-up:

mb = 0, (41)

and

mt = M. (42)

We solve the system of six differential equations (30)
through (35) in the six unknowns ν, s, u,Q, T andm us-

ing the Matlab ‘bvp4c’ two-point boundary value prob-
lem solver with the seven boundary conditions, (36)
through (42). The additional boundary condition allows
the value of h to be determined.

3.2 Algebraic and incompressible approximation

A simplified approach to the solution of inclined, dense,

granular flows consists of assuming that the solid vol-

ume fraction is constant within the flow and that the

divergence of the energy flux in the fluctuation energy

balance (Eq. (20)) is negligible. The latter assumption

implies, from Eq. (20) with Eqs. (22), (23) and (28),

du′

T 1/2
=

(

f3
f2f0

)1/3

, (43)

i.e., that there is a one-to-one algebraic relation be-

tween the shear rate and the square root of the granular

temperature. The granular temperature is therefore en-

slaved to u′ and it is no longer an independent quantity
in the problem. The algebraic assumption makes the

constitutive relations of EKT formally analogue to the

phenomenological local rheology based on the inertial

parameter [15,4], with the advantage that, unlike the

latter, there are no parameters that need to be fitted

against experiments.

In the dense limit, i.e., by retaining only terms pro-

portional to G in the expressions of Tab. 1, the ratio of

s over p can be expressed, using Eqs. (22), (21), (43)

and (29), as

s

p
=

[

6(1− ǫ2)J

5πF 2

]1/2 [
26(1− ǫ)

15

ν − 0.49

νc − ν
+ 1

]−1/2

,

(44)

where J and F are now only functions of en. If we take
the stress ratio to be roughly equal to tan θ (this is

strictly true only in the absence of sidewalls), and invert
Eq. (44), we obtain the relationship between the solid
volume fraction varies and the slope of the channel:

ν =

[

26(1− ǫ)

15
0.49 +

6(1− ǫ2)J

5πF 2 tan2 θ
νc − νc

]

×
[

26(1− ǫ)

15
+

6(1− ǫ2)J

5πF 2 tan2 θ
− 1

]−1

. (45)

If the mass hold-up M is given, the height of the

flow can then be calculated as h = M/(ρpν).

The integration of Eqs. (18) and (19), with ν uni-

form and neglecting the stresses at z = h, gives

p = ρpνg (h− z) cos θ, (46)

and

s = ρpνg (h− z) sin θ − µw

ly
ρpνg (h− z)

2
cos θ, (47)

respectively.

From Eqs. (21) and (46) and the expression of f1 in

Tab. 1, the granular temperature is linearly distributed

along z,

T =
1

4FG
g (h− z) cos θ. (48)

From the constitutive relations for the shear stress

and the pressure (Tab. 1), we obtain

u′ =
5π1/2F

2J

s

p

T 1/2

d
. (49)

Using Eqs. (46), (47) and (48) in Eq. (49) and integrat-

ing gives

u = ub +

(

25πgF cos θ

16GJ2d2

)1/2

×
{

2

3
tan θ

[

h3/2 − (h− z)
3/2

]

−2

5

µw

ly
tan θ

[

h5/2 − (h− z)
5/2

]

}

, (50)

where ub is given in Eq. (39).
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4 Results and discussions

Here we show and discuss the comparisons between the

results of DEM simulations, the numerical solutions of

EKT obtained from the integration of the full system

of differential equations (Sec. 3.1) and the approximate

analytical solutions of EKT for the hypothesis of in-
compressible, algebraic flow (Sec. 3.2).

As discussed, we performed the DEM simulations at

three angles of inclination (θ = 24◦, 26◦ and 28◦), us-
ing three values of the coefficient of normal restitution,

en = 0.5, 0.6 and 0.7, and keeping constant the value of

the particle-particle friction µ = 0.45. From Eq. (27),

then, the corresponding effective coefficients of resti-

tution in the expressions of the collisional dissipation

rate and the correlation length of EKT are ǫ = 0.325,
0.425 and 0.525, respectively. From the dependence of

the solid volume fraction at shear rigidity on interpar-

ticle friction given in [23], we obtain νc = 0.59. Fur-

thermore, from the average distance between the edges

of two adjacent spheres glued at the bottom plane of

the DEM simulations in the formula for the bumpiness,

we set ξ = 0.78 in the expressions of Richman [31] for
the boundary conditions. Finally, the profiles of particle

pressure p obtained from DEM simulations showed lin-

ear (hydrostatic) profiles in all cases, with values that

increased with depth. For this reason, they are not pre-

sented here.

For clarity, we depict in Fig. 4 a typical side-view

of a DEM simulation in which we have identified the

different layers we have already mentioned or we will

mention in the following.

4.1 Inclined flows without sidewalls

We carried out the DEM simulations on inclined flows

in the absence of lateral confinement using 3500 parti-

x

z
g

Ballistic layer

Dense core

h

Bumpy base

θ

Top conductive

layer

Bottom conductive

layer

Fig. 4 Different layers in the flow domain.
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Fig. 5 Dimensionless pressure (diamonds and dashed lines)
versus solid volume fraction obtained from a DEM simulation
of inclined flow in the absence of sidewalls when en = 0.7,
µ = 0.45 and θ = 26◦ for two smoothing lengths: (a) w = 1d
and (b) w = 0.1d. Grey diamonds and dashed lines refer
to measurements within three diameters of the bottom. The
solid line represents Eq. (21). Also shown are the results of
DEM simulations of simple shearing with en = 0.7 and µ =
0.5 (circles, after [19]).

cles on a basal area of 200d2. This implies that the mass

hold-up was M = 3500(ρpπd
3/6)/(200d2) = 9.16ρpd.

We first check that the constitutive relations of ki-
netic theory are suitable to describe inclined granular

flows by comparing the dimensionless pressure p/(ρpT )

against the solid volume fraction measured in the DEM

simulations when en = 0.7 and θ = 26◦ with the the-
oretical predictions of Eq. (21) (the following analysis

holds also for different values of en and θ, not shown
here for clarity).

If we employ a smoothing length w = 1d in the

coarse-graining procedure (Fig. 5a), and we use Eq. (17)
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to eliminate the scale dependency from both the pres-

sure and the granular temperature, we notice that the

numerical results are characterized by two branches for

solid volume fractions less than approximately 0.5. We

anticipate that ν is less than 0.5 in two layers, one close

to the bumpy bottom and one close to the top ballis-
tic layer. In these layers, the divergence of the energy

flux cannot be neglected in the energy balance and thus
we term them conductive layers (Fig. 4). The theoreti-
cal curve of kinetic theory predicts that the dimension-

less pressure increases when the solid volume fraction

increases. The lower branch of the numerical results

(measurements obtained in the proximity of the ballis-

tic layer) follows the theory at least qualitatively, while

the upper branch (which comprises measurements in

a region within three diameters of the bottom plane)

slightly decreases for increasing ν. For ν greater than

0.5 (the dense core region of the inclined flow), the

numerical measurements collapse onto the theoretical

curve. Fig. 5a shows also the numerical results obtained

in DEM simulations of simple shearing (i.e., uniform

shear rate) for the same coefficient of normal restitu-

tion and slightly larger friction coefficient [19], which

are in excellent agreement with Eq. (21). This means

that the the lack of agreement of our DEM with EKT

shown in Fig. 5a has to do with the spatial variation of

the velocity gradient.

If we reduce the smoothing length to w = 0.1d (Fig.

5b), we observe that there is a scattering of the mea-

surements around the theoretical curve due to layering

of particles in organized rows [37]: solid volume frac-

tions well beyond νc (as large as 0.8) are now possible.

On the other hand, the measurements at the top of
the flow, which belonged to the lower branch of Fig.
5a, are now well fitted by Eq. (21). This indicates that

there is a residual, but substantial, scale-dependency of

the measurements on the smoothing length that can-

not be simply corrected through Eq. (17). The mea-

surements at the bottom of the flow still completely

disagree with Eq. (21) (grey symbols in Fig. 5b). This

might be due to the fact that the radial distribution

function at contact in Eq. (21) only takes into account

excluded volume and shielding in particle-particle in-

teractions, while there are analogous mechanisms in-

volved in particle-boundary interactions [32]. Defining

a radial distribution function at contact in the proxim-
ity of solid boundaries is still an open question (some
efforts have been made to determine g0 in the prox-

imity of frictional, flat walls [47]) since g0 is generally

only well defined [14,46] for a general element volume
where the particles sufficiently far from them. We will
see later what are the implications of using an incorrect

g0 near to such boundaries.
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Fig. 6 Numerical (symbols) profiles of (a) solid volume frac-
tion, (b) dimensionless granular temperature and (c) dimen-
sionless particle velocity obtained from DEM simulations of
inclined flows in the absence of sidewalls when en = 0.5,
µ = 0.45 and θ = 24◦ (squares), θ = 26◦ (diamonds) and
θ = 28◦ (triangles). Solid and dashed lines represent the re-
sults of the numerical integration of the full system of dif-
ferential equations of EKT and its incompressible, algebraic
approximation, respectively.
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Fig. 7 Same as in Fig. 6, but when en = 0.7. Solid lines refer
to the case θ = 24◦ only (no solution was possible for larger
angles of inclination of the bottom.)

From Figs. 6 to 8, we show the comparisons between
the results of the DEM simulations in the absence of

sidewalls and the predictions of EKT, in terms of pro-

files of solid volume fraction, velocity and granular tem-

perature. In what follows, we employ w = 1d to coarse-

grain the profiles of solid volume fraction and velocity
from DEM simulations and w = 0.1d to coarse-grain

profiles of granular temperature (to further eliminate
the scale-dependency).

Fig. 6 shows results for en = 0.5, at the three slope
inclinations simulated. Fig. 6a confirms that inclined
flows over rough surfaces in the absence of sidewalls
are characterized by two regions, one at the top and

one at the bottom, where the flow is more dilute and a

core region where the flow is dense (Fig. 4). The numer-

ical solution of the full system of differential equations

of EKT satisfactorily reproduces this feature, unlike,
evidently, its incompressible, algebraic approximation.
The numerical solution of EKT can also reproduce the

greater than linear increase of the granular temperature

in those two dilute regions when approaching the ballis-

tic layer and the bumpy bottom (Fig. 6b); while the in-

compressible, algebraic approximation simply predicts

a linear decrease of T with z (Eq. (48)). Finally, the
numerical solutions of EKT overestimate the velocities

in the upper part of the flow, while the incompressible

algebraic approximation underestimate them (Fig. 6c).

The numerical solutions of EKT overestimate the veloc-

ities due to the fact that the viscosity, whose expression

does not take into account the role of friction (Eq. (22)

and Tab. 1), is underestimated [19]. This emphasizes
the need for a better understanding of the influence of
friction on the shear stress.

Similar considerations apply also to the case en =
0.7 (Fig. 7), but with a crucial difference: in this case,

numerical solutions of the full system of differential
equations of EKT of Sec. 3.1 are possible only up to
angles of inclination slightly above 24◦. In other words,

steady, fully-developed flows cannot be sustained at

larger angles, and the theory predicts that the flow

would continue to accelerate along the plane. The fact

that the incompressible, algebraic approximation does

not present the same limitation indicates the crucial

role of the boundaries in controlling the maximum an-

gle for which steady, fully-developed flows are possible.

The maximum angle of inclination that allows steady,
fully-developed flows is underestimated in the EKT. It

is possible that this is due to the underestimation of

dissipation at the bumpy bottom, as imposed by the

boundary conditions of Richman [31]. To verify this,

we now measure the values of u = 2.26(gd)1/2 and

Q = −0.13ρp(gd)
3/2 at z = 1.5d in the DEM simulation

with en = 0.7 and θ = 26◦ and directly employ those as
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Fig. 8 Numerical (diamonds) profiles of (a) solid volume
fraction and (b) dimensionless particle velocity obtained from
the DEM simulation of inclined flow in the absence of side-
walls when en = 0.7, µ = 0.45 and θ = 26◦. The solid lines
represent the results of the numerical integration of the full
system of differential equations of EKT when the boundary
conditions at the bottom are those measured in the DEM sim-
ulation. The dashed lines are the results of the incompressible,
algebraic approximation of EKT.

boundary conditions for solving the corresponding dif-

ferential problem of EKT. Fig. 8 shows that the mod-

ification of the boundary conditions at the bottom is

indeed sufficient to obtain a solution for θ = 26◦ (pre-

viously forbidden). However, the negative value of the
fluctuation energy flux, which indicates the dissipative
nature of the bumpy bed in the DEM simulation, in-

duces an increase of the solid volume fraction near the

bottom, in contrast to the DEM results (Fig. 8a). If we

increase the energy dissipation at the bottom, we will

cause a further increase of the solid volume fraction

there, that eventually will approach the singular value
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Fig. 9 Spanwise averaged profiles of stress ratio (symbols)
along the flow obtained from DEM simulations of inclined
flows in the presence of sidewalls for all coefficients of resti-
tution with µ = 0.45 and θ = 24◦ (squares), θ = 26◦ (di-
amonds) and θ = 28◦ (triangles). Solid lines represent Eq.
(51).

νc and prevent a numerical solution to the differential

equations from being obtained. For this reason, even if

we take the boundary conditions from the DEM simula-

tions, we are unable to find steady and fully-developed

solutions to the flow for θ larger than 26◦. This indicates

also that the adoption of more sophisticated boundary

conditions that include the role of friction in a more

rigorous way [48] and/or nonlinear terms in the ratio

of slip velocity to the square root of the granular tem-

perature [32] would not solve this discrepancy. As dis-

cussed, this may relate to issues with the radial distri-

bution function at contact near the bottom (Fig. 5). It

is likely that modifying g0 to take into account the in-

fluence of the boundary would allow EKT to predict a

decrease of the solid volume fraction when approaching

the dissipative bottom, as in the DEM simulations.

4.2 Inclined flows with sidewalls

We also performed DEM simulations on inclined flows

in the presence of flat, frictional sidewalls using 27500

particles on a basal area of 1980d2, so that the mass
hold-up was M = 7.27ρpd. The sliding friction coeffi-

cient of particles in contact with the sidewalls was set

equal to 0.35.

If we take the ratio of Eq. (47) to Eq. (46), we obtain

s

p
= tan θ − µw

ly
(h− z), (51)

i.e., the stress ratio linearly decreases when moving

from the free surface to the bottom of the flow. This
approximate relation explains why frictional sidewalls
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allow for steady and fully-developed flows over erodible

beds at angles of inclination that are much larger than

the angle of repose of the granular material. [10] Eq.

(51) has been widely used in analytically solving for

laterally confined surface flows [4,27,29,30]. The ad-

vantage is that one can transform two-dimensional into

one-dimensional flows by simply taking into account

the average resistance of the sidewalls. It is not clear
whether Eq. (51) is able to accurately represent the dis-
tribution of mean stress ratio along the flow, however.

To verify this, we plot the spanwise averaged profiles

of stress ratio for the three angles of inclination in Fig.

9. In the core region of the flows, where the solid vol-

ume fraction (Fig. 10a) is approximately constant (the

assumption behind Eq. (51)), the stress ratio is indeed

linearly distributed, with a slope which is independent

of both θ and en. By fitting the results of the numeri-

cal simulations, we obtain µw = 0.15: the effective wall

friction coefficient is much less than the actual value of

the sliding friction for the particle-flat wall interaction,

0.35. This might relate to the fact that only some of the

contacts at the wall are actually sliding while part are

rolling, thus decreasing µw. The value µw = 0.15 is then

used in both the full system of differential equations of

EKT and its incompressible, algebraic approximation

and the results are shown in Fig. 10.
Fig. 10 demonstrates that the quantitative agree-

ment between EKT and the DEM results for en = 0.5
is improved when flat, frictional sidewalls are present.

However, as in the case without sidewalls, the maxi-

mum angle of inclination for having steady and fully-

developed flows is still underestimated for the other val-

ues of the coefficient of normal restitution (not shown

here for brevity) due to the incorrect radial distribution

function at contact near the bumpy base.

5 Conclusion

We have performed DEM simulations of steady and
fully-developed, inclined flows of inelastic, monosized
spheres over bumpy bases in the absence and in the

presence of flat, frictional sidewalls and made compar-

isons with the predictions of extended kinetic theory,

i.e., kinetic theory of granular gases modified to take

into account the role of interparticle friction in colli-

sions and the correlation in velocity fluctuations at solid
volume fractions exceeding the freezing point. We have
transformed the constitutive relations of EKT and mo-

mentum and energy balances into a set of differential

equations that we have solved numerically to find distri-

butions of stresses, velocity, solid volume fraction and

granular temperature. Analytical solutions have been

also obtained for the assumptions of incompressibility
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Fig. 10 Numerical (symbols) spanwise averaged profiles of
(a) solid volume fraction, (b) dimensionless granular temper-
ature and (c) dimensionless particle velocity obtained from
DEM simulations of inclined flows in the presence of side-
walls when en = 0.5, µ = 0.45 and θ = 24◦ (squares), θ = 26◦

(diamonds) and θ = 28◦ (triangles). Solid and dashed lines
represent the results of the numerical integration of the full
system of differential equations of EKT and its incompress-
ible, algebraic approximation, respectively.



16 Devis Gollin et al.

and algebraic balance between the work of the shear

stress and the energy dissipated in collisions. The re-

sults of DEM simulations have been coarse-grained and

we have confirmed that there is a scale-dependency of

the stresses that can be removed if the smoothing length

in the coarse-graining is taken to be one tenth of the

particle diameter (other suggestions from the literature

to remove the scale-dependency did not work). After
the removal of the scale-dependency, the constitutive
relation for the pressure of kinetic theory is in excellent

agreement with the numerical results, but for a region

of a few diameters close to the bumpy base where the

particle-boundary collisions affect the radial distribu-

tion function at contact g0. We have suggested that

the most crucial consequence of an incorrect choice of

g0 in the proximity of the boundary is a substantial

underestimation by EKT of the range of angles of incli-

nation of the base for which steady and fully-developed

flows are possible. We have also shown that the current

state of the art of the boundary conditions for kinetic

theory applied at a bumpy bottom underestimates the

energy dissipation there. Besides the above mentioned

limitations that need to be addressed in future works,

extended kinetic theory (even its incompressible, alge-

braic approximation) agrees well with the DEM results

in the absence of sidewalls (i.e. one-dimensional flow).

In the presence of sidewalls, the flow becomes two-

dimensional. We have demonstrated though, as previ-
ously suggested, that the spanwise averaged ratio of
shear stress to pressure linearly decreases with the dis-
tance from the free surface, in accordance with the

approximation of considering the sidewalls as provid-

ing a Coulomb-like resistance to the flow. The effective

Coulomb friction coefficient is found to be less than

half the actual value of the friction coefficient of the
particles with the flat wall. Using this effective friction
coefficient allows extended kinetic theory to agree with
the DEM results even in the presence of the sidewalls.

Acknowledgements The first author is supported by an
Engineering and Physical Sciences Research Council (EP-
SRC) DTA Scholarship. We would like to thank Prof. James
T. Jenkins for several fruitful discussions related to this work.

The authors declare that they have no conflict of
interest.

References

1. Azanza, E., Chevoir, F., Moucheront, P., Experimental
study of collisional granular flows down an inclined plane.
Journal of Fluid Mechanics 400, 199-227 (1999)

2. Pouliquen, O., Scaling laws in granular flows down rough
inclined planes. Physics of Fluids 11(3), 542-548 (1999)

3. Louge, M.Y., Keast, S.C., On dense granular flows down
flat frictional inclines. Physics of Fluids 13(5), 1213-1233
(2001)

4. Jop, P., Forterre, Y., Pouliquen, O., Crucial role of side-
walls in granular surface flows: consequences for the rheol-
ogy. Journal of Fluid Mechanics 541, 167-192 (2005)

5. Hanes, D.M., Walton, O.R., Simulations and physical mea-
surements of glass spheres flowing down a bumpy incline,
Powder Technology, 109(1-3), 133-144 (2000)

6. Silbert, L.E., Ertas, D., Grest, G.S., Halsey, T.C.,
Levine, D., Plimpton, S.J., Granular flow down an inclined
plane: Bagnold scaling and rheology. Physical Review E
64(5), 051302 (2000)

7. Weinhart, T., Thornton, A.R., Luding, S., Bokhove, O.,
Closure relations for shallow granular flows from particle
simulations. Granular Matter 14(4), 531-552 (2012)

8. Brodu, N., Delannay, R., Valance, A., Richard, P., New
patterns in high-speed granular flows, Journal of Fluid Me-
chanics, 769, 218-228 (2015)

9. Delannay, R., Louge, M., Richard, P., Taberlet,N.,
Valance, A., Towards a theoretical picture of dense gran-
ular flows down inclines. Nature Materials 27, 99108 (2007)

10. Taberlet, N., Richard, P., Henry, E., Delannay, R., The
growth of a Super Stable Heap: An experimental and nu-
merical study. EPL (Europhysics Letters) 68(4), 515 (2004)

11. Jenkins, J.T., Savage, S.B., A theory for the rapid flow of
identical, smooth, nearly elastic, spherical particles. Journal
of Fluid Mechanics 130, 187-202 (1983)

12. Lun, C.,K.,K., Kinetic theory for granular flow of dense,
slightly inelastic, slightly rough spheres. Journal of Fluid
Mechanics 233, 539-559 (1991)
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