
This is a repository copy of PaaS-IaaS Inter-Layer Adaptation in an Energy-Aware Cloud
Environment.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/119030/

Version: Accepted Version

Article:

Djemame, K, Bosch, R, Kavanagh, R et al. (4 more authors) (2017) PaaS-IaaS Inter-Layer
Adaptation in an Energy-Aware Cloud Environment. IEEE Transactions on Sustainable
Computing, 2 (2). pp. 127-139. ISSN 2377-3782

https://doi.org/10.1109/TSUSC.2017.2719159

(c) 2017, IEEE. Personal use is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in
other works. This is an author produced version of a paper published in IEEE Transactions
on Sustainable Computing. Uploaded in accordance with the publisher's self-archiving
policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

PaaS-IaaS Inter-Layer Adaptation in an
Energy-Aware Cloud Environment

Karim Djemame, Member, IEEE, Raimon Bosch, Richard Kavanagh, Pol Alvarez, Jorge Ejarque,

Jordi Guitart and Lorenzo Blasi

Abstract—Cloud computing providers resort to a variety of techniques to improve energy consumption at each level of the cloud

computing stack. Most of these techniques consider resource-level energy optimisation at IaaS layer. This paper argues energy gains

can be obtained by creating a cooperation between the PaaS layer (in charge of hosting the application/service) and the IaaS layer (in

charge of handling the computing resources). It presents a novel method based on steering information and decision taking to trigger

the PaaS and IaaS layers to adapt their energy mode in service operation, therefore enabling the Cloud stack to actively adapt to

changing situations. Experimental results demonstrate such adaptation achieves dynamic energy management in each of the PaaS

and IaaS cloud layers.

Index Terms—Cloud computing, Virtualization, self-adaptation, Service-level agreements, energy modelling, OVF

F

1 INTRODUCTION

ADVANCES in cloud computing research have in
recent years resulted in considerable commercial

interest in utilising cloud infrastructures to support
commercial applications and services. However, cloud
computing as a leading ICT approach provides elastic
and on-demand ICT infrastructures makes up a large
proportion of the total ICT energy consumption. Predic-
tions have been made on an unsustainable quadrupling
in the energy consumption and carbon emissions of data
centres used to operate cloud services by 2020 [1] with
comparable emissions to the aeronautical industry.

Cloud computing providers resort to a variety of
techniques to improve energy consumption at each level
of the cloud computing stack. Therefore, research on
energy efficiency in clouds has attracted considerable
attention and has focused on many aspects including
ICT equipment (servers, networks) as well as software
solutions running on top of ICT equipment (e.g. cloud
management system domain for managing the cloud
infrastructure), see [2] for a survey. These solutions aim
at optimising the consumed energy for running cloud
services, and different techniques are used to achieve
energy efficiency, e.g adjust CPU voltage and frequency
according to the load for saving energy, dynamically
resize active servers according to varying workload con-
ditions, workload consolidation on a number of servers

• K. Djemame and R. Kavanagh are with the School of Computing, Univer-
sity of Leeds, UK, LS2 9JT.
E-mail: {K.Djemame,R.E.Kavanagh}@leeds.ac.uk

• R. Bosch, P. Alvarez, J. Ejarque and J. Guitart are with Barcelona Super-
computing Center and Universitat Politecnica de Catalunya - Barcelona
Tech., Spain.
Email: {raimon.bosch,pol.alvarez,jorge.ejarque,jordi.guitart}@bsc.es

• L.Blasi is with HPE, Italy.
Email: {L.Blasi}@hp.com

etc.
Previous work argued that research is needed to pro-

pose novel methods and develop tools to support soft-
ware developers in monitoring, minimising the carbon
footprint and optimising energy efficiency resulting from
running services in cloud environments [3]. Therefore,
the primary goal was to characterise the factors which
affect energy efficiency in software development, de-
ployment and operations. The approach firstly focuses
on the identification of the missing functionalities to sup-
port energy efficiency across all cloud layers (SaaS, PaaS,
IaaS), and secondly on the definition and integration of
explicit measures of energy requirements into the design
and development process for software to be executed on
a cloud platform.

Self Adaptive Systems have seen a significant level
of interest in different research areas like autonomic
computing and pervasive computing [4]. They provide
self-management properties and exhibit system proper-
ties such as self-awareness to achieve adaptation. They
are capable of monitoring their resources, state and
behaviour.

This paper focuses on the operation of cloud services
through the implementation of novel methods within
a reference energy-aware and self-adaptive architecture.
It specifically argues energy gains could be obtained
by creating a cooperation between the PaaS layer (in
charge of hosting the application/service) and the IaaS
layer (in charge of handling the computing resources).
Adaptation requires the integration of the capabilities
required to achieve dynamic energy management in each
of the PaaS and IaaS cloud layers. This includes the
provision of the means to assess the services’ compliance
during their operation to the terms of a negotiated Ser-
vice Level Agreement (SLA) as well as the overall energy
efficiency from the Cloud provider perspective. Steering
information and decision taking to trigger the PaaS and

2

IaaS layers to adapt their energy mode is key, therefore
enabling the Cloud stack to actively adapt to changing
situations. Cloud service and infrastructure providers
benefit from such adaptation as it allows the deployment
and operation of services in an energy-efficient aware
architecture which is able to automatically adjust itself
in response to changes in its operating environment.

The main contributions of this paper are:

• A detailed self-adaptive architecture that facilitates
an energy aware and efficient cloud operation
methodology on PaaS/IaaS;

• a PaaS-IaaS inter-layer adaptation methodology
supported in such architecture;

• The results of a performance evaluation and feasi-
bility study of the methodology implementation for
the deployment and operation of cloud applications.

The remainder of the paper is organised as follows.
Section 2 describes a proposed architecture to support
energy-awareness. Section 3 describes self-adaptation in
from the perspective of PaaS and IaaS layers, respec-
tively. Section 4 explains PaaS-IaaS inter-layer coordi-
nation within the architecture. Section 5 presents the
experimental design, and Section 6 discusses the eval-
uation results of inter-layer self-adaptation within the
layers. Section 7 reviews the related work. In conclusion,
Section 8 provides a summary of the research and plans
for future work.

2 ENERGY-AWARE CLOUD ARCHITECTURE

As argued in Section 1 methods and tools that consider
energy efficiency are needed to manage the life cycle of
cloud services from requirements to run-time through
construction, deployment, operation, and their adap-
tive evolution over time. Their availability will result
in an implementation of a software stack for energy
efficient-aware Clouds. Thus, an architecture supporting
energy efficiency and capable of self-adaptation while
at the same time aware of the impact on other qual-
ity characteristics of the overall cloud system such as
performance is proposed. Consequently, the research
questions that need to be addressed in this context are
the normalisation of energy measurements, the mapping
between hardware, VM and software level, the man-
agement of Key Performance Indicators (KPIs) of con-
tributing/conflicting goals as well as the identification
of variability points available for (self)-adaptation.

Figures 1-3 provide an overview of the proposed
architecture. It includes the high-level interactions of all
components, is separated into three distinct layers and
follows the standard Cloud deployment model. Next, de-
tails on the interactions of the architectural components
are discussed.

2.1 Layer 1 - SaaS

In the SaaS layer a set of components interact to facili-
tate the modelling, design and construction of a Cloud

Fig. 1. Architecture - SaaS

Fig. 2. Architecture - PaaS

Fig. 3. Architecture - IaaS

application. The components aid in evaluating energy
consumption of a Cloud application during its construc-
tion. A number of plug-ins are provided for a frontend
Integrated Development Environment (IDE) as a means
for developers to interact with components within this
layer. A number of packaging components are also made
available to enable provider agnostic deployment of the
constructed cloud application, while also maintaining
energy awareness.

The IDE is intended to be the main entry point to the
infrastructure for service designers and developers. The
idea is that the IDE integrates the graphical interfaces
to the different tools available in the SaaS layer, thus
offering a unified and integrated view to users. The

3

Requirements and Design Modelling Plug-in provides de-
velopers with tools to aid in is based on the energy aware
modelling of an application. The Deployment Experiment
Manager (DEM) Plug-in is used prior to a SaaS applica-
tion deployment and helps a SaaS development team to
determine what deployment configuration alternatives
of their SaaS application is likely to provide the most
effective business operation. The Code Optimizer plays
an essential role in the reduction of energy consumed by
an application. This is achieved through the adaptation
of the software development process and by providing
SaaS software developers the ability to direct under-
stand the energy foot print of the code they write. The
Programming Model Plug-in is based on COMPSs [5]
and provides an interface to the developer to create
applications that follow the energy aware programming
model [6]. Finally the Deployment Experiment Manager
Plug-in, helps to associate the outputs of the SaaS Mod-
elling tools with the workloads and the energy-aware
architecture.

Other components in this layer include 1) the Ap-
plication Packager component is in charge of packaging
applications. This component takes into account input
from the Requirements and Design Modelling Plug-in in
OVF format to package the software with the different
requirements. It also generates a Service Manifest to
submit to the VM Image Constructor; 2) the VM Image
Constructor (VMIC) uses the application packages and
the service manifest or application descriptor to create
VM images that can be deployed in the PaaS layer,
and 3) the Application Uploader interacts with the PaaS
Application Manager to register the final VMs ready for
deployment.

2.2 Layer 2 - PaaS

The PaaS layer provides middleware functionality for
a Cloud application and facilitates the deployment and
operation of the application as a whole. Components
within this layer are responsible for selecting the most
energy appropriate provider for a given set of en-
ergy requirements and tailoring the application to the
selected providers hardware environment. Application
level monitoring is also accommodated for here, in ad-
dition to support for Service Level Agreement (SLA)
negotiation.

The Application Manager (AM) component manages the
user applications that are described as virtual appliances,
formed by a set of VMs that are interconnected be-
tween them. The role of the Virtual Machine Contextualizer
(VMC) is to embed software dependencies of a service
into a VM image and configure these dependencies at
runtime via an infrastructure agnostic contextualization
mechanism. Additionally, the VMC enables the use of
energy probes for the gathering of VM level energy
performance metrics. The Application Monitor (APPM)
is able to monitor the resources (CPU, memory, network
...) that are being consumed by a given application, by

providing historical statistics for host and VM metrics:
performance (e.g. CPU that an application is consuming
during a given period of their execution) and energy (e.g.
Watts that an application consumes during operation).
The goal of the Energy Modeller is to gather and manage
energy related information throughout the whole Cloud
Service lifecycle and Cloud layers: from requirement
level KPIs to programming model annotations down to
PaaS and IaaS level measurements made through the
monitoring agents present at those levels. The energy
modeller provides an interface to estimate the energy
cost of a PaaSs KPIs, and the provided estimations assist
in the selection of the appropriate IaaS provider for
running the application. The SLA Manager is respon-
sible for managing SLAs at PaaS level. This requires
interacting with the Application Manager, the Pricing
Modeller and the IaaS SLA Manager. The Application
Manager provides to the PaaS SLA Manager information
to establish which terms need to be scheduled and then
negotiated with the IaaS Providers. Once negotiation
between PaaS SLA Manager and IaaS SLA Manager
is done, the PaaS SLA Manager will request the price
of the build offer to the Pricing Modeller. The goal
of the Pricing Modeller is to provide energy-aware cost
estimation related to the operation of applications on
top of VMs on a specific IaaS provider. In addition,
this component provides billing information. The Self-
Adaptation Manager performs adaptation at run-time, see
Section 3.

2.3 Layer 3 - IaaS

In the IaaS layer the admission, allocation and man-
agement of virtual resource are performed through the
orchestration of a number of components. Energy con-
sumption is monitored, estimated and optimized using
translated PaaS level metrics. These metrics are gathered
via a monitoring infrastructure and a number of software
probes.

The Virtual Machine Manager (VMM) component is
responsible for managing the complete life cycle of the
virtual machines that are deployed in a specific infras-
tructure provider as well as managing self-adaptation
thanks to the Self-Adaptation Manager, see Section 3. The
goal of the Energy Modeller is to gather and manage
energy related information throughout the whole Cloud
Service lifecycle and Cloud layers. This components
core responsibility is to provide energy usage estimates
by presenting the relevant KPIs for a virtual machine
deployment on the infrastructure provided. This will
include cost trade off analysis based on sources such
as prior experience, the application profile as defined in
the SLA, which is subsequently translated into infras-
tructure level KPIs, and finally from current up to date
monitoring information from the deployment environ-
ment. The SLA Manager is responsible for managing SLA
negotiation requests at IaaS level. It interacts with the
VM Manager to get the status of the available resources

4

in order to determine the SLA offer and the Pricing
Modeller to assign a price to the offered terms. The
goal of the Pricing Modeller is to provide energy-aware
cost estimation related to the operation of the physical
resources managed by the IaaS provider and used by
specific VMs. In addition, it provides billing information.
The Infrastructure Manager (IM) manages the physical
infrastructure and redirects requests to hardware com-
ponents. It maintains lists of hardware energy-meters,
physical cluster nodes, network components and storage
devices. External components can obtain and manipulate
the state of the infrastructure through a common API
that is independent of the actual hardware. The IM in
the duty to provide power consumption information
for each cluster node. Furthermore, the IM requires an
authentication for all operations which ensures protec-
tion against attacks as well as a sufficient separation of
different parties.

3 SELF-ADAPTATION: LAYER’S PERSPEC-
TIVE

The paper addresses energy-efficient management of
cloud resources across the entire cloud software stack.
Therefore, the proposed cloud architecture needs to sup-
port self-adaptation regarding energy efficiency while at
the same time being aware of the impact on other quality
characteristics of the overall cloud system such as cost
and performance.

Adaptation with regard to energy efficiency focuses on
the addition of capabilities required to achieve dynamic
energy management in each of the Cloud layers [7].
This includes the provision of the means to assess the
services’ compliance during their operation to the terms
of a negotiated SLA (and thus their QoS and their
energy efficiency) as well as the overall energy efficiency
from the Cloud provider perspective. Achieving steer-
ing information and decisions among Cloud layers for
triggering other layers to adapt their energy mode is
key, therefore enabling the entire Cloud stack to actively
adapt to changing situations. At the PaaS and IaaS
layers, the main focus will be on information sharing and
decision making. Fo eliciting adaptation requirements,
the 5W + 1H questions are introduced as formulated in
[8] and [4]:

• When to adapt?
• Why do we have to adapt?
• Where do we have to implement change?
• What kind of change is needed?
• Who has to perform adaptation?
• How is the adaptation performed?

3.1 PaaS Perspective

After construction at the SaaS layer, the application is
deployed to the PaaS layer via the Application Manager
where it is deployed/monitored.

The application manager queries the provider registry
for a list of IaaS providers, after which a phase of

negotiation occurs. The negotiation takes advantage of
the energy and pricing modeller’s in order to find the
negotiating position of the PaaS layer. After this phase
deployment occurs.

At the start of the operation phase the application
manager registers its interest in VMs to be monitored.
The SLA manager monitors the application for breaches
in the terms of the agreement.

The principle triggers for adaptation at this layer are:

1) Application level SLA breaches: on aspects such
current application power consumption and total
energy consumption, current price and total spent
so far.

2) IaaS Layer Adaptation Events: the PaaS layer is able
to listen to the IaaS layer for adaptation events. This
may have the principle action of mitigating changes
in cases where adaptation has just occurred to VMs
associated with the monitored application.

3) Renegotiation Events: calls by the IaaS layer to
the PaaS layer to renegotiate i.e. in cases where it
can provide a better service or is currently under
performing.

In the event an SLA breach occurs the PaaS-SAM is no-
tified by the SLA manager of the breach. A renegotiation
with the IaaS lsayer or a redeployment of the application
on a different infrastructure takes place. The PaaS-SAM
takes part in the following self-adaptive steps:

1) Identify from the OVF which adaptation types are
possible. An example of this would be ensuring
horizontal scaling is possible given the permitted
amount of VMs.

2) Get information about the run-time environment in
order to further assess the plausibility of actuators
e.g. if there is a limit on power consumption then it
will not take action if it is told that in acting it will
cause another SLA breach.

3) Choose an actuator to invoke. The potential actu-
ators at this level are request rescheduling in the
IaaS layer or scale horizontally (adding/removing
VMs). The request to reschedule a VM is the means
by which the PaaS layer prompts the IaaS layer
to reschedule indicating that a particular VM is of
concern.

4) Invoke the actuator on the application manager.

3.2 IaaS Perspective

There are two main stages during application deploy-
ment. The negotiation phase requires a notion of the
current state of the infrastructure and the performance
that will be obtained by a new application submission.
This information is provided by scheduling and with the
use of predictions that utilise the energy and pricing
modellers in this layer. The second stage during de-
ployment is used to iteratively deploy the VMs. During
the service operation phase the architecture focuses on
application monitoring and SLA conformance.

The principle triggers for adaptation at this layer are:

5

1) VM level SLA breaches: on aspects such VM power
consumption and energy consumption and VM
price (and performance in cases of overselling re-
sources).

2) PaaS Layer Responses: the PaaS layer invokes adap-
tation on this layer, thus the IaaS layer will capture
changes enforced on it by the PaaS. This may have
the principle action of mitigating changes in cases
where adaptation has just occurred.

3) Renegotiation Events: Calls by the PaaS layer to the
IaaS layer to renegotiate.

4) Pre-Defined Intervals: Such as VM addition, dele-
tion and at regular timed intervals.

The VM Manager/Self-Adaptation Manager take part
in the following self-adaptive steps:

1) Identify which adaptation types are possible with
guidance from the Energy Modeller, thus assisting
it in how to adapt. An example of this would be
ensuring horizontal scaling is possible given the
permitted amount of VMs.

2) Choose an actuator to invoke. The potential actu-
ators at this level are rescheduling with vertical
scalability, rescheduling with live migration or rene-
gotiation with PaaS. The latter takes place in the
event of an SLA breach or if there is a change in
the cost of running the application, i.e. changes in
energy price.

3) Invoke the actuator.

A summary of the PaaS-IaaS adaptation dimensions is
given in Table 1.

4 PAAS-IAAS INTER-LAYER ADAPTATION:
PROPOSED SOLUTION

The initiator of PaaS-IaaS inter-layer adaptation is the
PaaS SLAM which, following the detection of an SLA
violation on the application metrics, notifies the PaaS-
SAM. The latter is in charge of deciding and imple-
menting corrective actions, e.g. a scale-up or a scale-
down operation. This decision is based upon the infor-
mation provided by the VMM (which is called via the
Application Manager) regarding the VM free slots that
are available: number of CPUs, RAM and disk available
per host. Figure 4 shows the components interaction to
support such process.

To implement inter-layer adaptation, the PaaS-SAM is
allowed to create VMs of different sizes for the same ap-
plication (i.e. modify the number of CPUs of an existing
VM registered in the Application Manager) considering
vertical or horizontal scalability (or both). The PaaS-EM
assists in deciding the size of VMs required for the actual
service.

4.1 OVF

OVF provides the functionality to programmatically gen-
erate descriptions of Cloud based applications. In the
context of this research standard compliant extensions to

Fig. 4. Slot-Aware VM Deployment: Inter-Layer Compo-

nents Interaction

the OVF standard are utilised to enable self-adaptation
in the architecture layers through a standardised ex-
change of application requirements via a unified data
model. The OVF product section is extended using a key
value pair based system to include both constraints and
rules for self-adaptation. This includes for the product
section of a virtual system specifying boundary condi-
tions for the number of VM instances, as well as the
initial count of VM instances using the keys: asceti-
cLowerBound, asceticUpperBound, asceticStartBound.
The product section can also be used to specify adap-
tation rules, these are added as key value pairs with
each rule been appended with a numeric id value. Such
as the following example of rule zero: <ovf:Property
ovf:key=”AdaptationRuleSlaTerm 0” ovf:type=”string”
ovf:value=”power usage per app” >Each rule has vari-
ous elements each indicated by separate key value pairs:

AdaptationRuleSlaTerm Name of the rule.
AdaptationRuleComparator Comparator to be use:

LTE, LT, GTE, GT, EQ
AdaptationRuleResponseType Action to be performed

in case the rule is triggered.
AdaptationRuleLowerBound An optional lower bound

to trigger the rule, based upon the difference be-
tween the SLAs guaranteed value and the actual
value measured at SLA violation.

AdaptationRuleLowerBound An optional upper
bound to trigger the rule.

AdaptationRuleNotificationType Indicating if the noti-
fication was an SLA violation, a warning or another
event.

4.2 SLA Management

As indicated in Figures 2 and 3, the architecture includes
an SLA Manager component in each of the PaaS and IaaS
layers.

Application SLA terms are created by end users in
the SaaS layer, along with the OVF description of their
application. SLA terms at PaaS level express constraints
on application performance, its energy consumption or
the price of resources. PaaS SLAM is in charge of con-
tacting IaaS SLA Managers from different providers and

6

TABLE 1

PaaS-IaaS Inter-Layer Adaptation: Dimensions

Adaptation requirement PaaS IaaS
When to adapt? Reactive / Proactive Reactive / Proactive
Why to adapt? Application SLA breach VM SLA breach

IaaS event, IaaS Renegotiation PaaS event, PaaS Renegotiation
Where to implement change? VMs VMs
What kind of change is needed? Parameter adaptation: Parameter adaptation:

VM count, VM CPU count VM placement
Who performs adaptation? PaaS SAM (leads) / IaaS SAM IaaS SAM (leads) / PaaS SAM
How is the adaptation performed? VMs rescheduling VMs rescheduling

VM scalability VMs scalability
Redeployment to another provider

Objective Minimise power Minimise power
Minimise energy Minimise energy

negotiate the resources required to run the application
developed at the SaaS level. PaaS SLAM negotiates with
multiple IaaS providers, comparing multiple offers and
selecting the best one. A contract is produced in the
form of a list of SLA terms, including the computational
resources agreed, their maximum energy consumption
and the price that the application will pay for using
them. SLA thresholds associated with SLA terms are
monitored and in case of a breach an SLA violation is
raised to the SAM (in case of PaaS) and the VMM (in case
of IaaS) to take corrective actions derived from OVF.

IaaS and PaaS SLAMs both allow renegotiation of
existing SLA agreements. For this, an updated SLA tem-
plate with new thresholds is provided and both parties
negotiate until they reach a new agreement. The original
SLA agreement is still valid during the renegotiation
and, in case the renegotiation succeeds, the new agree-
ment supersedes the original one. The renegotiation
takes place while the resources (VM) remain up and
running, so that the service is not interrupted.

4.3 Energy Modelling

The PaaS Energy Modeller (EM) collects measurements
generated by applications in order to build their en-
ergy models. PaaS EM provides energy measurements
for both an application and the events it generates.
Application events, defined through the SaaS tools, are
monitored through application probes running inside
Virtual Machines.

PaaS EM not only calculates energy measurements,
but also provides an API to estimate future consump-
tion of an application and its events. Such API, when
invoked, builds an energy model trained with historical
data collected from the running application. In particu-
lar, for each VM within the same deployment, a power
model is generated using historical data. When an esti-
mation is required, the model is applied to forecast the
future consumption trend. If the estimation is requested
for the whole application, this calculation is applied to
each VM within the same application deployment and
each predicted power is summed together to provide the
predicted power for the application as a whole.

Forecasting of future values is done using Neural
Network models. PaaS EM uses the collected power uti-
lization measurements of each application’s VM to train
a model for that VM. In order to forecast consumption,
PaaS EM uses the Neural Network on a sliding window
of input values. At each step a new value is produced
and added as the last input value of the next step. The
future value is produced using enough steps to reach
the desired instant. The implementation is based on
Neuroph [9], which is an object-oriented neural network
framework written in Java. Neuroph provides a Java
class library and can be used to create and train neural
networks, both in Java programs and using a graphical
user interface (NeurophStudio). Further details on the
Energy Modeller are found in [10].

4.4 Self-Adaptation Management

Self-Adaptation following the layer perspective in Sec-
tion 3 is co-ordinated between separate adaptation man-
agers in the PaaS and the IaaS layers, namely the PaaS
Self-Adaptation manager (PaaS SAM) and the IaaS SAM,
the later being a module of the VMM. This adaptation
considers: energy, performance and cost of the adapta-
tion it performs.

The first stage of an adaptation is a notification event
from the PaaS SLAM (see Figure 4), this can be either
an SLA breach, a warning of an impending breach
or a notification of other events. Notifications of SLA
breaches principally contain the following information:

Time: the timestamp of the detected violation.
Value: a raw value representing how large the breach

is, i.e. the measured value of the violation.
Type of violation message: This is either a ”violation”

if the violation is detected, a ”warning” if the
guarantee is near the violation threshold, or an
informative indicator to state a new scaling time
period has been reached where the application may
be rescaled.

SLA UUID: the UUID of the SLA.
SLA Agreement Term: used to distinguish between dif-

ferent constraint terms.
SLA Guaranteed State: Provides information on the

border conditions of the SLA:

7

Guarantee Id: it is the metric to be monitored.
Operator: such as greater than, less than, equal.
Guaranteed Value: the value of the threshold.

On notification the PaaS SAM decides upon the course
of action to take, which is principally made up of
adaptation rules and actuators. The adaptation rules
consider the mapping between the type of notification
and the adaptation to perform. The adaptation phase
works in two stages. The first phase indicates the type
of adaptation to make such as: add/remove VMs by
assessing the causes of the SLA breach, these are covered
by the adaptation rules. The second phase indicates
the exact nature of this adaptation such as what type
of VM to add or which VM should be deleted. This
considers aspects such as pre-agreed permissible scaling,
the cost, power and energy consumption of the overall
application.

In the first phase that utilises adaptation rules that
can be specified from OVF (see section 4.1) the rule is
recorded as a tuple of:

<Agreement Term, Comparator, Response Type

{Event Type}, {Lower Bound}, {Upper Bound},

{Parameters}>

which is utilised to determine the form of adaptation
to take. Two examples of this are:

<energy_usage_per_app, LT, REMOVE_VM>

<power_usage_per_app, LT, REMOVE_VM,

WARNING, 0, 100, VMType = "JBoss">

The latter optional values allow for stronger granu-
larity and may be loaded in as generic rules or on a
per application basis as loaded from application specific
OVF. This provides greater flexibility to do things such
as:

• Responding to warnings, in a different fashion to
SLA breaches or informative notifications.

• Observing the difference between the guaranteed
value and the measured value and providing a
stronger response if the deviation is further away
(i.e. the lower bound and upper bound values).

• Parametrising the rules, so applications can better
indicate which VM types to adapt. This allows
information events such as ”it is 6pm” to result in
the scaling back of resources to cope with the ”out
of hours” workload, thus saving energy.

A threshold value, which determines how many
events are required before a rule fires is also utilised, thus
ensuring that temporary reporting of SLA breaches can
be ignored. An example of this would be if VM power
was to become too high due to a short burst of CPU
utilisation.

The second phase then decides upon the scale of
adaptation. This involves the usage of a decision engine
that considers various parameters, such as OVF job
specifications, SLA limits and the current environment

to decide upon the scale of the adaptation and upon
which VMs the adaptation should occur upon.

There are various options that can be used to make the
decision on what action to take, in the case of adding and
removing of a single VM per event, this could be done:
randomly, based upon the VM power consumption, or
based upon the last VM created. Even simple strategies
such as these still have to consider constraints in the
OVF and SLA such as the minimum and maximum
VMs of each given OVF type that can exist an any one
time, as well as SLA energy constraints such as total en-
ergy consumption, current power consumption, energy
consumed over the last hour, or other SLA constraints
such as cost and performance. Another option is the
application of the Mixed Size VM Power Ranked Decision
Engine algorithm for scaling up as shown in Figure 5.

The scaling up feature of this algorithm first obtains
the list of all possible VM types that are permissible to
add, by checking the minimum and maximum bounds of
instances for the VM type. A preference may be specified
in the OVF so that the application selects a given type
of VM to scale first. If this is not specified, the VM type
with the lowest average power consumption is selected,
to start the scaling process. The value for the lowest
power is obtained from the PaaS energy modeller. It
calculates for the application’s deployment the average
power consumed for the given VM type. This value is
later used again as one of the criteria that determines
scaling of the VMs. To ensure too many VMs are not
added the likely new power consumption is estimated
by taking the total measured power for the deployment
and average power for the VM type × count of VMs
to add, ensuring this value is not above the maximum
SLA bound for power consumption. The new VMs are
created once it is determined that no SLA breaches will
be caused by the algorithm.

This algorithm handles VMs which in the OVF specify
a range of possible CPU configuration where the free
slots in the IaaS layer are considered (line 8 of the
algorithm, Figure 5). A simple consolidation method
is used with the aim of creating enough VMs, while
avoiding starting new physical hosts where possible. The
scaling down functionality works in a similar fashion
by removing VMs until the SLA criteria are met again,
based upon how many VMs would need to be removed
given the average power consumption of an OVF VM
type.

The consolidation method (Figure 5) which calculates
the free slots in the IaaS layer helps advise the PaaS
SAM. It is responsible for calculating the combination
of VMs that will lead to a consolidated solution. For
that, it has to take information from PaaS-EM to calculate
the estimated energy cost of a VM in its different sizes.
It then queries the VMM to get information about the
size of the available slots on each host. According to
these two inputs, it calculates a deployment plan by
looking for a combination of VMs that will fit in the
slots provided by VMM while minimizing the number

8

1: procedure DECIDE(Response response)
2: VMTypesPossibleToAdd[]← calculateV MsPossibleToAdd(OV F.V mType.MinMaxBounds, V mType.count())
3: TypeOfVMToAdd← adaptationRules.getPreference()
4:

5: if TypeOfVMToAdd == null then ⊲ null in case it is not specified in the adaptation rules
6: TypeOfVMToAdd← V mType[].getLowestAveragePowerConsumption()
7: end if
8: VmsToAdd = getConsolidatedSlots(Free slots on host, cpusRequired, reqs.MinCpusPerVM,

reqs.MaxCpusPerVM, reqs.getRamMb(), reqs.getDiskGb());
9: Ensure VmsToAdd does not exceed Max VM count from OVF.

10: while SLA Conditions are not met do ⊲ such as SLA power consumption values are not exceeded
11: VmsToAdd = VmsToAdd - 1;
12: end while
13: Launch new VMs (vmsToAdd)
14: return result

15: end procedure

Fig. 5. Algorithm 1: Mixed Size VM Power Ranked Decision Engine algorithm

of running hosts. Given a number of CPUs to be added,
it calculates the number of VMs to create and where to
deploy them.

The main responsibility of the VMM is to manage the
available pool of hosts by scheduling VMs to maximize
host utilization and therefore power off unused hosts.
The VMM collaboratively discloses, on request by the
Application Manager, the list of available VM slots per
physical host (in terms of available resources CPUs,
RAM, and disk). This allows the PaaS-SAM to calculates
a deployment plan comprising a combination of VMs
that fit in the slots provided by VMM allowing the VMM
to launch such a deployment plan. By fitting the new
VMs in the available slots, the VMM can satisfy the PaaS
request without starting new hosts.

5 EXPERIMENTAL DESIGN

To evaluate the feasibility of the PaaS-IaaS inter-layer
adaptation as outlined in section 4, the following
presents the experimental design to test the performance
of the slot-aware VM deployment scenario. Experiments
are designed in the context of the energy efficient cloud
architecture presented in section 2 as implemented by
the ASCETiC project [11]. Their objective is to ascertain
that the self-adaptation at PaaS and IaaS when moni-
toring a service in operation achieves dynamic energy
management in each of the cloud layers. Subsection 5.1
discusses the cloud testbed used for the experimentation
and the environment in which the architecture was
deployed. Subsection 5.2 describes the cloud application
used to test the inter-layer self-adaptation and the exper-
imental set-up that includes a description of variables
monitored.

5.1 Cloud Testbed

The cloud testbed used in experimentation is located
at the Technische Universität Berlin (see Figure 6). The

Fig. 6. Cloud Testbed

computing cluster consists of 200 commodity 1U nodes
and 4 2U nodes used as a staging environment. Each
of the 1U nodes is equipped with a quad-core Intel E3-
1230 processor at 3.3 GHz, 16 GB of RAM, 1 TB of local
hard disk capacity. The 2U nodes are equipped with 2
quad-core Intel E5620 processors at 2.66 GHz, 32 GB of
RAM, 750 GB of local hard disk capacity. An 8 node
Ceph cluster with a replica pool size of 2 and 16 TB of
usable storage provided a Distributed File System (DFS).
Additionally, the cloud testbed deploys OpenStack[12]
to manage virtual infrastructure and Zabbix[13] to store
monitored data. All experiments presented in this paper

9

were performed on the 1U nodes.
Each node is connected to two different networks and

is able to transfer in duplex at full speed 1 Gbit/s. The
first network is dedicated for infrastructure management
via OpenStack, as well as regular data exchange between
the nodes and VMs (both private and public subnets).
The second network is available for storage area network
usage only, with storage nodes accessible via the Ceph
DFS. The ASCETiC components/tools were deployed by
layer into three VMs: SaaS, PaaS and IaaS.

Power consumption on each node is measured thanks
to identical energy-meters to guarantee comparative
measurements. The actual devices are Gembird EnerGenie
Energy Meters [14] that share their measurements in the
local network. These devices can measure power up to
2500 watts with an accuracy of ±2% and are able to
deliver two measurements per second.

5.2 Cloud Application

The chosen application to fulfil the objectives of the
experiments is the SocialSensor [15] application that
facilitates digital journalism. The application is used to
identify and visualise events and trends across social me-
dia sources in real time, identify key sources and opinion
formers around any event, and support journalists in
verifying user generated content (text, images, video and
audio) from social media sources. This application can
not only demonstrate PaaS-IaaS inter-layer adaptation
but is an example of how a streaming application can
be implemented using the Programming model as well.

Fig. 7. Architecture of SocialSensor Application

Figure 7 describes SocialSensor application architec-
ture. The Crawling component is a stream manager
which is in charge of gathering information from social
media sources and its storage in a noSQL database. The
orchestrator component is in charge of periodically pro-
cessing the crawled items, performing a content analysis
and storing the results in a Solr database which makes
results available to third party services and users. The
Orchestrator component processes bags of around 70,000
items (depending on time and social media publication

rate). From these items, the Orchestrator creates a list
of DySCOs (Dynamic Social COntainer), an abstraction
element to organise multimedia content, and divides
it in three sub-lists to be processed by enriching and
updating DySCOs, extracting keywords and combining
trends. Finally the processed DySCOs are inserted into
the Solr database.

The application was cloudified by deploying one
VM per component: Crawling, Orchestrator (including
Content Analysis), MongoDB and Solr databases. In
the original implementation, the Orchestration element
was implemented with a loop which periodically got
the crawled items for processing. This implementation
performed fine with a constant small set of crawled
items. However, when the items rate increased, the
orchestrator was not able to process all the items and
therefore this led to loosing the real-time behaviour of
the content analysis. For this reason, the Orchestrator
component implementation was ported with the energy-
aware Programming Model [6] which is based on COMP
Superscalar[16]. It provides a task-based programming
model to parallelise and distribute the computation in
different cloud computing resources. In this case, various
parts of the processing performed by the Orchestrator
were defined as tasks. During the Orchestrator compo-
nent execution, the programming model runtime detects
the task invocation and creates a Task Dependency
Graph. The tasks which are free of dependencies are
executed in the available computing nodes. Moreover
the runtime continuously monitors the application load
(tasks pending to execute) and automatically adapts the
number of the available VMs to this load by contacting
the PaaS Application Manager to deploy and destroy
VMs the assigned to the application.

6 EVALUATION

The following section discusses the performance of the
PaaS-IaaS inter-layer adaptation presenting an analysis
of the experimental results. It demonstrates the PaaS-
SAM ability to cater the scaling of VMs according to
their power consumption under various scenarios. The
experimental results are discussed in the context of the
SocialSensor application.

6.1 PaaS Self-Adaptation Trigger

Figure 8 demonstrates using the Social Sensor applica-
tion the PaaS SAM’s ability to cater for scaling VMs
based upon the expected workload. This is shown by
submitting 2 separate events indicating changes in the
expected workload. This gives rise to three clear stages in
the graph. The 1st stage in the graph considers a normal
workload in which two orchestrator and a crawling VMs
are running. The 2nd stage results in orchestrator 1
terminating, and is induced by the arrival to the PaaS
SAM of a low workload period event. The final stage
is where a high workload period event arrives causing

10

Fig. 8. PaaS Adaptation Events - Application Scaling

Fig. 9. VM power trace from the PaaS EM

two new orchestrator VMs to be instantiated, leaving 4
VMs in total.

The PaaS SAM queries the PaaS EM via the applica-
tion manager in order to get details of a VMs power
consumption. This query is conducted by passing the
application and deployment ids along with the VM id.
The PaaS SAM does this to obtain both the average
power consumption of a VM type from the specified ap-
plication deployment along with the total power usage
of a deployment. This information coupled with the SLA
limit on power consumption gives a strong indication of
how many VMs may be added before an SLA is breached
by any proposed adaptation i.e. the following must
hold: sla power limit >total current power + (aver-
age power for VM type × count of VMs to add). Fig-
ure 9 shows trace of power consumption from a single
ascetic-pm-socialSensorWorker VM as load is induced.
The trace was generated by polling the PaaS EM using
the same method utilised by the PaaS SAM. The load
for the purpose of generating this trace was generated
using dd on the VM that was undergoing monitoring.
The information provided by invoking the PaaS EM
against all VMs in the deployment allows for its total

power to be calculated as well as the average power for a
given VM type within the deployment. This information
therefore can be used to determine how many VMs may
be added before an SLA breach is likely to occur.

6.2 VMs Vertical Scaling

Since the SocialSensor application is not CPU-intensive
enough stress tests are used in order to induce clear
differences in power consumption. The aim is to show
all VMs on a specific deployment plan set to 100% usage
of CPU and consequently a high power consumption.
This method will help assess the potential resources’
saving in terms of power. The metrics considered across
experiments are the aggregation of power consumption
of the different hosts involved.

In the mixed size VM power ranked decision engine,
new VMs of various size can be added to an existing
deployment plan. In some situations this could lead
to the usage of larger VMs than existing ones, but if
it is more energy efficient to have smaller VMs then
this option may be chosen. For the scale-up experiment
three hosts wally173, wally174 and wally181 on the cloud
testbed are considered, all are Intel-based with 8 CPUs
each.

The experiment starts with an initial workflow of
8 CPUs: 3 CPUs are assigned to wally173 and 5
to wally174. The workload is then scaled-up to 16
CPUs. The PaaS-SAM in combination with the IaaS-
SAM chooses a combination of VMs with flexible size
of CPUs that avoids using the third host (wally181),
making wally173 and wally174 fully utilised. Once the
slot-aware deployment has taken place, the workload is
scaled-down to the original situation of 8 CPUs. Again
3 CPUs are assigned to wally173, 5 CPUs are assigned
to wally174, the workload is scaled-up to 16 CPUs but
this time without using the option that does not avoid
using a third host.

Fig. 10. VM Scale-up: Slot-Aware Deployment vs. Non

Slot-Aware Deployment

The slot-aware deployment consumes less power even
without considering that non-used hosts will be off as
shown in Figure 10 (the slot-aware method allows for
one host to be switched off). The results show how
the first part of the experiment fully uses 16 CPUs on
wally173 and wally174. The total power consumption
when the workload is at 100% is approximately 175W.

11

Fig. 11. Slot-Aware Deployment on Provider A Avoiding

Use of wally181

Details about the deployment plan are provided in the
lower part of the Figure. In the non-slot aware deploy-
ment the increase from 8 CPUs to 16 CPUs leads to
the use of 3 hosts, and therefore when the workload
is at 100% power consumption is approximately 250W.
The benefit ofusing the slot-aware deployment will be
reduction in power consumption of 30%.

6.3 Multi-Provider Deployment

In order to test a multi-provider deployment two IaaS
providers were created on the testbed, each one hold-
ing two hosts: ProviderA (wally173 and wally174), and
ProviderB (wally167 and wally181). There is a slight
difference in resources consumed by both providers:
ProviderA has deployed one VM with 3 CPUs while
ProviderB has a VM with 4 CPUs running. This means
that ProviderA has one slot more than ProviderB.

When a new workload of 5 CPUs is generated, the
mixed size VM decision engine chooses ProviderA as
the best provider as it can fit on host wally173 without
turning on wally174. After this, the workload is scaled-
down to the original situation with 3 CPUs used in
ProviderA and 4 CPUs in ProviderB. A new workload of
5 CPUs is generated again but this time the slot-aware
deployment is not used. The workload is assigned to
ProviderB where it needs to use wally167 and wally181
to complete the deployment. Therefore, wally181 must
be powered on. The results of the experiment are shown
in Figure 11. A new deployment of 5 CPUs will perfectly
fit on wally173 at providerA (because this host is using
only 3 CPUs and has 5 CPUs available). The slot-aware
deployment will create a combination of VMs of 2, 3 and
4 CPUs that will fit in this slot. The total consumption
when the workload is at 100% will be approximately
100W. However, should a combination of VMs be cre-
ated that would choose ProviderB (see Figure 12), hosts
wally167 and wally181 will inevitably be used (5 slots are
needed and wally167 only has 4 available). As both hosts
will need to be on the total power consumption when
the workload is at 100% will be approximately 160W. In
this case, the slot-aware deployment scenario represents
a 37.5% of power reduction against this scenario. The
experiment shows that the slot-aware deployment sce-
nario makes an optimal use of resources in the context
of multi-providers.

Fig. 12. Non Slot-Aware on Provider B Forcing Use of

wally181

TABLE 2

Comparison Between the Slot-Aware vs. Non Slot-Aware

Deployment with Fixed Size of 2, 3 and 4 CPUs

Slot-aware deployment 252.62 kJ
4-CPU fixed-size deployment 594.11 kJ
3-CPU fixed-size deployment 882.56 kJ
2-CPU fixed-size deployment 1,189.33 kJ

6.4 Slot-Aware VM Deployment in the Context of Full

Cluster Utilisation

The final experiment aims to host a high number of
CPUs and therefore considers 4 deployments with 12
CPUs each at the same time so each deployment highest
peak of CPU utilisation will be 1,200% (combining 48
CPUs in total).

As shown in Table 2 the total energy consumption for
the slot-aware deployment is 252.62 kJ because it only
made use of 2 hosts. Deploying with a fixed-size of 4
CPUs on 3 hosts generates a consumption of 594.11 kJ, in
the case of fixed-size 3 CPUs deployed in 4 hosts 882.56
kJ are consumed. Finally when deploying in groups of
2 CPUs on 6 hosts a total of 1,189.33 kJ are consumed.
The results of the experiment clearly show the slot-aware
deployment ability to create a combination of VMs that
fits in only 2 VMs while the non slot-aware deployment
makes use of many more machines. The slot-aware
deployment therefore provides an optimization of the
usage of the available resources.

7 RELATED WORK

Research effort has targeted energy efficiency support at
various stages of the cloud service lifecycle (construction,
deployment, operation). This section reviews existing
work on self-adaptation in cloud computing and cate-
gorises it into two lines of research.

The first line of work concerns self-adaptive systems in
general. R. deLemos et al [17] summarized the state of-
the-art and identified research challenges when develop-
ing, deploying and managing self-adaptive software sys-
tems. These challenges result from the dynamic nature of
self-adaptation, which brings uncertainty. An extended
architecture of the MAPE-K loop as a reference model
for the design of self-adaptive systems is found in [18],
assuming that the system has a central controller with a

12

central MAPE-K loop. The proposal consists in continu-
ously evaluating adaptation steps concerning their actual
effect and adaptation mechanisms concerning their ap-
plicability and efficiency in the case of topology changes.
An agent-based modelling approach for adaptation is
presented in [19]. An Agent Verification Engine (AVE)
which constructs agents to perceive, react, and adapt
to runtime changes of a component-based system is
proposed. These agents are based on the Belief-Desire-
Intention (BDI) architecture, in which agents operate
in terms of motivation and beliefs. The work in [20]
consolidates design knowledge of self-adaptive systems.
To support software designers, the paper contributes
with a set of formally specified MAPE-K templates that
encode design expertise for a family of self-adaptive
systems. The templates comprise: (1) behaviour specifi-
cation templates for modelling the different components
of a MAPE-K feedback loop (based on networks of timed
automata), and (2) property specification templates that
support verification of the correctness of the adaptation
behaviours (based on timed computation tree logic).

The second line of work targets self-adaptation in
clouds. The potential research challenges in the self-
adaptation process of cloud applications in the perspec-
tive of control engineers is discussed in [21]. Considering
the scenario in which the owner of multi-tenant Web
application as a cloud-based application aims to use or
design a controller in order to be able to satisfy the per-
formance requirements of the users in spite of dynamic
workload at runtime, the paper highlights a number of
research challenges which include uncertainty, hetero-
geneous interfaces of cloud services and unpredictable
workload. In [22], Hummaida et al. present a definition
of cloud systems adaptation and a classification of key
features but highlight approaches and techniques used to
enable adaptation of cloud resource configuration only.
A methodology for designing adaptive systems in cloud
environments is proposed in [23]. It consists of sev-
eral phases that take high-level stakeholders’ adaptation
goals and transform them into lower level MAPE-K loop
control points. The MAPE-K loops are then activated
at runtime using search-based algorithms. Employing
the traditional MAPE algorithm: monitoring, analysis,
planning, and execution, Kerstesz et al. [24] present an
SLA aware architecture to deploy services in heteroge-
neous Clouds, with the possibility of monitoring those
SLA violations and take a series of adaptive actions.
Maurer et al. present a rule based approach to adapt the
usage of resources in a Cloud environment at different
layers [25]. Hussin et al [26] propose a Reinforcement
Learning (RL) based methodology in conjunction with
neural networks to design a resource scheduler that
effectively observes and adapts to dynamic changes in
distributed environments. A close work is the position
paper by Carpen-Amarie et al [27] which argues there is
a need for coordinated actions between the PaaS and
IaaS layers in designing virtualised environments for
energy efficiency. However, neither an implementation

nor an evaluation in the context of the proposed API
suite by extending LibCloud has been performed.

8 CONCLUSION

This paper has highlighted the importance of providing
a novel methodology and tools to optimise energy effi-
ciency in an energy-aware cloud architecture.

The approach is the extension of the capabilities of
dynamic energy management by ensuring that the PaaS
and IaaS cloud layers interact and cooperate to mitigate
energy consumption. Such inter-layer self-adaptation en-
sures that the layers cooperate in order to achieve greater
energy reductions than a per-layer approach can achieve
on its own. Key aspects include communication and
(re)negotiation between the layers so that optimisations
can meet the application’s requirements.

The PaaS Self-Adaptation Manager takes decisions on
the type of adaptation to make as well as performs
application tailored adaptation based on rule specifica-
tion. The Energy Modeller forecasts power using neural
networks, and estimates VM consumption based only
on VM-observed data. The VM Manager manages the
available pool of hosts by scheduling VMs to maximize
host utilization and therefore power off unused hosts.
The paper has considered a scenario where the IaaS
collaboratively discloses, on request by the PaaS, the
list of available VM slots per physical host (in terms
of available resources vCPUs, RAM, and disk). The
PaaS-SAM calculates a deployment plan comprising a
combination of VMs that fit in the provided slots and
requests the launch of such deployment plan. By fitting
the new VMs in the available slots, the IaaS satisfies the
PaaS request without starting new hosts.

The PaaS-IaaS inter-layer adaptation was showcased
in the SocialSensor application that facilitates digital
journalism, with the consideration of the slot-aware
VM deployment. The PaaS-IaaS coordinated actions are
shown to be effective through the experimental evalua-
tion of their implementation which is already integrated
in a cloud computing toolkit.

In all experiments we have seen how we gain benefits
thanks to the slot-aware deployment approach. In situa-
tions with providers of 2-3 hosts we have demonstrated
how it is possible to keep turned off at least one of them.
Each host that is off can represent an energy saving of
around 50/100W, leading to a total energy reduction of
approximately 30%-37.5% per provider. We also have
demonstrated that in a context of full cluster utilization
the slot-aware approach performs reasonably well and
the gains in energy can reach 70% when compared with
the worse use-case scenarios. Another important point is
that even with an architecture that does not support to
turn off unused hosts, we see acceptable gains in total
consumption. Therefore, placing VMs in the busier hosts
by adapting their size is a good solution to consume less
energy.

Future work will include exploring new approaches
for PaaS-IaaS adaptation for the purpose of coordinating

13

the layers of the architecture presented in this paper
to further increase cloud application energy efficiency.
These include model-based, control theory and learning
approaches. Moreover, the deployment of the architec-
ture in a heterogeneous hardware environment will be
investigated [7].

ACKNOWLEDGMENTS

The authors would like to thank the European Com-
mission for supporting this work under FP7-ICT-2013.1.2
contract 610874 (ASCETiC project), the Ministry of Sci-
ence and Technology of Spain under contract TIN2015-
65316-P and the Generalitat de Catalunya under contract
2014-SGR-1051. Thanks to ATC Greece for providing the
SocialSensor application and TU Berlin for their technical
support.

REFERENCES

[1] M. Pawlish, A. S. Varde, and S. A. Robila, “Cloud Computing for
Environment-friendly Data Centers,” in Proceedings of the Fourth
International Workshop on Cloud Data Management, ser. CloudDB
’12. New York, NY, USA: ACM, 2012, pp. 43–48. [Online].
Available: http://doi.acm.org/10.1145/2390021.2390030

[2] T. Mastelic, A. Oleksiak, H. Claussen, I. Brandic, J.-M. Pierson, and
A. V. Vasilakos, “Cloud computing: Survey on energy efficiency,”
ACM Comput. Surv., vol. 47, no. 2, pp. 33:1–33:36, Dec. 2014.
[Online]. Available: http://doi.acm.org/10.1145/2656204

[3] K. Djemame, D. Armstrong, R. E. Kavanagh, and et al, “Energy
efficiency embedded service lifecycle: Towards an energy efficient
cloud computing architecture,” in Proceedings of the Energy Ef-
ficient Systems (EES’2014) Workshop, 2nd International Conference
on ICT for Sustainability 2014, vol. 1203. Stockholm, Sweden:
CEUR Workshop Proceedings, Aug 2014, p. 1–6, http://ceur-
ws.org/Vol-1203/EES-paper1.pdf.

[4] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker,
“A survey on engineering approaches for self-adaptive systems,”
Pervasive and Mobile Computing, vol. 17, pp. 184 – 206, 2015.

[5] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez,
F. Marozzo, D. Lezzi, R. Sirvent, D. Talia, and R. Badia, “Servicess:
An interoperable programming framework for the cloud,” Journal
of Grid Computing, pp. 1–25, Sep. 2013.

[6] F. Lordan, J. Ejarque, R. Sirvent, and R. M. Badia, “Energy-
aware programming model for distributed infrastructures,” in
Proceedings of the 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP 2016), Heraklion,
Greece, Feb 2016, pp. 413–417.

[7] K. Djemame, D. Armstrong, R. Kavanagh, J. Deprez, A. Ferrer,
D. Perez, R. Badia, R. Sirvent, J. Ejarque, and Y. Georgiou, “Tango:
Transparent heterogeneous hardware architecture deployment for
energy gain in operation,” in Proceedings of the First Workshop on
Program Transformation for Programmability in Heterogeneous Archi-
tectures, S. Tamarit, G. Vigueras, M. Carro, and J. Marino, Eds.,
Barcelona, Spain, March 2016, http://arxiv.org/pdf/1603.01407.

[8] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape
and research challenges,” ACM Transactions on Autonomous and
Adaptive Systems (TAAS), vol. 4, no. 2, p. 14, 2009.

[9] Neuroph, “Java neural network framework,” 2016,
http://neuroph.sourceforge.net/.

[10] A. Consortium, “Deliverable d5.1 inter-layer cloud stack adap-
tation,” July 2016), note=”http://ascetic-project.eu/content/inter-
layer-cloud-stack-adaptation”,.

[11] ASCETiC, “Adapting Service lifeCycle towards EfficienT Clouds,”
2016, http://www.ascetic.eu/.

[12] “OpenStack: Open source software for building private and
public clouds.” http://www.openstack.org/, Jan 2015. [Online].
Available: http://www.openstack.org/

[13] “Zabbix - An Enterprise-class Monitoring Solu-
tion,” http://www.zabbix.com/, 2016. [Online]. Available:
http://www.zabbix.com/

[14] GEMBIRD Deutschland GmbH, “EGM-PWM-LAN data sheet,”
http://gmb.nl/Repository/6736/EGM-PWM-LAN manual—
7f3db9f9-65f1-4508-a986-90915709e544.pdf, 2013.

[15] SocialSensor, “SocialSensor,” 2014, http://www.socialsensor.eu/.
[16] R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan,

C. Ramon-Cortes, and R. Sirvent, “Comp superscalar, an inter-
operable programming framework,” SoftwareX, vol. 3, pp. 32–36,
2015.

[17] R. de Lemos, H. Giese, H. A. Müller, M. Shaw, and J. Andersson,
Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 1–32.

[18] V. Klös, T. Göthel, and S. Glesner, “Adaptive knowledge bases
in self-adaptive system design,” in 41st Euromicro Conference on
Software Engineering and Advanced Applications, Funchal, Madeira,
Portugal, Aug 2015, pp. 472–478.

[19] K. Johnson, R. Sinha, R. Calinescu, and J. Ruan, “A multi-
agent framework for dependable adaptation of evolving system
architectures,” in 41st Euromicro Conference on Software Engineering
and Advanced Applications, Funchal, Madeira, Portugal, Aug 2015,
pp. 159–166.

[20] D. G. D. L. Iglesia and D. Weyns, “Mape-k formal templates
to rigorously design behaviors for self-adaptive systems,” ACM
Transactions on Autonomous Adaptive Systems, vol. 10, no. 3, pp.
15:1–15:31, Sep. 2015.

[21] S. Farokhi, P. Jamshidi, I. Brandic, and E. Elmroth, “Self-
adaptation challenges for cloud-based applications : A control
theoretic perspective,” in 10th International Workshop on Feedback
Computing (Feedback Computing 2015). ACM, 2015.

[22] A. R. Hummaida, N. W. Paton, and R. Sakellariou, “Adaptation
in cloud resource configuration: a survey,” Journal of Cloud
Computing, vol. 5, no. 1, pp. 1–16, 2016. [Online]. Available:
http://dx.doi.org/10.1186/s13677-016-0057-9

[23] P. Zoghi, M. Shtern, M. Litoiu, and H. Ghanbari, “Designing
adaptive applications deployed on cloud environments,” ACM
Transactions on Autonomous Adaptive Systems, vol. 10, no. 4, pp.
25:1–25:26, Jan. 2016.

[24] A. Kertesz, G. Kecskemeti, and I. Brandic, “An interoperable
and self-adaptive approach for sla-based service virtualization in
heterogeneous cloud environments,” Future Generation Computer
Systems, vol. 32, pp. 54 – 68, 2014.

[25] M. Maurer, I. Brandic, and R. Sakellariou, “Adaptive resource
configuration for cloud infrastructure management,” Future Gen-
eration Computer Systems, vol. 29, no. 2, pp. 472 – 487, 2013.

[26] M. Hussin, N. Asilah Wati Abdul Hamid, and K. A. Kasmiran,
“Improving reliability in resource management through adaptive
reinforcement learning for distributed systems,” J. Parallel Distrib.
Comput., vol. 75, no. C, pp. 93–100, Jan. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2014.10.001

[27] A. Carpen-Amarie, D. Dib, A.-C. Orgerie, and G. Pierre, “To-
wards energy-aware iaas-paas co-design.” in SMARTGREENS,
M. Helfert, K.-H. Krempels, and B. Donnellan, Eds. SciTePress,
2014, pp. 203–208.

14

Karim Djemame Karim Djemame was awarded
a Ph.D. at the University of Glasgow, UK, in
1999, and is currently holding a Senior Lecturer
position at the School of Computing, Univer-
sity of Leeds. He sits on a number of inter-
national programme committees for cloud mid-
dleware, computer networks and performance
evaluation. He was the investigator of vari-
ous e-Science/Cloud projects including DAME,
BROADEN, AssessGrid, ISQoS, STRAPP and
OPTIMIS. He is currently involved in various

research projects including ASCETiC and TANGO. His main research
areas focus on Grid/Cloud computing, including system architectures,
resource management, and energy efficiency. Dr. Djemame is a member
of the IEEE.

Raimon Bosch Raimon Bosch is a software
engineer at Barcelona Supercomputing Center,
Barcelona, Spain, with a wide range of activities
for over 10 years in research and development
of IT systems. His expertise fields are green
computing, search engine optimization and web
development. Also, he has experience as en-
trepreneur working in early-stage start-ups and
leading his own projects.

Richard Kavanagh Richard Kavanagh was
awarded a Ph.D. in 2013 and is currently a re-
search fellow at the School of Computing at the
University of Leeds. He has experience working
in a number of EC-funded projects including
OPTIMIS, ASCETiC and TANGO. His research
is in the field of Distributed Systems and the
complementary paradigms of Grid and Cloud
Computing, with a specific interest in quality of
service, energy efficiency and resource man-
agement.

Pol Alvarez Pol Alvarez is a software de-
veloper at Barcelona Supercomputing Center,
Barcelona, Spain, with a range of activities in
research and development of IT systems, includ-
ing workflows and distributed computing.

Jorge Ejarque Jorge Ejarque holds a PhD in
Computer Architecture (2015), an Msc. in Com-
puter Architecture Network and System (2009)
and an engineering degree on Telecommuni-
cations (2005) at the Technical University of
Catalunya (UPC). In 2005, he worked as IT
consultant in Better Consulting then joined the
Grid Computing group at BSC. During his career
at the BSC, he has contributed in the design and
development of different tools and programming
models for HPC in distributed platforms and he

currently is the product manager of the COMP Superacalar framework.
He was involved in several National and International R&D projects
(CoreGRID, BeInGrid, BREIN, NUBA, OPTIMIS and ASCETiC), and a
member of the experts’ board of the Spanish National Grid Initiative.
His current research interests are focused on three areas: semantic
interoperability of distributed computing platforms, parallel programming
models for distributed platforms; and energy-efficient execution of dis-
tributed applications. Regarding this topic, he is currently working on
two EU funded project TANGO and Euroserver.

Jordi Guitart Jordi Guitart received the M.S.
and Ph.D. degrees in Computer Science at the
Universitat Politecnica de Catalunya (UPC), in
1999 and 2005, respectively. Currently, he is an
associate professor at the Computer Architec-
ture Department of the UPC and an associate
researcher at Barcelona Supercomputing Cen-
ter (BSC), where he leads the Energy-Aware
Computing area within the Autonomic Systems
and e-Business Platforms group. His research
interests are oriented towards green computing

and the smart management of resources in virtualized datacenters. He
is involved in a number of EU and industrial R&D projects.

Lorenzo Blasi Lorenzo Blasi received his Mas-
ter in Electronics Engineering in 1990 and works
as Technical Consultant for Hewlett Packard En-
terprise (and before Digital, Compaq and HP)
since 1990. His track record lists 7 years in
Corporate R&D, 5 years as Software Architect
for the financial market, 4 years as Business
Analysis team leader for a major telecom opera-
tor, and 10 years as technical contributor to EC
funded research projects. His research interests
are on the following areas: Languages, Security,

Cloud, SLA, Robotics. Lorenzo contributes to the TPC of several con-
ferences, e.g. SecureWare, SECOTS (Security in Collaboration Tech-
nologies and Systems) and DIHC (Dependability and Interoperability in
Heterogeneous Clouds). Within HPE Italy Innovation Center, Lorenzo is
currently contributing to and owning technical responsibility for HPE Italy
participation in several EC funded FP7 projects including Contrail, where
he served as leader for the WP on SLAs, and currently ASCETIC, Coco
Cloud and DECIDE. Lorenzo contributed to ASCETIC on the topics of
Energy Modelling, SLA Management and functional analysis of Inter-
layer adaptation.

