
This is a repository copy of Security Analysis of Integrated Diffie-Hellman Digital Signature
Algorithm Protocols.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/119028/

Version: Accepted Version

Conference or Workshop Item:
Vasilakis, Vasileios orcid.org/0000-0003-4902-8226, Alohali, Bashar, Moscholios, Ioannis
et al. (1 more author) (Accepted: 2017) Security Analysis of Integrated Diffie-Hellman
Digital Signature Algorithm Protocols. In: IEICE Information and Communication
Technology Forum, 04-06 Jul 2017. (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Security Analysis of Integrated Diffie-Hellman

Digital Signature Algorithm Protocols

Vassilios G. Vassilakis∗, Bashar A. Alohali†, Ioannis D. Moscholios‡, Michael D. Logothetis§

∗ School of Computer Science, University of York, York, United Kingdom
† School of Computing & Mathematical Sciences, Liverpool John Moors University, Liverpool, United Kingdom

‡ Dept. of Informatics & Telecommunications, University of Peloponnese, Tripolis, Greece
§ Dept. of Electrical & Computer Engineering, University of Patras, Patras, Greece

Abstract—Diffie-Hellman (DH) key exchange is a well known
method for secure exchange of cryptographic keys and has been
widely used in popular Internet protocols, such as IPsec, TLS,
and SSH. To enable authenticated key establishment, the DH
protocol has been integrated with the digital signature algorithm
(DSA). In this paper, we analyze three variants of the integrated
DH-DSA protocol. We study the protocol variants with respect to
known types of attacks and security features. In particular, the
focus is on the properties of forward secrecy, known-key security,
and replay attack resilience.

Keywords—Diffie-Hellman protocol; digital certificate algo-
rithm; key agreement protocol; network security.

I. INTRODUCTION

Today, the public-key (or, asymmetric) cryptosystems are
mainly used for the establishment and distribution of secret
keys over insecure channels [1]. These secret keys are subse-
quently used by symmetric cryptographic protocols to encrypt
the actual data and to enable secure communication of two or
more parties. Due to the inherent slowness of public-key cryp-
tosystems in comparison with the symmetric cryptosystems,
in typical scenarios, the public-key cryptosystems are not the
preferred method for the distribution of the actual data. On the
other hand, public-key cryptosystems are an attractive solution
when the secret key distribution is required. This is due to the
fact that they do not rely on the existence of a hidden or covert
channel in order to enable secure communication.

The first and widely used public-key cryptosystem today is
the Diffie-Hellman (DH) key agreement protocol. Its inventors,
Whitfield Diffie and Martin Hellman received the 2015 ACM
Turing Award for their seminal paper that introduced the
concepts of public-key cryptography and digital signatures
[2]. The DH protocol enables two communicating parties that
have no prior knowledge of each other to jointly establish
a secret key by exchanging a number of messages over an
insecure channel. Thanks for this feature, the DH method has
been adopted by many popular Internet protocols, such as the
Internet protocol security (IPsec), the transport layer security
(TLS), and the secure shell (SSH), for a secure exchange of
cryptographic keys.

The joint key generation in the DH protocol relies on the
difficulty of computing (by an attacker) discrete logarithms.
One of the limitations of the DH protocol in its classical
form is that it provides no authentication. Hence, to verify the
identities of the communicating parties, the DH protocol must
be integrated with a suitable authentication protocol. In this

work, to ensure user authentication, we consider the integration
of the DH protocol with the digital signature algorithm (DSA).
The latter has been proposed in 1991 by the National Institute
of Standards and Technology (NIST) and is part of their
digital signature standard (DSS). The DSA was designed to
sign messages that are sent in clear. It was not intended to
provide data encryption. An integrated DH-DSA protocol was
first introduced in [3] and aims at providing both secure and
authenticated communication. To achieve authentication, this
approach suggests replacing the messages exchanged in the
DSA with the DH keys. Since then a number of weaknesses
have been identified [4], [5] and several modifications of this
protocol have been proposed [6]–[9].

In this paper, we analyze three variants of the integrated
DH-DSA protocol from the security perspective. In particular,
we study the protocols with respect to three important security
properties, namely forward secrecy [5], known-key security
[10], and replay attack resilience [11].

II. SECURITY PROPERTIES

In this section we briefly introduce and define three impor-
tant properties of secure communication protocols.

Forward secrecy (or, perfect forward secrecy) is a feature
of (specific) key agreement protocols in which compromising
the long-term cryptographic keys does not compromise the past
session keys. That is, the forward secrecy feature ensures that
a user’s session key will not be compromised if, for example,
the private key of the server is compromised. It also protects
past sessions against future compromises of secret keys or
passwords.

Known-key security is a feature of (specific) key agreement
protocols in which compromising one session key does not
compromise other session keys. That is, assume that two
communicating parties have established two session keys - one
key in each direction. Even if the adversary obtains the session
key for one direction, it will still be computationally hard to
derive the session key for the opposite direction.

Replay attack resilience is a feature of (specific) secure
communication protocols to resist against the replay attacks
in which a valid message is captured and later maliciously
repeated. To protect against the replay attacks, there must be
some mechanism for the communicating parties to verify that
the received message is fresh.

Step Alice (xA, yA) Bob (xB , yB)

1 Generate random v ∈ Zq

mA = gv mod p
rA = mA mod q

sA = v−1[H(mA) + xArA] mod q

(mA, sA)
−−−−−−−−−−−−−−−−−−−−→

2 Generate random w ∈ Zq

mB = gw mod p
rB = mB mod q

sB = w−1[H(mB) + xBrB] mod q

(mB , sB)
←−−−−−−−−−−−−−−−−−−−−

3 Verify signature (rB ,mB) of message mB

Compute K = mv
B mod p

4 Verify signature (rA,mA) of message mA

Compute K = mw
A mod p

Fig. 1. Arazi’s Protocol.

III. ARAZI’S PROTOCOL

One of the first attempts to integrate the DH protocol with
the DSA was made by Arazi [3]. The aim is to enable two
communicating parties, Alice and Bob, to establish a shared
session key, K. In this section, we initially present Arazi’s
protocol. We then discuss its weaknesses. In particular, it is
demonstrated that the protocol provides no known-key security
and it is vulnerable to replay attacks. The basic protocol steps
are also shown in Fig. 1.

A. The Protocol

Initialization:

At the beginning, Alice and Bob jointly select the protocol
parameters: L, p, q, and g. These parameters need not be kept
secret (from an adversary). Afterwards, Alice and Bob generate
their own public and private cryptographic keys, which are
referred to as the long-term keys. The generation of the
protocol parameters and the long-term keys is explained below.

(i) Alice and Bob select

• a number L that is multiple of 64 and 512 ≤ L ≤ 1024

• a large prime p, such that 2L−1 < p < 2L

• a prime q that is divisor of p−1 and 2159 < q < 2160

• g an element of multiplicative order q in Zp (that is,

g = h(p−1)/q mod p > 1 for some random integer h
with 1 < h < p− 1), where Zp = {0, 1, . . . , p− 1}.

(ii) Alice generates

• her private key xA, which is a random number 0 <
xA < q

• her public key yA = gxA mod p.

(iii) Bob generates

• his private key xB , which is a random number 0 <
xB < q

• his public key yB = gxB mod p.

Message exchange:

Having established the protocol parameters and the long-
term keys, Alice and Bob exchange appropriately crafted
messages, mA and mB , that are accompanied by their respec-
tive signatures, sA and sB . Below we describe the required
sequence of events and the generation of the signed messages.

(iv) Alice

• generates a random number v ∈ Zq

• computes mA = gv mod p

• computes rA = mA mod q

• computes the signature sA for message mA as: sA =
v−1[H(mA) + xArA] mod q, where v−1 is the mul-
tiplicative inverse of v mod q (i.e., v−1v mod q = 1)
and H is a secure hash function on message m that
produces a 160-bit hash value, H(m)

• sends (mA, sA) to Bob.

(v) Bob

• generates a random number w ∈ Zq

• computes mB = gw mod p

• computes rB = mB mod q

• computes sB = w−1[H(mB) + xBrB] mod q

• sends (mB , sB) to Alice.

Message verification and key derivation:

Once the aforementioned messages are received, both par-
ties are able to independently derive a shared session key
K. Note that an adversary that is observing the exchanged
messages is not able to determine the key K due to the
assumption that the discrete logarithm problem is hard to solve
(Assumption 1) [12].

(vi) Alice

• receives (mB , sB) from Bob

• computes rB = mB mod q

• verifies the DSS signature (rB , sB) of message mB

• computes the (secret) shared session key K =
mv

B mod p.

(vii) Bob

• receives (mA, sA) from Alice

• computes rA = mA mod q

• verifies the DSS signature (rA, sA) of message mA

• computes the (secret) shared session key K =
mw

A mod p.

Note that the key, K, computed by Alice and Bob is
the same. That is, the key computed by Alice is K =
mv

B mod p = (gw mod p)v mod p = gwv mod p. Simi-
larly, the key computed by Bob is K = mw

A mod p =
(gv mod p)w mod p = gvw mod p. Finally, due to Assump-
tion 1, an adversary by observing (gv mod p) and (gw mod p),
is not able to determine neither v and w nor (gvw mod p).

B. Security Analysis

In this subsection we present a security analysis of Arazi’s
protocol, focusing on the known-key security property. Below
it is shown that if one of the two private keys (xA or xB) will
be compromised, then the adversary will be able to compute
all the previous shared keys, K. Similarly to [4], this can be
demonstrated as follows.

Recall that the signatures of the exchanged messages are:

sA = v−1[H(mA) + xArA] mod q (1)

sB = w−1[H(mB) + xBrB] mod q (2)

From (1) and (2) we get:

v = s−1
A [H(mA) + xArA] mod q (3)

w = s−1
B [H(mB) + xBrB] mod q (4)

Multiplying (3) and (4) we get:

vw = s−1
A s−1

B [H(mA)+xArA][H(mB)+xBrB] mod q (5)

Hence, the shared key, K, can be expressed as follows:

K = gvw mod p

= gs
−1

A
s−1

B
[H(mA)+xArA][H(mB)+xBrB] mod p

(6)

By performing some manipulations in (6) we get:

KsAsB = g[H(mA)+xArA][H(mB)+xBrB] mod p (7)

KsAsB =gH(mA)H(mB)gxArAH(mB)

gH(mA)xBrBgxArAxBrB mod p
(8)

Recall that the public keys of Alice and Bob are:

yA = gxA mod p (9)

yB = gxB mod p (10)

Hence, due to (9) and (10), from (8) we get:

KsAsB =gH(mA)H(mB)y
rAH(mB)
A

y
H(mA)rB
B (gxAxB)rArB mod p

(11)

In (11) we observe that the shared key, K, can be ex-
pressed in terms of publicly known quantities and the quan-
tity gxAxB mod p. This means that if the adversary obtains
one session key, K, he/she can then compute the quantity
gxAxB mod p. Hence, the adversary will be able to compute all
the previous sessions keys, K, and to decrypt all the encrypted
messages, mA and mB . This means that the protocol provides
no known-key security.

Finally, Arazi’s protocol is vulnerable to replay attacks.
That is, an adversary may intercept, for example, the message
mA with its signature sA and replay them later to Bob. On
such occasions, there is no way for Bob to determine whether
the received message is fresh or not. An approach to mitigate
replay attacks in this protocol using timestamps is presented
in [9].

IV. HARN’S PROTOCOL

In this section we present and analyze a variant of the DH-
DSA three-round protocol proposed by Harn et al. [6].

A. The Protocol

Harn’s protocol shares some similarities with Arazi’s pro-
tocol, with the differences that are discussed below. The basic
steps of the protocol are also shown in Fig. 2.

Similarly to the popular Internet security protocols, such
as TLS and IPsec, Harn’s protocol uses two different shared
session keys - one key for each direction. In particular, the
messages that are sent from Alice to Bob are encrypted using
the session key KAB , whereas the messages that are sent from
Bob to Alice are encrypted using the session key KBA. The
aforementioned keys are generated via (12) and (13) by Alice
and Bob, respectively:

KAB = yvB mod p

KBA = mxA

B mod p
(12)

KAB = mxB

A mod p

KBA = ywA mod p
(13)

Step Alice (xA, yA) Bob (xB , yB)

1 Generate random v ∈ Zq

mA = gv mod p

(mA)
−−−−−−−−−−−−−−−−−−−−→

2 Generate random w ∈ Zq

KAB = mxB

A mod p
KBA = ywA mod p
mB = gw mod p
rB = mB mod q

sB = w−1[H(mB ||KBA||KAB) + xBrB] mod q

(mB , sB)
←−−−−−−−−−−−−−−−−−−−−

3 KAB = yvB mod p
KBA = mxA

B mod p
rB = mB mod q
Verify signature (rB ,mB) of message mB

rA = mA mod q

sA = v−1[H(mA||KAB ||KBA) + xArA] mod q

(sA)
−−−−−−−−−−−−−−−−−−−−→

4 rA = mA mod q
Verify signature (rA,mA) of message mA

Fig. 2. Harn’s Protocol.

Recall that (yA, xA) and (yB , xB) are the public-private key
pairs of Alice and Bob, respectively. Also, mA and mB are
the messages that are exchanged between Alice and Bob and
are defined as in Arazi’s protocol:

mA = gv mod p

mB = gw mod p
(14)

By using (9), (10), and (14), equations (12) and (13) are
transformed to:

KAB = gxBv mod p

KBA = gxAw mod p
(15)

Due to use of two session keys, the signatures sA and sB
are defined (differently to Arazi’s protocol) as follows:

sA = v−1[H(mA||KAB ||KBA) + xArA] mod q (16)

sB = w−1[H(mB ||KBA||KAB) + xBrB] mod q (17)

where || is the concatenation operator.

Note in (16) and (17) that the message signatures, sA and
sB , depend on the session keys, which in turn depend on the
messages mA and mB . Therefore, contrary to Arazi’s protocol,
the message mA is initially sent without its signature (Step
1). This is because at the beginning Alice does not know
mB which is required to compute KBA. Hence, sending the
signature sA has to wait until Step 3.

B. Security Analysis

In this subsection we discuss the security properties of the
Harn’s protocol. In particular, we present the protocol analysis
with respect to the properties of known-key security, forward
secrecy, and attack resilience.

1) Known-key security: With regard to the know-key se-
curity property, we are interested in identifying how much
information about the session keys, KAB and KBA, is leaked
to an adversary that observes the signatures sA and sB , which
are exchanged between Alice and Bob. To this end, below,
we transform (16) and (17) in a way that reveals the relation
between KAB and KBA.

Begin by multiplying both sides of (16) and (17) by v and
w, respectively:

sAv = [H(mA||KAB ||KBA) + xArA] mod q (18)

sBw = [H(mB ||KBA||KAB) + xBrB] mod q (19)

Solve (18) and (19) for xArA and xBrB , respectively:

xArA = [sAv −H(mA||KAB ||KBA)] mod q (20)

xBrB = [sBw −H(mB ||KBA||KAB)] mod q (21)

Cross multiply (20) and (21):

xArA[sBw −H(mB ||KBA||KAB)] =

xBrB [sAv −H(mA||KAB ||KBA)] mod q
(22)

The above equation is equivalent to:

xArAsBw + xBrBH(mA||KAB ||KBA) =

[xBrBsAv + xArAH(mB ||KBA||KAB)] mod q
(23)

Raise g to the power of both sides of (23) modulo p:

gxArAsBw+xBrBH(mA||KAB ||KBA) =

gxBrBsAv+xArAH(mB ||KBA||KAB) mod p
(24)

Substitute (9), (10), and (15) into (24):

(KBA)
rAsB (yB)

rBH(mA||KAB ||KBA) =

(KAB)
rBsA(yA)

rAH(mB ||KBA||KAB) mod p
(25)

In (25) by observing the relationship between the two session
keys, it can be concluded that if the adversary knows one of the
shared keys, the problem of computing the other shared key is
at least of the same difficulty as solving the discrete logarithm
problem for which no efficient method for computing on
conventional computers is known [6], [12].

2) Forward secrecy: Below, we present a security analysis
of Harn’s protocol with regard to the forward secrecy property
[7], [13]. The forward secrecy requires that if a long-term
private key (i.e., xA or xB) has been compromised, then
the adversary still is not able to determine the previously
established session keys (i.e., KAB and KBA).

Recall from (12) and (13), that the session keys can be
expressed as follows:

KAB = mxB

A mod p

KBA = mxA

B mod p
(26)

where mA and mB are quantities exchanged between Alice
and Bob over an insecure channel, and, hence, are known to
the adversary. Assume that the adversary obtains xA. Then
KAB can be easily computed via (26). Similarly, when xB is
obtained, then KBA can be computed. Hence, this approach
provides no forward secrecy.

3) Replay attack resilience: Recall that during a replay
attack, the adversary captures valid messages and then re-sends
them to the intended recipient. Harn’s protocol is immune to
replay attacks for the following reason. Consider Alice sending
to Bob the signed message (mA, sA). The message and its
signature are given by (14) and (16), respectively. Note that
the derivation of sA depends on KBA which in turn depends
on w as shown in (15). However, as shown in Section III,
w is generated by Bob for the establishment of the particular
session key. Hence, Bob can be sure that the received message
mA is fresh. In a similar way, Alice can verify the freshness
of the message mB sent by Bob.

V. PHAN’S PROTOCOL

In this section we present and analyze a variant of the DH-
DSA protocol proposed by Phan [7]. The basic protocol steps
are also shown in Fig. 3.

A. The Protocol

Phan’s protocol can be seen as a modification of Harn’s
protocol, with the differences discussed below. Alice and Bob
generate additional random quantities, nA and nB , respec-
tively. These accompany the sent messages mA, mB and are
used in the process of the shared keys generation. In particular:

nA = yvA mod p

nB = ywB mod p
(27)

The shared keys generated by Alice are:

KAB = nv
B mod p = gxBvw mod p

KBA = mxAw
B mod p = gxAvw mod p

(28)

The shared keys generated by Bob are:

KAB = mxBw
A mod p = gxBvw mod p

KBA = nw
A mod p = gxAvw mod p

(29)

By comparing (28) with (12), we observe that Phan’s protocol
uses nB instead of yB . As will be shown in the following
subsection, this provides stronger security features since yB is
publicly known but nB is not. For the same reason, the key
generation by Bob via (29) relies on nA instead of yA.

B. Security Analysis

With regard to the known-key security, Phan’s protocol
has the same properties with Harn’s protocol. In particular,
if the adversary knows one shared session key (e.g., KAB), it
is computationally hard to infer the other shared session key
(i.e., KBA).

Below we discuss the forward secrecy property of Phan’s
protocol. Recall that this property requires that if a long-
term private key has been compromised, the secrecy of the
previously generated session keys must be preserved. Hence,
let us assume that xA has been compromised. In (28) and (29)
we observe that in order for the adversary to compute KBA,
he/she must know w. However, recall from Section III that w
is generated by Bob and is never sent to Alice (so, it cannot
be intercepted). Note, that the adversary may still intercept
mB which is equal to gw. However, by knowing mB and g,
it computationally hard to derive w (the discrete logarithm
problem).

Similarly, if xB has been compromised, the adversary will
still need to know v in order to compute KAB . However, v is
generated by Alice, is never sent to Bob, and, hence, cannot
be intercepted. Hence, we can conclude that Phan’s protocol
provides forward secrecy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a security analysis of three
variants of the integrated DH-DSA protocol. In particular, we
have focused on the properties of forward secrecy, known-key
security, and replay attack resilience. We observe that Arazi’s
protocol provides no forward secrecy and is vulnerable to re-
play attacks. This is because the generated session keys are not
mutually independent. Hence, if the adversary compromises
one session key, other session keys can be easily determined
based on the publicly exchanged messages. Harn’s protocol
provides known-key security and replay-attack resilience, but

Step Alice (xA, yA) Bob (xB , yB)

1 Generate random v ∈ Zq

mA = gv mod p
nA = yvA mod p

(mA, nA)
−−−−−−−−−−−−−−−−−−−−→

2 Generate random w ∈ Zq

KAB = mxBw
A mod p

KBA = nw
A mod p

mB = gw mod p
nB = ywB mod p
rB = mB mod q

sB = w−1[H(mB ||KBA||KAB) + xBrB] mod q

(mB , nB , sB)
←−−−−−−−−−−−−−−−−−−−−

3 KAB = nv
B mod p

KBA = mxAv
B mod p

rB = mB mod q
Verify signature (rB ,mB) of message mB

rA = mA mod q

sA = v−1[H(mA||KAB ||KBA) + xArA] mod q

(sA)
−−−−−−−−−−−−−−−−−−−−→

4 rA = mA mod q
Verify signature (rA,mA) of message mA

Fig. 2. Phan’s Protocol.

no forward secrecy. Finally, Phan’s protocol has all three
aforementioned security properties. In our future work, we
intend to study the DH-DSA protocol and its variants with
respect to other security properties, such as the key freshness,
and threats, such as the unknown-key share attacks [14].

REFERENCES

[1] W. Stallings, Cryptography and Network Security: Principles and Prac-
tices, 7th edition, Pearson, 2016.

[2] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, 1976, pp. 644-654.

[3] B. Arazi, “Integrating a key distribution procedure into the digital
signature standard,” Electronics Letters, vol. 29, no. 11, 1993, pp. 966-
967.

[4] K. Nyberg and R. A. Rueppel, “Weaknesses in some recent key
agreement protocols,” Electronics Letters, vol. 30, no. 1, 1994, pp. 26-
27.

[5] D. Adrian, et al., “Imperfect forward secrecy: How Diffie-Hellman fails
in practice,” Proc. 22nd ACM SIGSAC Conference on Computer and
Communications Security (CSS), Denver, USA, Oct. 2015, pp. 5-17.

[6] L. Harn, M. Mehta, and W.-J. Hsin, “Integrating Diffie-Hellman key
exchange into the digital signature algorithm (DSA),” IEEE Communi-
cations Letters, vol. 8, no. 3, 2004, pp. 198-200.

[7] R. C.-W. Phan, “Fixing the integrated Diffie-Hellman-DSA key ex-
change protocol,” IEEE Communications Letters, vol. 9, no. 6, 2005,
pp. 570-572.

[8] J. Liu and J. Li, “A better improvement on the integrated Diffie-
Hellman-DSA key agreement protocol,” International Journal of Net-
work Security, vol. 11, no. 2, Sept. 2010, pp. 114-117.

[9] S.-K. Chong, S.-F. Chiou, and M.-S. Hwang, “A simple method to
secure the integrating a key distribution into digital signature standard,”
Proc. 8th International Conference on Computing Technology and
Information Management, Seoul, Korea, April 2012, pp. 729-731.

[10] E. Andreeva, A. Bogdanov, and B. Mennink, “Towards understanding
the known-key security of block ciphers,” Proc. International Workshop
on Fast Software Encryption, Springer Berlin Heidelberg, 2013, pp.
348-366.

[11] M. Zhu and S. Martı́nez, “On the performance analysis of resilient
networked control systems under replay attacks,” IEEE Transactions on
Automatic Control, vol. 59, no. 3, 2014, pp. 804-808.

[12] T. ElGamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” Proc. Workshop on the Theory and Application
of Cryptographic Techniques, pp. 10-18. Springer Berlin Heidelberg,
1984.

[13] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, CRC press, 1996.

[14] J. Kaliski and S. Burton, “An unknown key-share attack on the MQV
key agreement protocol,” ACM Transactions on Information and System
Security, vol. 4, no. 3, 2001, pp. 275-288.

